Proceedings of the United States National Museum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ICAR–NBAIR Annual Report 2019.Pdf
Annual Report 2019 ICAR–NATIONAL BUREAU OF AGRICULTURAL INSECT RESOURCES Bengaluru 560 024, India Published by The Director ICAR–National Bureau of Agricultural Insect Resources P.O. Box 2491, H.A. Farm Post, Hebbal, Bengaluru 560 024, India Phone: +91 80 2341 4220; 2351 1998; 2341 7930 Fax: +91 80 2341 1961 E-mail: [email protected] Website: www.nbair.res.in ISO 9001:2008 Certified (No. 6885/A/0001/NB/EN) Compiled and edited by Prakya Sreerama Kumar Amala Udayakumar Mahendiran, G. Salini, S. David, K.J. Bakthavatsalam, N. Chandish R. Ballal Cover and layout designed by Prakya Sreerama Kumar May 2020 Disclaimer ICAR–NBAIR neither endorses nor discriminates against any product referred to by a trade name in this report. Citation ICAR–NBAIR. 2020. Annual Report 2019. ICAR–National Bureau of Agricultural Insect Resources, Bengaluru, India, vi + 105 pp. Printed at CNU Graphic Printers 35/1, South End Road Malleswaram, Bengaluru 560 020 Mobile: 9880 888 399 E-mail: [email protected] CONTENTS Preface ..................................................................................................................................... v 1. Executive Summary................................................................................................................ 1 2. Introduction ............................................................................................................................ 6 3. Research Achievements .......................................................................................................11 -
(L. 1758): on the Origin of Fatty Acids in Prepupae B
www.nature.com/scientificreports OPEN About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae B. Hoc1, M. Genva2, M.‑L. Fauconnier2, G. Lognay1, F. Francis1 & R. Caparros Megido1* Although increasingly targeted in animal nutrition, black soldier fy larvae or prepupae (BSF, Hermetia illucens L. 1758) require the characterization and modulation of their fatty acid profle to become fully integrated within the feed sector. This improvement will only be possible by the understanding of underlaying biochemical pathways of fatty acid synthesis in BSF. In this study, we hypothesized a labelling of de novo synthesized fatty acids in BSF by the incorporation of deuterated water (D2O) in their feed. Three batches of ffty larvae were reared on two diets with diferent polyunsaturated fatty acid profles moistened with 40% of H2O or D2O: chicken feed or 40% of chicken feed and 60% of fax cake. Although the occurrence of D2O in insect feed increased the larval development time and decreased prepupal weight, it was possible to track the biosynthesis of fatty acids through deuterium labelling. Some fatty acids (decanoic, lauric or myristic acid) were exclusively present in their deuterated form while others (palmitic, palmitoleic or oleic acid) were found in two forms (deuterated or not) indicating that BSF can partially produce these fatty acids via biosynthesis pathways and not only by bioaccumulation from the diet. These results suggest the importance of carbohydrates as a source of acetyl‑CoA in the constitution of the BSF fatty acid profle but also the potential importance of specifc enzymes (e.g. -
Lower Temperature Threshold of Black Soldier Fly (Diptera: Stratiomyidae) Development
Wageningen Academic Journal of Insects as Food and Feed, 2016;2016 online1(1): 1-8 ARTICLE IN PRESS Publishers Lower temperature threshold of black soldier fly (Diptera: Stratiomyidae) development L.A. Holmes1*, S.L. VanLaerhoven2 and J.K. Tomberlin3 1Department of Biology, Queen’s University, 116 Barrie Street, Kingston, K7L 3N6 Ontario, Canada; 2Department of Biology, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4 Ontario, Canada; 3Department of Entomology, Texas A&M OPEN ACCESS University, 2475 TAMU, College Station, 77843-2475 TX, USA; [email protected] Received: 2 February 2016 / Accepted: 4 March 2016 © 2016 Wageningen Academic Publishers RESEARCH ARTICLE Abstract The black soldier fly has shown great promise in addressing two environmental concerns: (1) waste management; and (2) protein supplementation for use as feed for livestock, poultry, and aquaculture. Thus, tremendous efforts have been placed on mass-production of the black soldier fly. Currently, little is known about the thermal tolerance limits of black soldier fly eggs and immatures. The objective of this study was to determine the lower temperature threshold for black soldier fly development. Development time, egg eclosion and adult emergence success were measured at 12, 16 and 19 °C. We determined that the lower threshold for egg hatch was between 12 and 16 °C, taking 15 days to hatch. Furthermore, we determined that the lower temperature threshold for larvae is between 16 and 19 °C with egg hatch in 7.75 days at 19 °C. Mean development time from egg to adult at 19 °C was 72 days. Keywords: aquaculture, Hermetia illucens, insect-based protein production, sustainable protein, waste conversion 1. -
(Diptera: Stratiomyidae) Larval Development
DIRECT INJURY,MYIASIS,FORENSICS Influence of Resources on Hermetia illucens (Diptera: Stratiomyidae) Larval Development 1,2 3 1 TRINH T. X. NGUYEN, JEFFERY K. TOMBERLIN, AND SHERAH VANLAERHOVEN J. Med. Entomol. 50(4): 898Ð906 (2013); DOI: http://dx.doi.org/10.1603/ME12260 ABSTRACT Arthropod development can be used to determine the time of colonization of human remains to infer a minimum postmortem interval. The black soldier ßy, Hermetia illucens L. (Diptera: Stratiomyidae) is native to North America and is unique in that its larvae can consume a wide range of decomposing organic material, including carrion. Larvae development was observed on six re- sources: control poultry feed, liver, manure, kitchen waste, fruits and vegetables, and Þsh rendering. Larvae fed manure were shorter, weighed less, and took longer to develop. Kitchen waste produced longer and heavier larvae, whereas larvae fed Þsh had almost 100% mortality. Black soldier ßies can colonize human remains, which in many instances can coincide with food and organic wastes. Therefore, it is necessary to understand black soldier ßy development on different food resources other than carrion tissue to properly estimate their age when recovered from human remains. KEY WORDS forensic entomology, development time, food resource, minimum postmortem in- terval, waste management Forensic entomologists use arthropod evidence col- veloped up to 2 d slower than larvae reared on other lected from human remains to estimate the period of experimental tissues, such as lung, kidney, heart, and insect activity and infer time of colonization (Benecke brain. Similarly, Lucilia sericata (Meigen) (Diptera: 2001). The time of colonization is a portion of the Calliphoridae) developed at a faster rate, and were postcolonization interval, which equates to the min- larger, when fed pork instead of beef (Clark et al. -
Proceedings of the United States National Museum
Proceedings of the United States National Museum SMITHSONIAN INSTITUTION . WASHINGTON, D.C. Volume 121 1967 Number 3569 SOLDIER FLY LARVAE IN AMERICA NORTH OF MEXICO ' By Max W. McFadden ^ The Stratiomyidae or soldier flies are represented in America north of Mexico by approximately 237 species distributed through 37 genera. Prior to this study, larvae have been described for only 21 species representmg 15 genera. In addition to the lack of adequate descriptions and keys, classification has seldom been attempted and a phylogenetic treatment of the larvae has never been presented. The present study has been undertaken with several goals in mind: to rear and describe (1) as many species as possible; (2) to redescribe all previously described larvae of North American species; and (3), on the basis of larval characters, to attempt to define various taxo- nomic units and show phylogenetic relationships withm the family and between it and other closely related familes. Any attempt to establish subfamilial and generic lunits must be regarded as tentative. This is especially true in the present study since larvae of so many species of Stratiomyidae remain unknown. Undoubtably, as more species are reared, changes mil have to be made in keys and definitions of taxa. The keys have been prepared chiefly for identification of last mstar larvae. If earher mstars are known, they either have been 1 Modified from a Ph. D. dissertation submitted to the University of Alberta E(hnonton, Canada. ' 2 Entomology Research Division, U.S. Dept. Agriculture, Tobacco Insects Investigations, P.O. Box 1011, Oxford, N.C. 27565. : 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. -
Entomologists of Saskatchewan Second Edition
ENTOMOLOGISTS OF SASKATCHEWAN SECOND EDITION Meghan Vankosky, Martin Erlandson, and Cedric Gillott, editors 2019 Foreword and Acknowledgements In 2017, Owen Olfert gave me a copy of Entomologists of Saskatchewan. Being new to the entomology community in Saskatchewan at the time, I read it with interest and especially enjoyed seeing pictures of my new colleagues from almost 30 years earlier. Paul W. Riegert did an amazing job capturing the history of entomological expertise in Saskatchewan in the 1990 edition of Entomologists of Saskatchewan. Seeing value in historical records and knowledge, I suggested that the book be updated at the December 2017 meeting of the Entomological Society of Saskatchewan (ESS). I also ended up inadvertently volunteering myself for the task, with the generous assistance of Martin Erlandson and Cedric Gillott. The process of updating a nearly 30 year-old document of this nature was challenging. Entomologists have retired and moved away from Saskatchewan, and in one case, retired and moved TO Saskatchewan. Entomologists included in the 1990 edition have sadly passed away or have slipped out of touch. Although there has been a loss of entomological expertise in Saskatchewan, there has also been renewal in the form of newly graduated students, newly identified professionals and amateurs, and in the immigration of new professional entomologists. Renewal of this nature is indicative of the ongoing importance of entomological knowledge, basic and applied. Some of the new entomologists are studying bee taxonomy and biology at the Royal Saskatchewan Museum, aquatic entomology at the Water Security Agency, and agricultural entomology at Agriculture and Agri-Food Canada. -
Larval Peritrophic Matrix Yu-Bo Lin1,2†, Jing-Jing Rong1,2†, Xun-Fan Wei3, Zhuo-Xiao Sui3, Jinhua Xiao3 and Da-Wei Huang3*
Lin et al. Proteome Science (2021) 19:7 https://doi.org/10.1186/s12953-021-00175-x RESEARCH Open Access Proteomics and ultrastructural analysis of Hermetia illucens (Diptera: Stratiomyidae) larval peritrophic matrix Yu-Bo Lin1,2†, Jing-Jing Rong1,2†, Xun-Fan Wei3, Zhuo-Xiao Sui3, Jinhua Xiao3 and Da-Wei Huang3* Abstract Background: The black soldier fly (Hermetia illucens) has significant economic potential. The larvae can be used in financially viable waste management systems, as they are voracious feeders able to efficiently convert low-quality waste into valuable biomass. However, most studies on H. illucens in recent decades have focused on optimizing their breeding and bioconversion conditions, while information on their biology is limited. Methods: About 200 fifth instar well-fed larvae were sacrificed in this work. The liquid chromatography-tandem mass spectrometry and scanning electron microscopy were employed in this study to perform a proteomic and ultrastructural analysis of the peritrophic matrix (PM) of H. illucens larvae. Results: A total of 565 proteins were identified in the PM samples of H. illucen, of which 177 proteins were predicted to contain signal peptides, bioinformatics analysis and manual curation determined 88 proteins may be associated with the PM, with functions in digestion, immunity, PM modulation, and others. The ultrastructure of the H. illucens larval PM observed by scanning electron microscopy shows a unique diamond-shaped chitin grid texture. Conclusions: It is the first and most comprehensive proteomics research about the PM of H. illucens larvae to date. All the proteins identified in this work has been discussed in details, except several unnamed or uncharacterized proteins, which should not be ignored and need further study. -
Black Soldier Fly, Hermetia Illucens As an Alternative to Fishmeal Protein
biology Article Black Soldier Fly, Hermetia illucens as an Alternative to Fishmeal Protein and Fish Oil: Impact on Growth, Immune Response, Mucosal Barrier Status, and Flesh Quality of Juvenile Barramundi, Lates calcarifer (Bloch, 1790) Amanda Hender 1, Muhammad A.B. Siddik 1,2,* , Janet Howieson 1 and Ravi Fotedar 1 1 School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia 2 Department of Fisheries Biology & Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh * Correspondence: [email protected]; Tel.: +880-17140-69811 Simple Summary: Fishmeal and fish oil being recognized as nutritionally balanced and preferred protein and lipid sources in aquafeeds for finfish farming. However, the limited supply, soaring prices, and depletion of wild capture fisheries have prompted the aquaculture industry to look for widely available and less expensive alternatives for fishmeal and fish oil to ensure the sustainability of aquaculture production. As an alternative to fishmeal protein and oil, black soldier fly (BSF) larvae is considered a promising candidate for its high protein, lipid and minerals content, as well as for its bioactive potential with anti-microbial, anti-fungal, and anti-viral functions. This study Citation: Hender, A.; Siddik, M.A.B.; investigated the effects of partial substitution of fishmeal protein and fish oil with partially defatted Howieson, J.; Fotedar, R. Black BSF larvae protein and oil on growth performance, non-specific immunity, mucosal barrier status and Soldier Fly, Hermetia illucens as an muscle fatty acids composition in barramundi. The findings of the study confirmed that BSF could Alternative to Fishmeal Protein and substitute 30% fishmeal and fish oil successfully without compromising the growth of barramundi. -
An Evaluation of Defatted Black Soldier Fly (Hermetia Illucens) Larvae As a Protein Source for Broiler Chicken Diets
An evaluation of defatted black soldier fly (Hermetia illucens) larvae as a protein source for broiler chicken diets by Bridget Lynn Cockcroft Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Faculty of AgriScience at Stellenbosch University Supervisor: Dr E Pieterse March 2018 ‘The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.’ Stellenbosch University https://scholar.sun.ac.za ii Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third-party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2018 Copyright © 2018 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za iii Summary The growth rate of the chicken meat production industry needs to match or exceed the growth rate of the human population to provide sufficient dietary protein for as many people as possible. Thus, alternative protein sources for animal feed are required to support the increasing demands on existing protein sources. Insect protein has recently been recognised as a potential protein source and feed ingredient for animal production systems. Black soldier fly (Hermetia illucens) larvae is one of the many insect protein sources being researched for its inclusion in fish, pig and poultry diets. -
Mined Species. Visits, Thus Securing a Number of New and Interesting
59.57,7(75.9) Article 111.- INSECTS OF FLORIDA. I. DIPTERA. BY CHARLES W. JOHNSON. In 1895 the writer prepared a list of the Diptera of Florida,' based chiefly on material collected while living in St. Augustine, 1880-88, a collecting trip in March, 1891, and again in 1894, a collection made by Mrs. Annie Trumbull Slosson, the collection of Mr. Charles Robertson, and the collec- tion of the U. S. National Museum. The list contained about 450 deter- mined species. Since that time Mrs. Slosson has continued collecting during her winter visits, thus securing a number of new and interesting species, many of which were determined by the late D. W. Coquillett. The American Museum of Natural History has sent several expeditions to the State and much valuable material was obtained by Dr. Frank E. Lutz and Mr. John A.. Grossbeck. Mr. Millard C. Van Duzee in the Spring of 1908 added many interesting species and data. To Messrs. Wm. T. Davis, C. H. T. Townsend, J. Chester Bradley, C. P. Whitney and Philip Laurent I arn also indebted for a num- ber of additional species and data. In this list I have tried to give sufficient synonymy and notes so that where I have corrected the previous list the names of the two can always be correlated notwithstanding the great changes that have taken place in the nomenclature. To keep abreast of the changes which are constantly being made, I have been obliged to discard many of the genera used in Aldrich's catalogue. While I do not favor radical changes in a faunal list, it does not seem desirable to longer perpetuate names that we know will have to be changed, and the sooner these older names are adopted, the better it will be for dipterology. -
Nutritional Value of the Black Soldier Fly (Hermetia Illucens L.) and Its Suitability As Animal Feed – a Review
Wageningen Academic Journal of Insects as Food and Feed, 2017; 3(2): 105-120 Publishers Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – a review K.B. Barragan-Fonseca1,2*, M. Dicke1 and J.J.A. van Loon1 1Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; 2Departamento de Producción Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, 111321 Bogotá, Colombia; [email protected] Received: 17 November 2016 / Accepted: 10 March 2017 © 2017 Wageningen Academic Publishers REVIEW ARTICLE Abstract The black soldier fly (BSF; Hermetia illucens L.; Diptera: Stratiomyidae) has been studied for its capability to convert organic waste to high quality protein, control certain harmful bacteria and insect pests, provide potential chemical precursors to produce biodiesel and for its use as feed for a variety of animals. Nutritional value of BSF larvae is discussed, as well as the effect of biotic and abiotic factors on both larval body composition and performance. Although BSF larvae contain high protein levels (from 37 to 63% dry matter; DM), and other macro- and micronutrients important for animal feed, the available studies on including BSF larvae in feed rations for poultry, pigs and fish suggest that it could only partially replace traditional feedstuff, because high or complete replacement resulted in reduced performance. This is due to factors such as high fat content (from 7 to 39% DM), ash (from 9 to 28% DM), and consequences of processing. Therefore, further studies are needed on nutrient composition, digestibility and availability for target species and on improved methods to process larvae, among other aspects. -
Selected Life-History Traits of Black Soldier Flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets
ARTHROPOD BIOLOGY Selected Life-History Traits of Black Soldier Flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets 1 JEFFERY K. TOMBERLIN, D. CRAIG SHEPPARD, AND JOHN A. JOYCE Department of Entomology, University of Georgia, Tifton, GA 31793 Ann. Entomol. Soc. Am. 95(3): 379Ð386 (2002) ABSTRACT Hermetia illucens (L.) was reared on three larval diets to determine their effects on preimaginal development and selected adult life-history traits. Prepupal and adult characteristics were examined for individuals reared on each diet and compared with Þeld-collected prepupae and corresponding emergent adults. Diet did not signiÞcantly inßuence development or survivorship to the prepupal stage. However, adult emergence for all diets was signiÞcantly less than that determined for the wild population. Development time from egg to adult for individuals reared on the diets at 27ЊC ranged from 40 to 43 d with the larval stage lasting 22Ð24 d. We observed Ͼ96% larval survivorship to the prepupal stage and 21Ð27% adult emergence. Females accounted for 55Ð60% of emergent adults across treatments. Specimens reared on each diet were reduced in size, longevity, and calorie content in comparison to specimens from the wild population. Males within diet treatments and Þeld-collected specimens were signiÞcantly smaller than females and emerged 1Ð2 d before females. Additionally, males reared on the diets and provided water lived for 9 d, whereas females lived for 8 d. This information indicates the diets might be used for rearing soldier ßies. However, further reÞnement is needed to produce adults similar to those found in nature. KEY WORDS Diptera, Stratiomyidae, Hermetia illucens THE BLACK SOLDIER FLY, Hermetia illucens (L.), is a large 1981) and swine (Newton et al.