Revision of the Genus Cleidion (Euphorbiaceae) in Malesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Revision and Phylogeny of Acalypha (Euphorbiaceae) in Malesia
Blumea 55, 2010: 21–60 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X499141 Revision and phylogeny of Acalypha (Euphorbiaceae) in Malesia V.G. Sagun1,2, G.A. Levin2, P.C. van Welzen3 Key words Abstract Twenty-eight species of Acalypha are recognized in Malesia. Acalypha paniculata is the sole member of subgenus Linostachys in Malesia and the rest of the species belong to subgenus Acalypha. Four previously Acalypha synonymized species are resurrected as distinct species, namely A. angatensis, A. cardiophylla var. cardiophylla, Euphorbiaceae A. grandis, and A. wilkesiana. Four species names are newly reduced to synonymy. The molecular phylogenetic Malesia analyses indicate that Acalypha is monophyletic, as is the subgenus Acalypha. The early-diverging lineages in the phylogeny genus, and its closest outgroup, consist of African species. The Malesian species do not form a monophyletic group although the molecular data strongly support two small clades within the region that are morphologically homogene- ous. The classification system that Pax and Hoffmann applied to subgenus Acalypha, which is based primarily on inflorescence morphology, appears to be unsatisfactory and incongruent with the phylogenetic analyses. Published on 16 April 2010 INTRODUCTION Molecular systematics confirms the placement of Acalypha in Acalyphoideae s.s. and shows a close relationship between Acalypha L. is the third largest genus in the Euphorbiaceae Acalypha and Mareya Baill. (Wurdack et al. 2005, Tokuoka s.s. after Euphorbia L., and Croton L., having about 450 spe- 2007). Their relationship is supported by similar morphologi- cies worldwide (Webster 1994, Radcliffe-Smith 2001). In the cal characteristics, including laciniate styles, pendulous anther Malesian region, 28 species of Acalypha are recognized herein. -
CHAPTER 2 REVIEW of the LITERATURE 2.1 Taxa And
CHAPTER 2 REVIEW OF THE LITERATURE 2.1 Taxa and Classification of Acalypha indica Linn., Bridelia retusa (L.) A. Juss. and Cleidion javanicum BL. 2.11 Taxa and Classification of Acalypha indica Linn. Kingdom : Plantae Division : Magnoliophyta Class : Magnoliopsida Order : Euphorbiales Family : Euphorbiaceae Subfamily : Acalyphoideae Genus : Acalypha Species : Acalypha indica Linn. (Saha and Ahmed, 2011) Plant Synonyms: Acalypha ciliata Wall., A. canescens Wall., A. spicata Forsk. (35) Common names: Brennkraut (German), alcalifa (Brazil) and Ricinela (Spanish) (36). 9 2.12 Taxa and Classification of Bridelia retusa (L.) A. Juss. Kingdom : Plantae Division : Magnoliophyta Class : Magnoliopsida Order : Malpighiales Family : Euphorbiaceae Genus : Bridelia Species : Bridelia retusa (L.) A. Juss. Plant Synonyms: Bridelia airy-shawii Li. Common names: Ekdania (37,38). 2.13 Taxa and Classification of Cleidion javanicum BL. Kingdom : Plantae Subkingdom : Tracheobionta Superdivision : Spermatophyta Division : Magnoliophyta Class : Magnoliopsida Subclass : Magnoliopsida Order : Malpighiales Family : Euphorbiaceae Genus : Cleidion Species : Cleidion javanicum BL. Plant Synonyms: Acalypha spiciflora Burm. f. , Lasiostylis salicifolia Presl. Cleidion spiciflorum (Burm.f.) Merr. Common names: Malayalam and Yellari (39). 10 2.2 Review of chemical composition and bioactivities of Acalypha indica Linn., Bridelia retusa (L.) A. Juss. and Cleidion javanicum BL. 2.2.1 Review of chemical composition and bioactivities of Acalypha indica Linn. Acalypha indica -
Approved Conservation Advice for Actephila Foetida
This Conservation Advice was approved by the Minister / Delegate of the Minister on: 16/12/2008 Approved Conservation Advice (s266B of the Environment Protection and Biodiversity Conservation Act 1999) Approved Conservation Advice for Actephila foetida This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing plans, records or management prescriptions for this species. Description Actephila foetida, Family Euphorbiaceae, is a subshrub up to 1 m tall. The young branchlets are densely covered with soft, short hairs. The leaf stalks are 1.8–7.8 cm long and dark olive- green when dry. The thin leaves are broadly elliptic to obovate, measuring 4.5–53 cm long by 3–21.3 cm wide and are alternately arranged along the branchlets. The upper leaf surface is dark olive-green and more or less hairless; the lower surface is pale olive-green, with a dense covering of spreading hairs on the lateral veins. The flowers are unisexual. Male and female flowers are mixed together in clusters borne in leaf axils. The flower clusters measure 7– 13 mm in diameter and the flowers are approximately 4–8 mm in diameter. Both male and female flowers have 5 sepals and a conspicuous fleshy disk. The fruits are depressed-globose in shape, 15–19 mm in diameter and split releasing up to 3 seeds. This species is distinguished by the (usually) large leaves and the hispid indumentum on the lower surface of the leaf and the flowers that lack petals (Forster, 2005). Conservation Status Actephila foetida is listed as vulnerable. -
Macaranga Tanarius Parasol Leaf Tree Euphorbiaceae
Macaranga tanarius Parasol leaf tree Euphorbiaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Macaranga tanarius, native to Malaysia, is a medium size tree that is cultivated for ornament and reforestation in Hawai'i and other tropical regions of the world. In Hawai'i, M. tanarius is naturalized in disturbed mesic valleys on Kaua'i, O'ahu, and Maui (Oppenheimer et al. 1999, Wagner et al. 1999). On Maui, M. tanarius is widely naturalized in the Waikapu area of West Maui where it forms dense thickets in mesic valleys and streams from near sea level up to about 4,400 ft (1,341 m) elevation. On East Maui, only a single cultivated tree is currently known from a residential planting in Ha'iku. On West Maui, the infestation may not be feasible to control due to the vast area that it covers in steep and difficult terrain. On East Maui, there will always be the potential of re-invasion from the west side of the island, but control of the lone tree now may prevent a large infestation from occurring in the future. TAXONOMY Family: Euphorbiaceae (spurge family) (Wagner et al. 1999). Latin name: Macaranga tanarius (L.) Mull. Arg. (Wagner et al. 1999). Synonyms: Ricinus tanarius L. (Wagner et al. 1999), Macaranga molliuscula Kurz, Macaranga tomentosa Druce, Mappa tanarius Blume (World Agroforestry Centre 2002). Common names: Parasol leaf tree (Randall 2002), Macaranga (Neal 1965). Taxonomic notes: The genus, Macaranga, is made up of 250-280 species from tropical Africa, Madagascar, and Malesia to Australia and some parts of the Pacific, though none are native to Hawai'i (Wagner et al. -
Entry for ACALYPHA Acrogyna Pax [Family EUPHORBIACEAE]
Entry for ACALYPHA acrogyna Pax [family EUPHORBIACEAE] http://plants.jstor.org/flora/flota011327 http://www.jstor.org Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the contributing partner regarding any further use of this work. Partner contact information may be obtained at http://plants.jstor.org/page/about/plants/PlantsProject.jsp. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Page 1 of 2 Entry for ACALYPHA acrogyna Pax [family EUPHORBIACEAE] Herbarium Royal Botanic Gardens, Kew (K) Collection Flora of Tropical Africa Resource Type Reference Sources Entry from Flora of Tropical Africa, Vol 6 Part 1, page 441 (1913) Author: (By J. G. Baker, with additions by C. H. Wright.) Names ACALYPHA acrogyna Pax [family EUPHORBIACEAE], in Engl. Jahrb. -
Species List (PDF)
code gen spec genus species family growth formlife form origin photo 1 pascop smith pascopyrumsmithii poaceae p g n c3 2 androp gerar andropogongerardii poaceae p g n c4 3 schiza scopa schizachyriumscoparium poaceae p g n c4 4 boutel curti bouteloua curtipendulapoaceae p g n c4 5 boutel graci bouteloua gracilis poaceae p g n c4 6 boutel hirsu bouteloua hirsuta poaceae p g n c4 7 boutel dacty bouteloua dactyloidespoaceae p g n c4 8 chlori verti chloris verticillata poaceae p g n c4 9 elymus canad elymus canadensispoaceae p g n c3 10 elymus virgi elymus virginicus poaceae p g n c3 11 eragro spect eragrostis spectabilis poaceae p g n c4 12 koeler macra koeleria macrantha poaceae p g n c3 13 muhlen cuspi muhlenbergiacuspidata poaceae p g n c4 14 dichan oligo dichantheliumoligosanthespoaceae p g n c3 15 panicu virga panicum virgatum poaceae p g n c4 16 dichan ovale dichantheliumovale poaceae p g n c3 17 poa prate poa pratensis poaceae p g i c3 18 sorgha nutan sorghastrumnutans poaceae p g n c4 19 sparti pecti spartina pectinata poaceae p g n c4 20 spheno obtus sphenopholisobtusata poaceae p g n c3 21 sporob compo sporoboluscomposituspoaceae p g n c4 22 sporob crypt sporoboluscryptandruspoaceae p g n c4 23 sporob heter sporobolusheterolepispoaceae p g n c4 24 aristi oliga aristida oligantha poaceae a g n c4 25 bromus arven bromus arvensis poaceae a g i c3 26 bromus tecto bromus tectorum poaceae a g i c3 27 vulpia octof vulpia octoflora poaceae a g n c3 28 hordeu pusil hordeum pusillum poaceae a g n c3 29 panicu capil panicum capillare poaceae a g n c4 30 schedo panic schedonnarduspaniculatuspoaceae p g n c4 31 carex brevi carex brevior cyperaceaep s n . -
Leaf Epidermal Studies of Three Species of Acalypha Linn
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2012, 3 (5):3185-3199 ISSN: 0976-8610 CODEN (USA): AASRFC Leaf epidermal studies of three species of Acalypha Linn. (Euphorbiaceae) 1* Essiett Uduak Aniesua and 1Etukudo Inyene Silas Department of Botany and Ecological Studies, University of Uyo, Uyo _____________________________________________________________________________________________ ABSTRACT Leaf epidermal studies of three species of Acalypha are described. The mature stomata were laterocytic, staurocytic, anisocytic, paracytic and diacytic. The abnormalities noticed include unopen stomatal pore, two stomata sharing one subsidiary cell, one guard cell, parallel contiguous and aborted guard cell. A. godseffiana can be distinguished by parallel contiguous on both surfaces. Curved uniseriate non-glandular trichomes were restricted to A. wilkesiana. Two stomata sharing one subsidiary cell occurred only on the lower surface of A. hispida. The shapes of epidermal anticlinal cell walls, guard cell areas, stomata index and trichomes varied. The differences are of taxonomic importance and can be used to identify and delimit each species by supporting other systematic lines of evidence. Keywords: Acalypha species, Epidermal, Stomata, Nigeria, Euphorbiaceae. _____________________________________________________________________________________________ INTRODUCTION Euphorbiaceae, the spurge family of the flowering plants with 500 genera and around 7,500 species. Most are herbs, -
One New Endemic Plant Species on Average Per Month in New Caledonia, Including Eight More New Species from Île Art (Belep Islan
CSIRO PUBLISHING Australian Systematic Botany, 2018, 31, 448–480 https://doi.org/10.1071/SB18016 One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection Gildas Gâteblé A,G, Laure Barrabé B, Gordon McPherson C, Jérôme Munzinger D, Neil Snow E and Ulf Swenson F AInstitut Agronomique Néo-Calédonien, Equipe ARBOREAL, BP 711, 98810 Mont-Dore, New Caledonia. BEndemia, Plant Red List Authority, 7 rue Pierre Artigue, Portes de Fer, 98800 Nouméa, New Caledonia. CHerbarium, Missouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO 63110, USA. DAMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, F-34000 Montpellier, France. ET.M. Sperry Herbarium, Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA. FDepartment of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden. GCorresponding author. Email: [email protected] Abstract. The New Caledonian biodiversity hotspot contains many micro-hotspots that exhibit high plant micro- endemism, and that are facing different types and intensities of threats. The Belep archipelago, and especially Île Art, with 24 and 21 respective narrowly endemic species (1 Extinct,21Critically Endangered and 2 Endangered), should be considered as the most sensitive micro-hotspot of plant diversity in New Caledonia because of the high anthropogenic threat of fire. Nano-hotspots could also be defined for the low forest remnants of the southern and northern plateaus of Île Art. With an average rate of more than one new species described for New Caledonia each month since January 2000 and five new endemics for the Belep archipelago since 2009, the state of knowledge of the flora is steadily improving. -
ACTIVITIES, HABITAT USE and DIET of WILD DUSKY LANGURS, Trachypithecus Obscurus in DIFFERENT HABITAT TYPES in PENANG, MALAYSIA
Journal of Sustainability Science and Management eISSN: 2672-7226 Volume 14 Number 4, August 2019: 58-72 © Penerbit UMT ACTIVITIES, HABITAT USE AND DIET OF WILD DUSKY LANGURS, Trachypithecus obscurus IN DIFFERENT HABITAT TYPES IN PENANG, MALAYSIA YAP JO LEEN, NADINE RUPPERT* AND NIK FADZLY NIK ROSELY Primate Research and Conservation Lab, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia. *Corresponding author: [email protected] Abstract: Most primates are threatened but studies that address their use of degraded habitats are scarce. Here, we report on activities, habitat use and diet of Trachypithecus obscurus in a human-impacted landscape in Penang Island. We studied the relationship of these primates with their habitat to facilitate conservation management plans. We used group scan sampling to assess activity budgets and recorded home range size, stratum use and food plant species and parts. The home range of the study group was 12.9 hectares, including secondary forest (61.2%), a nature park (23.9%) and beach (14.9%). Langurs mainly rested (43.5%) and fed (24.8%) and spent significantly more time resting and foraging in the secondary forest than elsewhere. They mainly fed on leaves (60.3%) and consumed 56 identified plant species from 32 families of wild and cultivated plants. Langurs behaved differently and ate different plant species in different habitat types and the group had to cross a busy motorway to reach the beach, thus, we also report on road crossing behaviour. These langurs have seemingly adapted well to disturbed habitat however, more comparative studies are needed to predict long-term effects of habitat degradation on the population of this species and to develop feasible conservation plans. -
Czech University of Life Sciences Prague
Czech University of Life Sciences Prague Faculty of Tropical AgriSciences Molecular Characterization of Plukenetia volubilis L. and Analysis of Seed Storage Protein Pattern and Protein Fractions Dissertation Thesis Department of Crop Sciences and Agroforestry Author: Ing. Martin Ocelák Supervisor: doc. Ing. Bohdan Lojka, Ph.D. Co-supervisors: Ing. Petra Hlásná Čepková, Ph.D. Ing. Iva Viehmannová, Ph.D. In Prague, September, 2016 Acknowledgment I would like to express my gratitude to my supervisor doc. Ing. Bohdan Lojka, Ph.D. and co-supervisors Ing. Petra Hlásná Čepková, Ph.D. and Ing. Iva Viehmannová, Ph.D. for their guidance, advices, help and also patience during the studies, laboratory works and mainly during the writings. My thanks also belong to IIAP represented by Ing. Danter Cachique Huansi and Lucas Garcia Chujutalli for their cooperation in samples collection, to Ing. Anna Prohasková for her guidance during analysis of proteins in Crop Research Institute in Prague - Ruzyně, to Ing. Eva Beoni, Ph.D. and Ing. Lenka Havlíčková, Ph.D. for their help in learning how to work in the laboratory; to Ing. Zdislava Dvořáková, Ph.D. for her help, teaching and encouragement and to Ing. Blanka Křivánková, Ph.D. for providing some useful materials. Also my family contributed with their support in all means. So great thanks belong to my parents Jan and Jaroslava Ocelákovi and my boyfriend Ioannis Nikolakis for their love and support in all possible means. This research was supported financially by an Internal Grant Agency of the University of Life Science Prague, CIGA (Project No. 20135004), by an Internal Grant Agency of the Faculty of Tropical AgriSciences - University of Life Science Prague, IGA (Project No. -
Ultramafic Geocology of South and Southeast Asia
Galey et al. Bot Stud (2017) 58:18 DOI 10.1186/s40529-017-0167-9 REVIEW Open Access Ultramafc geoecology of South and Southeast Asia M. L. Galey1, A. van der Ent2,3, M. C. M. Iqbal4 and N. Rajakaruna5,6* Abstract Globally, ultramafc outcrops are renowned for hosting foras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafc regoliths are generally nutrient-defcient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occur- rences of ultramafc regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of end- emism, and the species most threatened. However, site-specifc studies provide insights to the ultramafc geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafc regions difers substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafc mountaintops, where the combined forces of edaphic and climatic factors inter- sect, obligate ultramafc species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafc-associated habitats in the region. The geoecology of the large ultramafc outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation. -
Euphorbiaceae) in the Philippines
BLUMEA 44 (1999) 109-148 Revision of the genus Cleistanthus (Euphorbiaceae) in the Philippines Stefan Dressler 1 Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands Summary The Philippine species of the euphorbiaceous genus Cleistanthus are revised. Sixteen species are recognised for this archipelago of which two are recorded from there for the first time. The oldest available combination from the Philippines [C. orgyalis (Blanco) Merr.] remains obscure and three collections from Palawan treated Three are tentatively as a separate taxon (C. spec. A). species are illustrated here and distribution maps for the Philippines are given for all species. Key words. Cleistanthus, Philippines, taxonomy. Introduction The genus Cleistanthus was established in 1848 by Planchon for a single species from West Tropical Africa using an unpublished name of J.D. Hooker. Before and after that several species were described affiliated to other (partly new) genera (e.g., Roxburgh, 1802; Hasskarl, 1855;Miquel, 1861; Thwaites, 1861, 1864; MiillerArgo- viensis, 1863) but MiillerArgoviensis (1866) soon clarified the taxonomy and made thenecessary new combinationsin his revision ofthe Euphorbiaceae for De Candolle's Prodromus. Later the genus was treated in some floras or regional revisions (e.g., Bentham, 1873; Hooker, 1887; Robinson, 1908). Jablonsky (1915) still represents the most recent complete generic treatment. With all its weaknesses his infrageneric classification is the one still adopted nowadays (cf. Shaw's various and indeed is determination Airy papers, see below) a handy tool. However, I consider it to be rather artificialin parts (e.g., sections based on indumentum of sepals, division of styles), but without having revised the full genus no other is pro- posed here.