Validation of a Simplex PCR Assay Enabling Reliable Identification Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Candida Parapsilosis: a Review of Its Epidemiology, Pathogenesis, Clinical Aspects, Typing and Antimicrobial Susceptibility
Critical Reviews in Microbiology Critical Reviews in Microbiology, 2009; 35(4): 283–309 2009 REVIEW ARTICLE Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility Eveline C. van Asbeck1,2, Karl V. Clemons1, David A. Stevens1 1Division of Infectious Diseases, Santa Clara Valley Medical Center, and California Institute for Medical Research, San Jose, CA 95128 USA and Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, and 2Eijkman-Winkler Institute for Medical and Clinical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands Abstract The Candida parapsilosis family has emerged as a major opportunistic and nosocomial pathogen. It causes multifaceted pathology in immuno-compromised and normal hosts, notably low birth weight neonates. Its emergence may relate to an ability to colonize the skin, proliferate in glucose-containing solutions, and adhere to plastic. When clusters appear, determination of genetic relatedness among strains and identifica- tion of a common source are important. Its virulence appears associated with a capacity to produce biofilm and production of phospholipase and aspartyl protease. Further investigations of the host-pathogen inter- actions are needed. This review summarizes basic science, clinical and experimental information about C. parapsilosis. Keywords: Candida parapsilosis, epidermiology, strain differentiation, clinical aspects, pathogenesis, For personal use only. antifungal susceptibility Introduction The organism was first described in 1928 (Ashford 1928), and early reports of C. parapsilosis described the organ- Candida bloodstream infections (BSI) remain an ism as a relatively non-pathogenic yeast in the normal exceedingly common life-threatening fungal disease flora of healthy individuals that was of minor clinical and are now recognized as a major cause of hospital- significance (Weems 1992). -
Of Candida Dubliniensis, Ireland* Isolate Source Year of Isolation Location DST† Mating Type TAG Reference SL411 Ixodes Uriae Ticks 2007 GSI 27 Aa + (5) SL422 I
cans isolates from humans and animals (3,4). The purpose Genetic Differences of our study was to use MLST, the presence or absence of a previously identified polymorphism in the CDR1 gene (8), between Avian and and mating type analysis to determine genetic relatedness between avian-associated and human C. dubliniensis iso- Human Isolates lates and whether avian-associated isolates are a source of of Candida human opportunistic infections. dubliniensis The Study To obtain avian-associated C. dubliniensis isolates Brenda A. McManus, Derek J. Sullivan, from a novel geographic site, fresh seabird excrement Gary P. Moran, Christophe d’Enfert, was sampled from the campus of Trinity College Dublin, Marie-Elisabeth Bougnoux, Miles A. Nunn, ≈150 km north of Great Saltee Island by using nitrogen- and David C. Coleman gassed VI-PAK sterile swabs (Sarstedt-Drinagh, Wexford, Ireland). Samples were plated within 2 h of collection When Candida dubliniensis isolates obtained from on CHROMagar Candida medium (CHROMagar, Paris, seabird excrement and from humans in Ireland were com- France), incubated at 30°C for 48 h, and identified as de- pared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The scribed (7,9–12). Three new C. dubliniensis isolates were remaining avian isolate was indistinguishable from a human obtained from 134 fecal samples. Like isolates from Great isolate, suggesting that transmission may occur between Saltee Island (5), these 3 isolates obtained directly from humans and birds. freshly deposited herring gull (Larus argentatus) excre- ment were ITS genotype 1 (13). Because the isolates origi- nally described by Nunn et al. -
Candida Parapsilosis Complex Francesco Barchiesi1* , Elena Orsetti1, Patrizia Osimani3, Carlo Catassi2, Fabio Santelli4 and Esther Manso5
Barchiesi et al. BMC Infectious Diseases (2016) 16:387 DOI 10.1186/s12879-016-1704-y RESEARCH ARTICLE Open Access Factors related to outcome of bloodstream infections due to Candida parapsilosis complex Francesco Barchiesi1* , Elena Orsetti1, Patrizia Osimani3, Carlo Catassi2, Fabio Santelli4 and Esther Manso5 Abstract Background: Although Candida albicans is the most common cause of fungal blood stream infections (BSIs), infections due to Candida species other than C. albicans are rising. Candida parapsilosis complex has emerged as an important fungal pathogen and became one of the main causes of fungemia in specific geographical areas. We analyzed the factors related to outcome of candidemia due to C. parapsilosis in a single tertiary referral hospital over a five-year period. Methods: A retrospective observational study of all cases of candidemia was carried out at a 980-bedded University Hospital in Italy. Data regarding demographic characteristics and clinical risk factors were collected from the patient’s medical records. Antifungal susceptibility testing was performed and MIC results were interpreted according to CLSI species-specific clinical breakpoints. Results: Of 270 patients diagnosed with Candida BSIs during the study period, 63 (23 %) were infected with isolates of C. parapsilosis complex which represented the second most frequently isolated yeast after C. albicans. The overall incidence rate was 0.4 episodes/1000 hospital admissions. All the strains were in vitro susceptible to all antifungal agents. The overall crude mortality at 30 days was 27 % (17/63), which was significantly lower than that reported for C. albicans BSIs (42 % [61/146], p = 0.042). Being hospitalized in ICU resulted independently associated with a significant higher risk of mortality (HR 4.625 [CI95% 1.015–21.080], p = 0.048). -
Identification of Culture-Negative Fungi in Blood and Respiratory Samples
IDENTIFICATION OF CULTURE-NEGATIVE FUNGI IN BLOOD AND RESPIRATORY SAMPLES Farida P. Sidiq A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2014 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative George Bullerjahn Raymond Larsen Vipaporn Phuntumart © 2014 Farida P. Sidiq All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Fungi were identified as early as the 1800’s as potential human pathogens, and have since been shown as being capable of causing disease in both immunocompetent and immunocompromised people. Clinical diagnosis of fungal infections has largely relied upon traditional microbiological culture techniques and examination of positive cultures and histopathological specimens utilizing microscopy. The first has been shown to be highly insensitive and prone to result in frequent false negatives. This is complicated by atypical phenotypes and organisms that are morphologically indistinguishable in tissues. Delays in diagnosis of fungal infections and inaccurate identification of infectious organisms contribute to increased morbidity and mortality in immunocompromised patients who exhibit increased vulnerability to opportunistic infection by normally nonpathogenic fungi. In this study we have retrospectively examined one-hundred culture negative whole blood samples and one-hundred culture negative respiratory samples obtained from the clinical microbiology lab at the University of Michigan Hospital in Ann Arbor, MI. Samples were obtained from randomized, heterogeneous patient populations collected between 2005 and 2006. Specimens were tested utilizing cetyltrimethylammonium bromide (CTAB) DNA extraction and polymerase chain reaction amplification of internal transcribed spacer (ITS) regions of ribosomal DNA utilizing panfungal ITS primers. -
Candida Species
Introduction Introduction ulvovaginal candidiasis (VVC) is a disease caused by V the abnormal growth of yeast-like fungi on the mucosa of the female genital tract (Souza et al., 2009). Although Candida species occur as normal vaginal flora, opportunistic conditions such as diabetes, pregnancy and other immune depressants in the host enable them to proliferate and cause infection (Pam et al., 2012). There are approximately 200 Candida species, among which are Candida albicans, glabrata, tropicalis, stellatoidea, parapsilosis, catemilata, ciferri, guilliermondii, haemulonii, kefyr and krusei. Candida albicans is the most common species (Pam et al., 2012). The most frequent cause of VVC is Candida albicans. Non-Candida albicans species of Candida, predominantly Candida glabrata, are responsible for the remainder of cases (Ge et al., 2010). It is estimated that 75% of women experience at least one episode of vulvovaginal candidiasis throughout their life and 40-50% of them have at least one recurrence (González et al., 2011). Most patients with symptomatic VVC may be readily diagnosed on the basis of microscopic examination of vaginal 1 Introduction secretions. Culture is a more sensitive method of diagnosis than vaginal smears, especially in a suspected patient with a negative result for microscopy (Khosravi et al., 2011). Antifungal agents that are used for treatment of VVC include imidazole antifungals (e.g., butoconazole, clotrimazole, and miconazole), triazole antifungals (eg, fluconazole, terconazole), and polyene antifungals (e.g., nystatin) (Abdelmonem et al., 2012). The azoles, particularly fluconazole, remain among the most common antifungal drugs used for prophylaxis and treatment (Pietrella et al., 2011). It is recommended in various guidelines as the first drug of choice because it is less toxic and can be taken as a single oral dose (Pam et al., 2012). -
Nails: Tales, Fails and What Prevails in Treating Onychomycosis
J. Hibler, D.O. OhioHealth - O’Bleness Memorial Hospital, Athens, Ohio AOCD Annual Conference Orlando, Florida 10.18.15 A) Onychodystrophy B) Onychogryphosis C)“Question Onychomycosis dogma” – Michael Conroy, MD D) All the above E) None of the above Nail development begins at 8-10 weeks EGA Complete by 5th month Keratinization ~11 weeks No granular layer Nail plate growth: Fingernails 3 mm/month, toenails 1 mm/month Faster in summer or winter? Summer! Index finger or 5th digit nail grows faster? Index finger! Faster growth to middle or lateral edge of each nail? Lateral! Elkonyxis Mee’s lines Aka leukonychia striata Arsenic poisoning Trauma Medications Illness Psoriasis flare Muerhrcke’s bands Hypoalbuminemia Chemotherapy Half & half nails Aka Lindsay’s nails Chronic renal disease Terry’s nails Liver failure, Cirrhosis Malnutrition Diabetes Cardiovascular disease True or False: Onychomycosis = Tinea Unguium? FALSE. Onychomycosis: A fungal disease of the nails (all causes) Dermatophytes, yeasts, molds Tinea unguium: A fungal disease of nail caused by dermatophyte fungi Onychodystrophy ≠ onychomycosis Accounts for up to 50% of all nail disorders Prevalence; 14-28% of > 60 year-olds Variety of subtypes; know them! Sequelae What is the most common cause of onychomycosis? A) Epidermophyton floccosum B) Microsporum spp C) Trichophyton mentagrophytes D) Trichophyton rubrum -Account for ~90% of infections Dermatophytes Trichophyton rubrum Trichophyton mentagrophytes Trichophyton tonsurans, Microsporum canis, Epidermophyton floccosum Nondermatophyte molds Acremonium spp, Fusarium spp Scopulariopsis spp, Sytalidium spp, Aspergillus spp Yeast Candida parapsilosis Candida albicans Candida spp Distal/lateral subungal Proximal subungual onychomycosis onychomycosis (DLSO) (PSO) Most common; T. rubrum Often in immunosuppressed patients T. -
The Presence of Fluconazole-Resistant Candida Dubliniensis Strains
44 Rev Iberoam Micol 2002; 19: 44-48 Original The presence of fluconazole-resistant Candida dubliniensis strains among Candida albicans isolates from immu- nocompromised or otherwise debili- tated HIV-negative Turkish patients A. Serda Kantarcıoglu & Ayhan Yücel Department of Microbiology and Clinical Microbiology, Cerrahpasa School of Medicine, Istanbul University, Cerrahpasa, Istanbul, Turkey Summary The newly described species Candida dubliniensis phenotypically resembles Candida albicans in many respects and so it could be easily misidentified. The present study aimed at determining the frequency at which this new Candida species was not recognized in the authors’ university hospital clinical laboratory and to assess antifungal susceptibility. In this study six identification methods based on significant phenotypic characteristics each proposed as reliable tests applicable in mycology laboratories for the differentiation of the two species were performed together to assess the clinical strains that were initially identified as C. albicans. Only the isolates which have had the parallel results in all methods were assessed as C. dubliniensis. One hundred and twentynine C. albicans strains isolated from deep mycosis suspected patients were further examined. Three of 129 C. albicans ( two from oral cavity, one from sputum) were reidenti- fied as C. dubliniensis. One of the strains isolated from oral cavity and that from sputum were obtained at two months intervals from the same patient with acute myeloid leukemia, while the other oral cavity strain was obtained from a patient who had previously been irradiated for a laryngeal malignancy. Isolates were all susceptible in vitro to amphotericin B, with the MIC range 0.125 to 0.5 µg/ml, resistant to fluconazole, with the MICs ≥ 64 µg/ml, and resistant to ketoconazole, with the MICs ≥ 16 µg/ml, dose-dependent to itraconazole with the MIC range 0.25-0.5 µg/ml, and susceptible to flucytosine, with the MIC range 1-4 µg/ml. -
Candida Species – Morphology, Medical Aspects and Pathogenic Spectrum
European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 07, 2020 Candida Species – Morphology, Medical Aspects And Pathogenic Spectrum. Shubham Koundal1, Louis Cojandaraj2 1 Assistant Professor, Department of Medical Laboratory Sciences, Chandigarh University, Punjab. 2Assistant Professor, Department of Medical Laboratory Sciences, Lovely Professional University, Punjab. Email Id: [email protected] ABSTRACT Emergence of candidal infections are increasing from decades and found to be a leading cause of human disease and mortality. Candida spp. is one of the communal of human body and is known to cause opportunistic superficial and invasive infections. Many of mycoses-related deaths were due to Candida spp. Major shift of Candida infection towards NAC (non-albicans Candida) is matter of concern worldwide. In this study we had given a systemic review about medically important Candidaspp. Along with their morphological features, treatment and drugs. Spectrum of the pathogen is also discussed. Morphology of Different Medically Important Candida Species with their medical aspects along and pathogenic spectrum. Corn meal agar morphology along with anti-candida drugs has been discussed. The study is done after considering various published review’s and the mycological studies. Key words: Candida, Yeast, C.albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. krusei and C. lusitaniae 1. INTRODUCTION Yeasts are unicellular, sometimes dimorphic fungi. It can give rise to wide range of infections in humans commonly called fungal infections. Yeast infections varies from superficial cutaneous/skin infections, mucosa related infections to multi-organ disseminated infections.(Sardi et al., 2013)Cutaneous and mucosal yeast infections can infect a number of regions in human body including the skin, nails, oral cavity, gastrointestinal tract, female genital tract and esophageal part and lead to chronic nature. -
Candida Species (Volatile) Metabotyping Through Advanced Comprehensive Two-Dimensional Gas Chromatography
microorganisms Article Candida Species (Volatile) Metabotyping through Advanced Comprehensive Two-Dimensional Gas Chromatography Carina Pedrosa Costa 1 , Ana Rita Bezerra 2, Adelaide Almeida 3,* and Sílvia M. Rocha 1,* 1 Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; [email protected] 2 Health Sciences Department, Institute for Biomedicine—iBiMED, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; [email protected] 3 Department of Biology & CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal * Correspondence: [email protected] (A.A.); [email protected] (S.M.R.); Tel.: +351-234-370784 (A.A.); +351-234-401524 (S.M.R.) Received: 5 November 2020; Accepted: 29 November 2020; Published: 30 November 2020 Abstract: Microbial metabolomics is a challenge strategy that allows a comprehensive analysis of metabolites within a microorganism and may support a new approach in microbial research, including the microbial diagnosis. Thus, the aim of this research was to in-depth explore a metabolomics strategy based on the use of an advanced multidimensional gas chromatography for the comprehensive mapping of cellular metabolites of C. albicans and non-C. albicans (C. glabrata and C. tropicalis) and therefore contributing for the development of a comprehensive platform for fungal detection management and for species distinction in early growth times (6 h). The volatile fraction comprises 126 putatively identified metabolites distributed over several chemical families: acids, alcohols, aldehydes, hydrocarbons, esters, ketones, monoterpenic and sesquiterpenic compounds, norisoprenoids, phenols and sulphur compounds. These metabolites may be related with different metabolic pathways, such as amino acid metabolism and biosynthesis, fatty acids metabolism, aromatic compounds degradation, mono and sesquiterpenoid synthesis and carotenoid cleavage. -
The Quest for a General and Reliable Fungal DNA Barcode
The Open Applied Informatics Journal, 2011, 5, (Suppl 1-M6) 45-61 45 Open Access The Quest for a General and Reliable Fungal DNA Barcode Vincent Robert*,1, Szaniszlo Szöke1, Ursula Eberhardt1, Gianluigi Cardinali2, Wieland Meyer3, Keith A. Seifert4, C. Andre Lévesque4 and Chris T. Lewis4 1CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands 2Dipartimento Biologia Applicata- Microbiologia, Università degli Studi di Perugia, Perugia, Italy 3Molecular Mycology Research Laboratory, CIDM, Westmead Millennium Institute, SEIB, Sydney Medical School - Westmead Hospital, The University of Sydney, Sydney, Australia 4Biodiversity (Mycology & Botany), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, Canada Abstract: DNA sequences are key elements for both identification and classification of living organisms. Mainly for historical reasons, a limited number of genes are currently used for this purpose. From a mathematical point of view, any DNA segment, at any location, even outside of coding regions and even if they do not align, could be used as long as PCR primers could be designed to amplify them. This paper describes two methods to search genomic data for the most efficient DNA segments that can be used for identification and classification. Keywords: Genome, molecular, sequences, barcoding, identification, classification, fungi. 1. INTRODUCTION When first large molecular phylogenetic studies were completed, it was obvious that many clades were poorly Since the early days of classification, taxonomists have supported statistically when only one or two genes were struggled with the available information and characteristics used. Recently, several authors explored possibilities for of their organisms of interest to develop systems that reflect analyzing several genes to obtain the true phylogeny [1-7]. -
Fungal Infections in Gastroenterology
Current Trends in Gastroenterology L UPINE PUBLISHERS and Hepatology Open Access DOI: 10.32474/CTGH.2018.01.000114 ISSN: 2641-1652 Review article Fungal Infections in Gastroenterology Michael AB Naafs MD* MD, Endocrinologist, Health Consultant at Naafs, International Health Consultancy, Rhodoslaan, Oldenzaal, The Netherlands Received: August 13, 2018; Published: August 20, 2018 *Corresponding author: Michael AB Naafs, Dutch Internist Endocrinologist, Health Consultant at Naafs, International Health Consultancy, Rhodoslaan 20,7577KN, Oldenzaal, The Netherlands Abstract Fungal infections are increasing in gastroenterology. Cirrhotic patients, liver transplantation recipients, and patients with The advent of sequencing technology can identify now previously unculturable fungi. Dysbiosis of the mycobiome and microbiome inflammatory bowel disease (IBD) are vulnerable to these infections. The origin of these fungal infections is frequently the GI tract. can uncheck normal commensal fungi and turn pathogenic by largely unknown mechanisms Resistance to antifungals is becoming a global problem. New antifungals are in development and they are badly needed. In this mini-review the enteric mycobiota and fungal infections in GI disease are discussed. Introduction to be increased in Crohn’s disease (CD) patients [14-17]. Most Fungi are normally present in the gastrointestinal tract as part Candida ssp. can also be detected in the feces or intestinal mucosa of the gut microbiome. With the advent of sequencing technology of patients with ulcerative colitis (UC)- [18,19]. To characterize the microbes can be studied now that were previous non-culturable. mycebiota by sequencing variable portions of the fungi genome are Fungal species, also called the “silent population” are known as targeted, which characterize the fungi to the genes level, such as the mycobiome [1]. -
Molecular Markers of Antifungal Resistance: Potential Uses in Routine Practice and Future Perspectives
Journal of Fungi Review Molecular Markers of Antifungal Resistance: Potential Uses in Routine Practice and Future Perspectives Guillermo Garcia-Effron 1,2 1 Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe CP3000, Argentina; [email protected]; Tel.: +54-9342-4575209 (ext. 135) 2 Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe CP3000, Argentina Abstract: Antifungal susceptibility testing (AST) has come to establish itself as a mandatory routine in clinical practice. At the same time, the mycological diagnosis seems to have headed in the direction of non-culture-based methodologies. The downside of these developments is that the strains that cause these infections are not able to be studied for their sensitivity to antifungals. Therefore, at present, the mycological diagnosis is correctly based on laboratory evidence, but the antifungal treatment is undergoing a growing tendency to revert back to being empirical, as it was in the last century. One of the explored options to circumvent these problems is to couple non-cultured based diagnostics with molecular-based detection of intrinsically resistant organisms and the identification of molecular mechanisms of resistance (secondary resistance). The aim of this work is to review the available molecular tools for antifungal resistance detection, their limitations, and their advantages. A comprehensive description of commercially available and in-house methods is included. In addition, gaps in the development of these molecular technologies are discussed. Citation: Garcia-Effron, G. Molecular Keywords: antifungal resistance; molecular tools; intrinsic resistance; secondary resistance; Cyp51A; Markers of Antifungal Resistance: FKS; Candida; Aspergillus Potential Uses in Routine Practice and Future Perspectives.