An Evaluation of Defatted Black Soldier Fly (Hermetia Illucens) Larvae As a Protein Source for Broiler Chicken Diets

Total Page:16

File Type:pdf, Size:1020Kb

An Evaluation of Defatted Black Soldier Fly (Hermetia Illucens) Larvae As a Protein Source for Broiler Chicken Diets An evaluation of defatted black soldier fly (Hermetia illucens) larvae as a protein source for broiler chicken diets by Bridget Lynn Cockcroft Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Faculty of AgriScience at Stellenbosch University Supervisor: Dr E Pieterse March 2018 ‘The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.’ Stellenbosch University https://scholar.sun.ac.za ii Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third-party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2018 Copyright © 2018 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za iii Summary The growth rate of the chicken meat production industry needs to match or exceed the growth rate of the human population to provide sufficient dietary protein for as many people as possible. Thus, alternative protein sources for animal feed are required to support the increasing demands on existing protein sources. Insect protein has recently been recognised as a potential protein source and feed ingredient for animal production systems. Black soldier fly (Hermetia illucens) larvae is one of the many insect protein sources being researched for its inclusion in fish, pig and poultry diets. Mass-rearing of larvae on various waste substrates acts simultaneously as a waste reduction and protein production system. In the current study, the inclusion of defatted black soldier fly larvae (BSFL) in broiler chicken diets was evaluated. The study compared the inclusion of two different defatted BSFL treatments (namely dry- rendered (DR) and extruded (EX)), to that of a full-fat (FF) BSFL treatment and a control treatment. The protein source utilised in the control was soybean meal. The DR, EX and FF products were included at a 15% level in each of the three-phase treatment diets. The control treatment was found to have the significantly highest tibia bone calcium levels, as well as the most acidic ileal gut environment and heavier gizzards. No signs of gizzard erosion were found for any of the treatments tested. The DR treatment was found to be the least efficient larvae treatment tested. Although it had high intakes towards the end of the 28-day trial, this did not result in an increased growth rate. The digestibility trial DR diet was found to have approximately half the mineral concentrations of the EX treatment and a highly non-bioavailable energy content (AME of 8.84MJ/kg). The EX, DR and FF treatment had very high digestibility coefficients (above 90%) for all nutrients analysed. A microscopic evaluation found the DR treatment to have high levels of heat discolouration, yet no significant heat damage. Nonetheless, it was suggested that the palatability of the treatment may have been affected by the processing technique which may have played a role in the relatively inferior production performance. In contrast, the EX treatment performed relatively well within the production parameters with the highest level of breast meat crude protein. The treatment had the darkest breast meat, however did not fall outside of the parameter’s normal. It also yielded the highest meat calcium levels amongst the treatments. The FF treatment yielded the highest calcium to phosphorus ratio, due to the significantly low phosphorus levels. The FF treatment boasted the highest resistance to bone breakage and was superior to all treatments in terms of average live weight, average daily gain, feed conversion ratio, European production efficiency factor and the protein efficiency ratio. The DR treatment compared well with the control regarding production and carcass parameters with no adverse organ or bone limitations found for the DR treatment inclusion. The FF and EX treatments can both successfully be used as a viable protein source in broiler chicken diets at up to 15% inclusion to improve production efficiency. Stellenbosch University https://scholar.sun.ac.za iv Opsomming Die groeikoers van hoendervleisproduksie moet die menslike bevolking se groeikoers ewenaar of oortref om vir soveel mense moontlik voldoende dieetproteïen te voorsien. Alternatiewe proteïenbronne word vir dierevoer benodig om die toenemende eise wat aan bestaande proteïenbronne gestel word, te ondersteun. Insekproteïen is onlangs as ’n potensiële proteïenbron en voerbestanddeel in diereproduksiestelsels erken. Larwes van die venstervlieg (Hermetia illucens) is een van die talle bronne van insekproteïen wat nagevors is vir insluiting in visse, varke en pluimvee se voeding. Larwes wat in massas op verskillende afvalsubstrate grootgemaak word, dien terselfdertyd as ’n stelsel vir afvalvermindering én ’n stelsel vir proteïenproduksie. In hierdie studie is die insluiting van ontvette venstervlieglarwes (BSFL) in braaikuikens se dieet geëvalueer. Die studie het die insluiting van twee verskillende ontvette BSFL-behandelings (naamlik droë ontvetting (DR) en ekstrusie (EX)) met die gebruik van ’n volvet-(FF)-BSFL-behandeling en ’n kontrolebehandeling vergelyk. Die proteïenbron wat in die kontrole gebruik is, was sojameel. Die DR-, EX- en FF-produkte is in elk van die driefase-behandelingsdiëte teen ’n vlak van 15% ingesluit. Die kontrolebehandeling het die beduidend hoogste kalsiumvlakke in die tibia, die mees asidiese ileale ingewandsomgewing en swaarder kroppe gegee. Geen tekens van kroperosie is vir enige van die getoetste behandelings gevind nie. Die DR-behandeling was die mins doeltreffende larwebehandeling wat getoets is. Hoewel inname teen die einde van die 28 dae proeftyd hoog was, het dit nie die groeikoers verhoog nie. Die DR-proefdieet vir verteerbaarheid het nagenoeg die helfte van die mineraalkonsentrasies van die EX-behandeling en ’n hoogs nie-biobeskikbare energieinhoud (AME van 8.84MJ/kg) gehad. Die EX-, DR- en FF-behandelings het vir alle voedingstowwe wat ontleed is ’n uiters hoë verteerbaarheidskoëffisiënt (hoër as 90%) gehad. ’n Mikroskopiese evaluasie het getoon dat die DR-behandeling hoë vlakke van hitteverkleuring gehad het, maar geen betekenisvolle hitteskade nie. Die aanduiding is nietemin dat die verwerkingstegniek moontlik die smaaklikheid van die behandeling beïnvloed het, wat ’n rol kon gespeel het in die relatief swakker produksieprestasie. Daarteenoor het die EX-behandeling relatief goed gepresteer binne die produksieparameters, met die hoogste vlak van borsvleis-ruproteïen. Die behandeling het die donkerste borsvleis gelewer, maar dit het nie buite die parameter se normaal geval nie. Dit het van al die behandelings ook die hoogste vleiskalsiumvlakke gegee. Die FF-behandeling het weens die beduidende lae fosforvlakke die hoogste verhouding van kalsium tot fosfor gegee. Die FF-behandeling het die hoogste weerstand teen beenbreuke gelewer en het alle behandelings getroef wat betref gemiddelde lewende gewig, gemiddelde daaglikse gewigstoename, voeromsettingsverhouding, die Europese produksiedoeltreffendheidsfaktor en die proteïendoeltreffendheidsfaktor. Die DR-behandeling het goed met die kontrole vergelyk wat produksie- en karkasparameters betref, met geen ongunstige orgaan- of beenbeperkings wat vir die DR-behandelingsinsluiting gevind is nie. Die FF- en Stellenbosch University https://scholar.sun.ac.za v EX-behandelings kan albei met sukses tot 15%-insluiting gebruik word as ’n lewensvatbare bron van proteïen in braaikuikens se dieet om produksiedoeltreffendheid te verhoog. Acknowledgments I would like to extend my heartfelt gratitude towards the following people for without their support and contribution, the completion of this thesis would not have been possible: The Lord, almighty God, through whom all things are possible. For providing me with the strength and dedication I needed, even when times were enormously tough. I would like to give thanks for the continual blessings I have been granted (Matthew 5:16). My supervisor, Dr Elsje Pieterse, for taking me on, guiding me and igniting my interest about my topic. Prof Martin Kidd, my statistician, who was very patient with me and my limited statistical expertise. The National Research Fund (NRF) for providing me with a Scarce Skills Bursary and giving me the confidence and security I needed to complete this degree. AgriProtein Technologies Pty Ltd., for supplying the three different larvae ingredients used in the project for testing. To my dear parents, who allowed me to return home to write my thesis and have always supported me with my dreams and ambitions. You guys are my rock. To my brother, John, and sister-in-law, Rose, thank you for your intellectual stimulation and encouragement and all the guidance you have given me throughout this process. I wouldn’t have managed without you two. My cat, Juliet, for providing many a laugh and a cuddle but mostly for faithfully spending the same amount of time as I did at my desk. The company was well-needed. Most importantly to my fiancé, Brandon. Thank you for dealing with the emotional rollercoaster the last two years have been. You never stopped believing in me. This one is for you. Stellenbosch
Recommended publications
  • Nuisance Insects and Climate Change
    www.defra.gov.uk Nuisance Insects and Climate Change March 2009 Department for Environment, Food and Rural Affairs Nobel House 17 Smith Square London SW1P 3JR Tel: 020 7238 6000 Website: www.defra.gov.uk © Queen's Printer and Controller of HMSO 2007 This publication is value added. If you wish to re-use this material, please apply for a Click-Use Licence for value added material at http://www.opsi.gov.uk/click-use/value-added-licence- information/index.htm. Alternatively applications can be sent to Office of Public Sector Information, Information Policy Team, St Clements House, 2-16 Colegate, Norwich NR3 1BQ; Fax: +44 (0)1603 723000; email: [email protected] Information about this publication and further copies are available from: Local Environment Protection Defra Nobel House Area 2A 17 Smith Square London SW1P 3JR Email: [email protected] This document is also available on the Defra website and has been prepared by Centre of Ecology and Hydrology. Published by the Department for Environment, Food and Rural Affairs 2 An Investigation into the Potential for New and Existing Species of Insect with the Potential to Cause Statutory Nuisance to Occur in the UK as a Result of Current and Predicted Climate Change Roy, H.E.1, Beckmann, B.C.1, Comont, R.F.1, Hails, R.S.1, Harrington, R.2, Medlock, J.3, Purse, B.1, Shortall, C.R.2 1Centre for Ecology and Hydrology, 2Rothamsted Research, 3Health Protection Agency March 2009 3 Contents Summary 5 1.0 Background 6 1.1 Consortium to perform the work 7 1.2 Objectives 7 2.0
    [Show full text]
  • Fly Fauna of Livestock's of Marvdasht County of Fars Province In
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library Acta Phytopathologica et Entomologica Hungarica 54 (1), pp. 85–98 (2019) DOI: 10.1556/038.54.2019.008 Fly Fauna of Livestock’s of Marvdasht County of Fars Province in the South of Iran A. ANSARI POUR1, S. TIRGARI1*, J. SHAKARAMI2, S. IMANI1 and A. F. DOUSTI3 1Department of Entomology, Science and Research Branch, Islamic Azad University, Tehran, Iran 2Department of Plant Protection, Faculty of Agriculture, Lorestan University, Lorestan, Iran 3Department of Plant Protection, Islamic Azad University, Jahrom Branch, Jahrom, Fars Iran (Received: 5 August 2018; accepted: 13 August 2018) Flies damage the livestock industry in many ways, including damages, physical disturbances, the transmissions of pathogens and the emergence of problems for livestock like Myiasis. In this research, the fauna of flies of Marvdasht County was investigating, which is one of the central counties of Fars province in southern Iran. In this study, a total of 20 species of flies from 6 families and 15 genera have been identified and reported. The species collected are as follows: Muscidae: Musca domestica Linnaeus, 1758, Musca autumnalis* De Geer, 1776, Stomoxys calci- trans** Linnaeus, 1758, Haematobia irritans** Linnaeus, 1758 Fanniidae: Fannia canicularis* Linnaeus, 1761 Calliphoridae: Calliphora vomitoria* Linnaeus, 1758, Chrysomya albiceps* Wiedemann, 1819, Lu- cilia caesar* Linnaeus, 1758, Lucilia sericata* Meigen, 1826, Lucilia cuprina* Wiedemann, 1830 Sarcophagidae: Sarcophaga africa* Wiedemann, 1824, Sarcophaga aegyptica* Salem, 1935, Wohl- fahrtia magnifica** Schiner, 1862 Tabanidae: Tabanus autumnalis* Linnaeus, 1761, Tabanus bromius* Linnaeus, 1758 Syrphidae: Eristalis tenax* Linnaeus, 1758, Syritta pipiens* Linnaeus, 1758, Eupeodes nuba* Wiede- mann, 1830, Syrphus vitripennis** Meigen, 1822, Scaeva albomaculata* Macquart, 1842 Species identified with * for the first time in the county and the species marked with ** are reported for the first time from the Fars province.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Diptera: Calyptratae
    Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile DOMÍNGUEZ, M. CECILIA; ROIG-JUÑENT, SERGIO A. Historical biogeographic analysis of the family Fanniidae (Diptera: Calyptratae), with special reference to the austral species of the genus Fannia (Diptera: Fanniidae) using dispersal-vicariance analysis Revista Chilena de Historia Natural, vol. 84, núm. 1, 2011, pp. 65-82 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944297005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative HISTORICAL BIOGEOGRAPHY OF FANNIIDAE (DIPTERA) 65 REVISTA CHILENA DE HISTORIA NATURAL Revista Chilena de Historia Natural 84: 65-82, 2011 © Sociedad de Biología de Chile RESEARCH ARTICLE Historical biogeographic analysis of the family Fanniidae (Diptera: Calyptratae), with special reference to the austral species of the genus Fannia (Diptera: Fanniidae) using dispersal-vicariance analysis Análisis biogeográfico histórico de la familia Fanniidae (Diptera: Calyptratae), con referencia especial a las especies australes del genero Fannia (Diptera: Fanniidae) usando análisis de dipersion-vicarianza M. CECILIA DOMÍNGUEZ* & SERGIO A. ROIG-JUÑENT Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), Centro Científico Tecnologico (CCT-CONICET, Mendoza), Av. Adrián Ruiz Leal s/n, Parque Gral. San Martin, Mendoza, Argentina, CC: 507, CP: 5500 *Corresponding author: [email protected] ABSTRACT The purpose of this study was to achieve a hypothesis explaining the biogeographical history of the family Fanniidae, especially that of the species from Patagonia, the Neotropics, Australia, and New Zealand.
    [Show full text]
  • ICAR–NBAIR Annual Report 2019.Pdf
    Annual Report 2019 ICAR–NATIONAL BUREAU OF AGRICULTURAL INSECT RESOURCES Bengaluru 560 024, India Published by The Director ICAR–National Bureau of Agricultural Insect Resources P.O. Box 2491, H.A. Farm Post, Hebbal, Bengaluru 560 024, India Phone: +91 80 2341 4220; 2351 1998; 2341 7930 Fax: +91 80 2341 1961 E-mail: [email protected] Website: www.nbair.res.in ISO 9001:2008 Certified (No. 6885/A/0001/NB/EN) Compiled and edited by Prakya Sreerama Kumar Amala Udayakumar Mahendiran, G. Salini, S. David, K.J. Bakthavatsalam, N. Chandish R. Ballal Cover and layout designed by Prakya Sreerama Kumar May 2020 Disclaimer ICAR–NBAIR neither endorses nor discriminates against any product referred to by a trade name in this report. Citation ICAR–NBAIR. 2020. Annual Report 2019. ICAR–National Bureau of Agricultural Insect Resources, Bengaluru, India, vi + 105 pp. Printed at CNU Graphic Printers 35/1, South End Road Malleswaram, Bengaluru 560 020 Mobile: 9880 888 399 E-mail: [email protected] CONTENTS Preface ..................................................................................................................................... v 1. Executive Summary................................................................................................................ 1 2. Introduction ............................................................................................................................ 6 3. Research Achievements .......................................................................................................11
    [Show full text]
  • (L. 1758): on the Origin of Fatty Acids in Prepupae B
    www.nature.com/scientificreports OPEN About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae B. Hoc1, M. Genva2, M.‑L. Fauconnier2, G. Lognay1, F. Francis1 & R. Caparros Megido1* Although increasingly targeted in animal nutrition, black soldier fy larvae or prepupae (BSF, Hermetia illucens L. 1758) require the characterization and modulation of their fatty acid profle to become fully integrated within the feed sector. This improvement will only be possible by the understanding of underlaying biochemical pathways of fatty acid synthesis in BSF. In this study, we hypothesized a labelling of de novo synthesized fatty acids in BSF by the incorporation of deuterated water (D2O) in their feed. Three batches of ffty larvae were reared on two diets with diferent polyunsaturated fatty acid profles moistened with 40% of H2O or D2O: chicken feed or 40% of chicken feed and 60% of fax cake. Although the occurrence of D2O in insect feed increased the larval development time and decreased prepupal weight, it was possible to track the biosynthesis of fatty acids through deuterium labelling. Some fatty acids (decanoic, lauric or myristic acid) were exclusively present in their deuterated form while others (palmitic, palmitoleic or oleic acid) were found in two forms (deuterated or not) indicating that BSF can partially produce these fatty acids via biosynthesis pathways and not only by bioaccumulation from the diet. These results suggest the importance of carbohydrates as a source of acetyl‑CoA in the constitution of the BSF fatty acid profle but also the potential importance of specifc enzymes (e.g.
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Flies and Gnats Brochure (Printable)
    to develop eggs, and are attracted to exposed mucus in Another important step in fly management is to exclude the eyes, nose, mouth and even open wounds. Their them from the premises. Keep doors, windows and vents Who Should You Contact labium (lower lip) contains a spine that can introduce closed as much as practical, screen and seal around Coachella Valley Mosquito and pathogenic organisms which spread diseases known as these and other fly entry points. Automatic door closing Vector Control District What you “pink eye” ( conjunctivitis). devices and air curtain that blow air away from doorways 43-420 Trader Place can be installed to supplement an integrated fly manage- Indio, CA 92201 Adults are about 1/16 inch in length, shiny black to a dull ment program. (760) 342-8287 or (888) 343-9399 gray color with yellow or orange markings on the legs. should know In addition to swatting, mechanical controls include trap- Two population peaks are in late spring and in late sum- ping with sticky fly paper or ultraviolet light traps. The use mer or early fall. Daily activity peaks occur at sunrise and The Coachella Valley Mosquito and Vector Control Dis- of pesticides is usually NOT the best means of managing about sunset during hot, dry weather, although eye gnat activity trict provides a limited fly and eye gnat control program fly populations. may occur in deep shade or on cloudy days. At night they known as “trapping out.” Thousands of traps with an rest at ground level or low shrubbery. Ideal temperature For eye gnats, removing decaying weeds, leaf litter, and egg based attractant are placed in golf courses and ag- for activity is 90F to 100F degrees, preferring higher tem- grass clippings, or drying organic matter and compost ricultural areas.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 123 1967 Number 3603 The Species of Hermetia of the aurata Group (Diptera: Stratiomyidae) By Maurice T. James and Willis W. Wirth l James {in Stone et al., 1965, "Catalog of the Diptera of America North of Mexico," Agric. Res. Serv. Handbook 276) listed Hermetia aurata Bellardi (with H. a. eiseni Townsend as a subspecies and H. chrysopila Loew as a synonym), as a single variable species with wide geographic distribution in the southwestern United States and Mexico. Though some spade work that had been done by Wirth indicated that the three forms were specifically distinct and, in addition, several undescribed taxa were involved, more time and specimens were necessary to resolve the problem. The present study is built upon this foundation and includes a preliminary key plus additional material that has been assembled from a number of collections: the United States National Museum, the American Museum of Natural History, the California Academy of Sciences, Cornell University, Ohio State University, Michigan State University, the University of Kansas, Kansas State University, Washington 1 James: Department of Entomology, Washington State University, Pullman, Washington (Scientific Paper 2859, College of Agriculture, Washington State University; work conducted under Project 9043). Wirth: Insect Identification and Parasite Introduction Research Branch, Entomology Research Division, Agriculture Research Service, U.S. Department of Agriculture, Washington, D.C. 1 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 123 State University, Oregon State University, the University of Arizona, and the University of California at Berkeley, Davis, and Riverside. Holotypes and allotypes, unless otherwise stated, are in the United States National Museum.
    [Show full text]
  • Lower Temperature Threshold of Black Soldier Fly (Diptera: Stratiomyidae) Development
    Wageningen Academic Journal of Insects as Food and Feed, 2016;2016 online1(1): 1-8 ARTICLE IN PRESS Publishers Lower temperature threshold of black soldier fly (Diptera: Stratiomyidae) development L.A. Holmes1*, S.L. VanLaerhoven2 and J.K. Tomberlin3 1Department of Biology, Queen’s University, 116 Barrie Street, Kingston, K7L 3N6 Ontario, Canada; 2Department of Biology, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4 Ontario, Canada; 3Department of Entomology, Texas A&M OPEN ACCESS University, 2475 TAMU, College Station, 77843-2475 TX, USA; [email protected] Received: 2 February 2016 / Accepted: 4 March 2016 © 2016 Wageningen Academic Publishers RESEARCH ARTICLE Abstract The black soldier fly has shown great promise in addressing two environmental concerns: (1) waste management; and (2) protein supplementation for use as feed for livestock, poultry, and aquaculture. Thus, tremendous efforts have been placed on mass-production of the black soldier fly. Currently, little is known about the thermal tolerance limits of black soldier fly eggs and immatures. The objective of this study was to determine the lower temperature threshold for black soldier fly development. Development time, egg eclosion and adult emergence success were measured at 12, 16 and 19 °C. We determined that the lower threshold for egg hatch was between 12 and 16 °C, taking 15 days to hatch. Furthermore, we determined that the lower temperature threshold for larvae is between 16 and 19 °C with egg hatch in 7.75 days at 19 °C. Mean development time from egg to adult at 19 °C was 72 days. Keywords: aquaculture, Hermetia illucens, insect-based protein production, sustainable protein, waste conversion 1.
    [Show full text]
  • (Diptera: Stratiomyidae) Larval Development
    DIRECT INJURY,MYIASIS,FORENSICS Influence of Resources on Hermetia illucens (Diptera: Stratiomyidae) Larval Development 1,2 3 1 TRINH T. X. NGUYEN, JEFFERY K. TOMBERLIN, AND SHERAH VANLAERHOVEN J. Med. Entomol. 50(4): 898Ð906 (2013); DOI: http://dx.doi.org/10.1603/ME12260 ABSTRACT Arthropod development can be used to determine the time of colonization of human remains to infer a minimum postmortem interval. The black soldier ßy, Hermetia illucens L. (Diptera: Stratiomyidae) is native to North America and is unique in that its larvae can consume a wide range of decomposing organic material, including carrion. Larvae development was observed on six re- sources: control poultry feed, liver, manure, kitchen waste, fruits and vegetables, and Þsh rendering. Larvae fed manure were shorter, weighed less, and took longer to develop. Kitchen waste produced longer and heavier larvae, whereas larvae fed Þsh had almost 100% mortality. Black soldier ßies can colonize human remains, which in many instances can coincide with food and organic wastes. Therefore, it is necessary to understand black soldier ßy development on different food resources other than carrion tissue to properly estimate their age when recovered from human remains. KEY WORDS forensic entomology, development time, food resource, minimum postmortem in- terval, waste management Forensic entomologists use arthropod evidence col- veloped up to 2 d slower than larvae reared on other lected from human remains to estimate the period of experimental tissues, such as lung, kidney, heart, and insect activity and infer time of colonization (Benecke brain. Similarly, Lucilia sericata (Meigen) (Diptera: 2001). The time of colonization is a portion of the Calliphoridae) developed at a faster rate, and were postcolonization interval, which equates to the min- larger, when fed pork instead of beef (Clark et al.
    [Show full text]