P5 (Microarchitecture)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
12 Questions To... Natami Team - Part 1
12 questions to... Natami Team - part 1 Banter (c) Polski Portal Amigowy (www.ppa.pl) Today I will tell you about something unique. I will present you the latest 68k CPU! You may wonder... What actually is N68050? The N68050 (N050) is a new 68k family processor developed by the Natami Team. It runs inside the FPGA together with the Natami chipset. The 050 is the first revision of our 68k CPU architecture. Further on, we will extend the architecture to the N68050E and later the N68070 specification. The N68050 softcore will be the default CPU of the Natami system. But if the user wants to, he could also get a separate CPU card with a physical 68060 for his Natami system, connected to the mainboard over the SyncZorro bus. The development history of the N68050 core. One could say it started in 1998, when Gunnar tried to write his first 68k softcore. But FPGAs were unfortunately too small to accomplish this task back then. The actual development of the Natami softcore started two years ago, after we dismissed Coldfire as a possible CPU for the Natami. Coldfire was interesting, but our testing and estimates showed us that solving it with our own softcore is even better. The first "N68070" softcore design idea was similar to a crossbreed of 68000 and Coldfire. Our first concept was to use a pipeline similar to the Coldfire V3 pipeline. To improve performance we changed this and reworked the pipeline to be longer. Our goal for the softcore was to reach a higher clockrate and to be in all regards better than the original Motorola 68060 clocked at the same speed. -
Intel® IA-64 Architecture Software Developer's Manual
Intel® IA-64 Architecture Software Developer’s Manual Volume 1: IA-64 Application Architecture Revision 1.1 July 2000 Document Number: 245317-002 THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel® IA-64 processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800- 548-4725, or by visiting Intel’s website at http://developer.intel.com/design/litcentr. -
Super 7™ Motherboard
SY-5EH5/5EHM V1.0 Super 7Ô Motherboard ************************************************ Pentium® Class CPU supported ETEQ82C663 PCI/AGP Motherboard AT Form Factor ************************************************ User's Guide & Technical Reference NSTL “Year 2000 Test” Certification Letter September 23, 1998 Testing Date: September 23, 1998 Certification Date: September 23, 1998 Certification Number: NCY2000-980923-004 To Whom It May Concern: We are please to inform you that the “SY-5EHM/5EH5” system has passed NSTL Year 2000 certification test program. The Year 2000 test program tests a personal computer for its ability to support the year 2000. The “SY-5EHM/5EH5: system is eligible to carry the NSTL :Year 2000 Certification” seal. The Year 2000 certification test has been done under the following system configuration: Company Name : SOYO COMPUTER INC. System Model Name : SY-5EHM/5EH5 Hardware Revision : N/A CPU Model : Intel Pentium 200/66Mhz On Board Memory/L2 Cache : PC100 SDRAM DIMM 32MBx1 /1MB System BIOS : Award Modular BIOS V4.51PG, An Energy Star Ally Copyright © 1984—98, EH-1A6,07/15/1998-VP3-586B- 8669-2A5LES2AC-00 Best regards, SPORTON INTERNATIONAL INC. Declaration of Conformity According to 47 CFR, Part 2 and 15 of the FCC Rules Declaration No.: D872907 July.10 1998 The following designated product EQUIPMENT: Main Board MODEL NO.: SY-5EH Which is the Class B digital device complies with 47 CFR Parts 2 and 15 of the FCC rules. Operation is subject to the following two conditions : (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. -
50X50x41mm Socket 7/370 CPU Cooler Fan W/ Heatsink and TX3 and LP4 Startech ID: FANP1003LD
50x50x41mm Socket 7/370 CPU Cooler Fan w/ Heatsink and TX3 and LP4 StarTech ID: FANP1003LD StarTech.com's Socket 7/Socket 730 CPU cooler fan optimizes heat dissipation and removal by combining a large aluminum heatsink and 5cm brushless ball-bearing fan, helping to ensure ideal operating conditions for your hard working CPU. A broadly compatible CPU cooling solution, the Socket 7/Socket 730 CPU cooler fan provides quiet cooling for Socket 370(PPGA) Celerons, Socket 7 Pentiums, AMD K6, K6-2 and Cyrix chips and is powered using a TX3 (3-lead) connection to either the computer power supply or the motherboard (direct). When powered directly from the motherboard, the fan speed and operating status can be monitored for ideal performance. Capable of moving up to 8.84 CFM of air away from the CPU, the Socket 7/Socket 730 CPU cooler fan features a high-efficiency fan blade design and is backed by StarTech.com's 2-year warranty and free lifetime technical support. Applications Socket Type: Socket 7 & Socket 370 VIA : C3, Cyrix III & Cyrix MII up to 500 MHz Intel : Celeron up to 500 MHz AMD : K-6 series up to 500 MHz Replace the stock OEM cooler or a failed Socket 7/370 heatsink fan assembly www.startech.com 1 800 265 1844 Features Aluminum heatsink 50mm ball bearing fan Solid metal retention clip Technical Specifications Warranty 2 Years Fan Bearing Type Ball Bearing Fan Dimensions 50 x 50 x 12.7mm 2 x 2 x 0.5in Heatsink Dimensions 50 x 50 x 22mm 2 x 2 x 0.85in Heatsink Type Aluminum Air Flow Rate 8.84 CFM Fan RPM 4500 Noise Level 28 dBA Connector Type(s) 1 - Molex Fan (3 pin; TX3) Female Color Black Product Height 1.9 in [49 mm] Product Length 1.9 in [49 mm] Product Weight 2.9 oz [81 g] Product Width 1.6 in [40 mm] Input Voltage 12 DC Shipping (Package) Weight 0.3 lb [0.1 kg] Included in Package 1 - Pentium/K6/Celeron 3-Lead CPU Fan Included in Package 1 - 3-pin to dual LP4 Molex Adapter Cable Included in Package 1 - Packet of Thermal Compound Certifications, Reports and Compatibility www.startech.com 1 800 265 1844. -
Pentium Processors Have Slightly Different Requirements to Enable and Disable Paging
D Pentium® Processor Family Developer’s Manual Volume 1: Pentium® Processors NOTE: The Pentium® Processor Family Developer’s Manual consists of three books: Pentium® Processors, Order Number 241428; the 82496/82497/82498 Cache Controller and 82491/82492/82493 Cache SRAM, Order Number 241429; and the Architecture and Programming Manual, Order Number 241430. Please refer to all three volumes when evaluating your design needs. 1995 Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. The Pentium® processor may contain design defects or errors known as errata. Current characterized errata are available on request. *Third-party brands and names are the property of their respective owners. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from: Intel Corporation P.O. Box 7641 Mt. -
SIMD Extensions
SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel. -
Lecture 1: Course Introduction G Course Organization G Historical Overview G Computer Organization G Why the MC68000? G Why Assembly Language?
Lecture 1: Course introduction g Course organization g Historical overview g Computer organization g Why the MC68000? g Why assembly language? Microprocessor-based System Design 1 Ricardo Gutierrez-Osuna Wright State University Course organization g Grading Instructor n Exams Ricardo Gutierrez-Osuna g 1 midterm and 1 final Office: 401 Russ n Homework Tel:775-5120 g 4 problem sets (not graded) [email protected] n Quizzes http://www.cs.wright.edu/~rgutier g Biweekly Office hours: TBA n Laboratories g 5 Labs Teaching Assistant g Grading scheme Mohammed Tabrez Office: 339 Russ [email protected] Weight (%) Office hours: TBA Quizes 20 Laboratory 40 Midterm 20 Final Exam 20 Microprocessor-based System Design 2 Ricardo Gutierrez-Osuna Wright State University Course outline g Module I: Programming (8 lectures) g MC68000 architecture (2) g Assembly language (5) n Instruction and addressing modes (2) n Program control (1) n Subroutines (2) g C language (1) g Module II: Peripherals (9) g Exception processing (1) g Devices (6) n PI/T timer (2) n PI/T parallel port (2) n DUART serial port (1) g Memory and I/O interface (1) g Address decoding (2) Microprocessor-based System Design 3 Ricardo Gutierrez-Osuna Wright State University Brief history of computers GENERATION FEATURES MILESTONES YEAR NOTES Asia Minor, Abacus 3000BC Only replaced by paper and pencil Mech., Blaise Pascal, Pascaline 1642 Decimal addition (8 decimal figs) Early machines Electro- Charles Babbage Differential Engine 1823 Steam powered (3000BC-1945) mech. Herman Hollerith, -
Wdv-Notes Stand: 29.DEZ.1994 (2.) 329 Intel Pentium – Business Must Learn from the Debacle
wdv-notes Stand: 29.DEZ.1994 (2.) 329 Intel Pentium – Business Must Learn from the Debacle. Wiss.Datenverarbeitung © 1994–1995 Edited by Karl-Heinz Dittberner FREIE UNIVERSITÄT BERLIN Theo Die kanadische Monatszeitschrift The Im folgenden sowie in den wdv-notes verbreitet werden, wenn dabei die folgen- Computer Post, Winnipeg veröffentlicht Nr. 330 werden diese Artikel im Original den Spielregeln beachtet werden. in mehreren Artikeln in ihrer Januar-Aus- nachgedruckt. Der Dank dafür geht an Permission is hereby granted to copy gabe 1995 eine exzellente erste Zusam- Sylvia Douglas von The Computer Post, this article electronically or in any other menfassung des Debakels um den Defekt 301 – 68 Higgins Avenue, Winnipeg, Ma- form, provided it is reproduced without des Pentium-Mikroprozessors [1–2] des nitoba, Canada, Email: SDouglas@post. alteration, and you credit it to The Compu- Computergiganten Intel. mb.ca. Diese Artikel dürfen auch weiter- ter Post. Intel’s top of the line Pentium™ microproc- This particular error in the Pentium was in essor chip has turned out to have a slight flaw the floating-point divide unit. Intel manage- Editorial: The Computer Post – Jan.95 in its character: when dividing certain rare ment was concerned enough about it that pairs of floating point numbers, it gives the they pulled together a special team to assess The Way it Will Be wrong answer. For anyone who owns a Pen- the implications. tium-based computer, or was thinking about This month you’ll find we’re reporting a In the words of Andrew Grove, Intel’s CEO, buying one, or is just feeling curious, here lot of background information on Intel’s posting later to the Internet [3], “We were are.. -
Intel® Processor Graphics: Architecture & Programming
Intel® Processor Graphics: Architecture & Programming Jason Ross – Principal Engineer, GPU Architect Ken Lueh – Sr. Principal Engineer, Compiler Architect Subramaniam Maiyuran – Sr. Principal Engineer, GPU Architect Agenda 1. Introduction (Jason) 2. Compute Architecture Evolution (Jason) 3. Chip Level Architecture (Jason) Subslices, slices, products 4. Gen Compute Architecture (Maiyuran) Execution units 5. Instruction Set Architecture (Ken) 6. Memory Sharing Architecture (Jason) 7. Mapping Programming Models to Architecture (Jason) 8. Summary 2 Compute Applications * “The Intel® Iris™ Pro graphics and the Intel® Core™ i7 processor are … allowing me to do all of this while the graphics and video * never stopping” Dave Helmly, Solution Consulting Pro Video/Audio, Adobe Adobe Premiere Pro demonstration: http://www.youtube.com/watch?v=u0J57J6Hppg “We are very pleased that Intel is fully supporting OpenCL. DirectX11.2 We think there is a bright future for this technology.” Michael Compute Shader Bryant, Director of Marketing, Sony Creative Software Vegas* Software Family by Sony* * Optimized with OpenCL and Intel® Processor Graphics http://www.youtube.com/watch?v=_KHVOCwTdno * “Implementing [OpenCL] in our award-winning video editor, * PowerDirector, has created tremendous value for our customers by enabling big gains in video processing speed and, consequently, a significant reduction in total video editing time.” Louis Chen, Assistant Vice President, CyberLink Corp. * "Capture One Pro introduces …optimizations for Haswell, enabling remarkably -
The Microarchitecture of the Pentium 4 Processor
The Microarchitecture of the Pentium 4 Processor Glenn Hinton, Desktop Platforms Group, Intel Corp. Dave Sager, Desktop Platforms Group, Intel Corp. Mike Upton, Desktop Platforms Group, Intel Corp. Darrell Boggs, Desktop Platforms Group, Intel Corp. Doug Carmean, Desktop Platforms Group, Intel Corp. Alan Kyker, Desktop Platforms Group, Intel Corp. Patrice Roussel, Desktop Platforms Group, Intel Corp. Index words: Pentium® 4 processor, NetBurst™ microarchitecture, Trace Cache, double-pumped ALU, deep pipelining provides an in-depth examination of the features and ABSTRACT functions of the Intel NetBurst microarchitecture. This paper describes the Intel® NetBurst™ ® The Pentium 4 processor is designed to deliver microarchitecture of Intel’s new flagship Pentium 4 performance across applications where end users can truly processor. This microarchitecture is the basis of a new appreciate and experience its performance. For example, family of processors from Intel starting with the Pentium it allows a much better user experience in areas such as 4 processor. The Pentium 4 processor provides a Internet audio and streaming video, image processing, substantial performance gain for many key application video content creation, speech recognition, 3D areas where the end user can truly appreciate the applications and games, multi-media, and multi-tasking difference. user environments. The Pentium 4 processor enables real- In this paper we describe the main features and functions time MPEG2 video encoding and near real-time MPEG4 of the NetBurst microarchitecture. We present the front- encoding, allowing efficient video editing and video end of the machine, including its new form of instruction conferencing. It delivers world-class performance on 3D cache called the Execution Trace Cache. -
User's Guide PN: 961Ć047Ć081
6950 Enterprise Gateway Server USER’S GUIDE """""""""""""""""""""""""""" PN: 961-047-091 Revision D September 1999 " NOTICE The information contained herein is proprietary and is provided solely for the purpose of allowing customers to operate and service Intermec manufactured equipment and is not to be released, reproduced, or used for any other purpose without written permission of Intermec. Disclaimer of Warranties. The sample source code included in this document is presented for reference only. The code does not necessarily represent complete, tested programs. The code is provided AS IS WITH ALL FAULTS." ALL WARRANTIES ARE EXPRESSLY DISCLAIMED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. We welcome your comments concerning this publication. Although every effort has been made to keep it free of errors, some may occur. When reporting a specific problem, please describe it briefly and include the book title and part number, as well as the paragraph or figure number and the page number. Send your comments to: Intermec Technologies Corporation Publications Department 550 Second Street SE Cedar Rapids, IA 52401 INTERMEC and NORAND are registered trademarks and ENTERPRISE WIRELESS LAN, UAP, and UNIVERSAL ACCESS POINT are trademarks of Intermec Technologies Corporation. 1996 Intermec Technologies Corporation. All rights reserved. Acknowledgments AS/400 and IBM are registered trademarks of International Business Machines Corporation. DEC, VAX, and VT220 are registered trademarks of Digital Equipment Corporation. UNIX is a registered trademark of UNIX System Laboratories, Inc. B CAUTION: Intermec Technologies Corporation suggests you buy cables from us to connect with other devices. Our cables are safe, meet FCC rules, and suit our products. -
X86 Assembly Language Syllabus for Subject: Assembly (Machine) Language
VŠB - Technical University of Ostrava Department of Computer Science, FEECS x86 Assembly Language Syllabus for Subject: Assembly (Machine) Language Ing. Petr Olivka, Ph.D. 2021 e-mail: [email protected] http://poli.cs.vsb.cz Contents 1 Processor Intel i486 and Higher – 32-bit Mode3 1.1 Registers of i486.........................3 1.2 Addressing............................6 1.3 Assembly Language, Machine Code...............6 1.4 Data Types............................6 2 Linking Assembly and C Language Programs7 2.1 Linking C and C Module....................7 2.2 Linking C and ASM Module................... 10 2.3 Variables in Assembly Language................ 11 3 Instruction Set 14 3.1 Moving Instruction........................ 14 3.2 Logical and Bitwise Instruction................. 16 3.3 Arithmetical Instruction..................... 18 3.4 Jump Instructions........................ 20 3.5 String Instructions........................ 21 3.6 Control and Auxiliary Instructions............... 23 3.7 Multiplication and Division Instructions............ 24 4 32-bit Interfacing to C Language 25 4.1 Return Values from Functions.................. 25 4.2 Rules of Registers Usage..................... 25 4.3 Calling Function with Arguments................ 26 4.3.1 Order of Passed Arguments............... 26 4.3.2 Calling the Function and Set Register EBP...... 27 4.3.3 Access to Arguments and Local Variables....... 28 4.3.4 Return from Function, the Stack Cleanup....... 28 4.3.5 Function Example.................... 29 4.4 Typical Examples of Arguments Passed to Functions..... 30 4.5 The Example of Using String Instructions........... 34 5 AMD and Intel x86 Processors – 64-bit Mode 36 5.1 Registers.............................. 36 5.2 Addressing in 64-bit Mode.................... 37 6 64-bit Interfacing to C Language 37 6.1 Return Values..........................