Candida Parapsilosis Complex Francesco Barchiesi1* , Elena Orsetti1, Patrizia Osimani3, Carlo Catassi2, Fabio Santelli4 and Esther Manso5

Total Page:16

File Type:pdf, Size:1020Kb

Candida Parapsilosis Complex Francesco Barchiesi1* , Elena Orsetti1, Patrizia Osimani3, Carlo Catassi2, Fabio Santelli4 and Esther Manso5 Barchiesi et al. BMC Infectious Diseases (2016) 16:387 DOI 10.1186/s12879-016-1704-y RESEARCH ARTICLE Open Access Factors related to outcome of bloodstream infections due to Candida parapsilosis complex Francesco Barchiesi1* , Elena Orsetti1, Patrizia Osimani3, Carlo Catassi2, Fabio Santelli4 and Esther Manso5 Abstract Background: Although Candida albicans is the most common cause of fungal blood stream infections (BSIs), infections due to Candida species other than C. albicans are rising. Candida parapsilosis complex has emerged as an important fungal pathogen and became one of the main causes of fungemia in specific geographical areas. We analyzed the factors related to outcome of candidemia due to C. parapsilosis in a single tertiary referral hospital over a five-year period. Methods: A retrospective observational study of all cases of candidemia was carried out at a 980-bedded University Hospital in Italy. Data regarding demographic characteristics and clinical risk factors were collected from the patient’s medical records. Antifungal susceptibility testing was performed and MIC results were interpreted according to CLSI species-specific clinical breakpoints. Results: Of 270 patients diagnosed with Candida BSIs during the study period, 63 (23 %) were infected with isolates of C. parapsilosis complex which represented the second most frequently isolated yeast after C. albicans. The overall incidence rate was 0.4 episodes/1000 hospital admissions. All the strains were in vitro susceptible to all antifungal agents. The overall crude mortality at 30 days was 27 % (17/63), which was significantly lower than that reported for C. albicans BSIs (42 % [61/146], p = 0.042). Being hospitalized in ICU resulted independently associated with a significant higher risk of mortality (HR 4.625 [CI95% 1.015–21.080], p = 0.048). Conversely, early CVC removal was confirmed to be significantly associated with a lower risk of mortality (HR 0.299 [CI95% 0.102–0.874], p = 0.027). Finally, the type of primary antifungal therapy did not influence the outcome of infection. Conclusions: Candidemia due to C. parapsilosis complex, the second most commonly causative agent of yeast BSIs in our center, is characterized by a non-negligible mortality at 30 days. An early CVC removal is associated with a significant reduced mortality. Keywords: Candida paraspilosis complex, Candidemia, Risk factors, Mortality, Antifungal agents Background sensu strictu (the most frequent), Candida orthopsilosis Candida is an important cause of bloodstream infec- and Candida metapsilosis, has emerged as an important tions (BSIs) and it is the main agent of invasive fungal fungal pathogen and became one of the main causes of infection in hospitalized patients [1, 2]. Although Can- fungemia in tertiary-care hospitals [5–9]. Although the dida albicans is the most common cause of invasive mortality rate due to this species is generally lower than candidiasis, infections due to Candida species other that reported for other Candida species, C. parapsilosis than C. albicans are rising [3, 4]. In particular, Candida complex possesses several distinct features, such as its parapsilosis complex, which includes C. parapsilosis ability to develop biofilms on intravascular devices, high affinity for parenteral nutrition, and an intrinsic low sus- * Correspondence: [email protected] ceptibility to echinocandins [10–12]. 1Clinica Malattie Infettive; Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria, Ospedali Riuniti Umberto I°- G.M. Lancisi – G. Salesi, Ancona, Italy Full list of author information is available at the end of the article © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Barchiesi et al. BMC Infectious Diseases (2016) 16:387 Page 2 of 7 Table 1 Comparison of epidemiological, clinical characteristics and outcome of patients with BSIs due to Candida parapsilosis and Candida albicans Variables Patients with BSIs due to: C. parapsilosis (n = 63) C. albicans (n = 146) P valuea Age (years), median (IQR)b 67 (43–76) 51 (66–77) 0.133 Neonates (<3 months) 1 (2) 5 (3) 0.465 Elderly (>65 years) 32 (51) 72 (49) 0.844 Male sex, n (%) 35 (56) 91 (63) 0.358 Ward Internal Medicine, n (%) 25 (40) 52 (36) 0.448 Surgery, n (%) 17 (27) 32 (22) Intensive Care Unit, n (%) 21 (33) 62 (43) Comorbidities, n (%) 57 (90) 137 (94) 0.387 Chronic pulmonary diseases, n (%)c 9 (14) 11 (8) 0.127 Haematological malignancy, n (%) 1 (2) 8 (5) 0.203 Cardiovascular diseases, n (%)d 27 (43) 67 (46) 0.685 Neurological diseases, n (%)e 10 (16) 24 (16) 0.919 Gastrointestinal diseases, n (%)f 21 (33) 43 (29) 0.576 Diabetes mellitus, n (%) 8 (13) 28 (19) 0.254 Solid tumors, n (%) 15 (24) 43 (30) 0.403 Chronic renal failure, n (%) 7 (11) 12 (8) 0.504 Previous surgery (<30 days), n (%) 32 (51) 67 (46) 0.514 Gastrointestinal surgery, n (%) 8 (13) 19 (13) 0.950 Cardiovascular surgery, n (%) 13 (21) 28 (19) 0.807 Other surgery, n (%) g 12 (19) 24 (16) 0.646 Central venous catheter, n (%) 56 (89) 127 (87) 0.702 BSI CVC-related, n (%) 36 (64) 57 (45) 0.015 Other devices, n (%)h 57 (90) 129 (88) 0.653 Previous invasive procedures (<72 h), n (%)i 16 (25) 44 (30) 0.486 Parenteral nutrition, n (%) 43 (68) 105 (72) 0.592 Immunosuppressive therapy, n (%)j 18 (29) 56 (34) 0.174 Neutropenia, n (%) 4 (6) 7 (5) 0.644 Septic shock, n (%) 2 (3) 12 (8) 0.180 Prior antibiotic therapy, n (%) 58 (92) 139 (95) 0.370 Previous antifungal therapy (<30 days), n (%) 5 (8) 21 (14) 0.195 Concomitant bacteriemia, n (%) 15 (24) 40 (27) 0.588 Other coinfections, n (%)k 39 (62) 89 (61) 0.897 Appropriate antifungal therapy, n (%)l 38 (60) 92 (63) 0.712 Primary azole therapy 41 (65) 77 (53) 0.098 Primary echinocandin therapy 7 (11) 34 (23) 0.041 Primary polyene therapy 1 (2) 3 (2) 0.820 None 14 (22) 32 (22) 0.961 Barchiesi et al. BMC Infectious Diseases (2016) 16:387 Page 3 of 7 Table 1 Comparison of epidemiological, clinical characteristics and outcome of patients with BSIs due to Candida parapsilosis and Candida albicans (Continued) Overall mortality, n (%) 17 (27) 61 (42) 0.042 Early mortality (days 1–7), n (%) 4 (6) 24 (17) 0.049 Late mortality (days 8–30), n (%) 13 (21) 37 (25) 0.464 aComparisons between groups were performed using Wilcoxon rank sum test for quantitative variables and Chi-Square test (or Fisher Exact Test when expected frequencies were less than five) for qualitative variables bIQR, Interquartile range cChronic pulmonary diseases include asthma, chronic bronchitis, emphysema and lung fibrosis dCardiovascular diseases include heart failure, ischemic heart disease, endocarditis and arrhythmia eNeurological diseases include Parkinson’s disease, Alzheimer’s disease and paralysis fGastrointestinal diseases include Crohn’s disease, ulcerative colitis, chronic pancreatitis and gallbladder stones g Other surgery includes plastic surgery, thoracic surgery, orthopaedic surgery, urological surgery and neurosurgery h Other devices include urinary catheter, surgical drainage, cutaneous gastrostomy and tracheostomy tube iPrevious invasive procedures include endoscopy and positioning of any device jImmunosuppressive therapy include corticosteroids, calcineurin inhibitors and monoclonal antibodies kOther coinfections include bacterial and/or fungal infections in sites other than blood lAppropriate antifungal therapy was considered when the appropriate drug with adequate dosage was started ≤ 72 h from the first blood culture performed The aim of this study was to analyze the factors related Review Board of the Azienda Ospedaliero-Universitaria to outcome of candidemia due to C. parapsilsosis com- Ospeadali Riuniti Umberto I°-Lancisi-Salesi granted plex in a single institution over a five-year period. retrospective access to the data without need for individ- ual informed consent. Methods Study population and data collection Statistical analysis A retrospective observational study of all cases of candide- Quantitative data were shown as the median with inter- mia was carried out from January 1, 2010 to December 31, quartile ranges (Q1–Q3). Qualitative variables were 2014 (5-year period) in a single 980-bedded referral Uni- expressed as absolute and relative frequencies. Categorical versity Hospital in Ancona, Italy. A case of Candida BSI variables were compared using the χ2 test, whereas was defined as a peripheral isolation of Candida species Mann–Whitney U test or Fisher exact test were applied from blood culture in a patient with temporally related for continuous variables. Variables with a p ≤0.05 at the clinical signs and symptoms of infection. All Candida BSIs descriptive analysis were analyzed by Cox regression. All were identified through the microbiological laboratory statistical analyses were performed using the statistical database. Data regarding demographic characteristics and package SPSS for Windows v. 20 (SPSS Inc., Chicago, IL, clinical risk factors were collected from the patient’s med- USA). A P value of ≤0.05 was considered to represent stat- ical records. Appropriate antifungal therapy was consid- istical significance and all statistical tests were two-tailed. ered when an appropriate drug (based on subsequent in vitro susceptibility testing results) with adequate dosage Results was started within 72 h from the first blood culture per- Of 270 patients diagnosed with Candida BSIs during the formed. Adequate dosage of an antifungal agent was de- study period, 63 (23 %) were infected with isolates of C. fined according to IDSA 2009 guidelines [13]. Early parapsilosis complex (95 C.
Recommended publications
  • Candida Parapsilosis: a Review of Its Epidemiology, Pathogenesis, Clinical Aspects, Typing and Antimicrobial Susceptibility
    Critical Reviews in Microbiology Critical Reviews in Microbiology, 2009; 35(4): 283–309 2009 REVIEW ARTICLE Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility Eveline C. van Asbeck1,2, Karl V. Clemons1, David A. Stevens1 1Division of Infectious Diseases, Santa Clara Valley Medical Center, and California Institute for Medical Research, San Jose, CA 95128 USA and Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, and 2Eijkman-Winkler Institute for Medical and Clinical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands Abstract The Candida parapsilosis family has emerged as a major opportunistic and nosocomial pathogen. It causes multifaceted pathology in immuno-compromised and normal hosts, notably low birth weight neonates. Its emergence may relate to an ability to colonize the skin, proliferate in glucose-containing solutions, and adhere to plastic. When clusters appear, determination of genetic relatedness among strains and identifica- tion of a common source are important. Its virulence appears associated with a capacity to produce biofilm and production of phospholipase and aspartyl protease. Further investigations of the host-pathogen inter- actions are needed. This review summarizes basic science, clinical and experimental information about C. parapsilosis. Keywords: Candida parapsilosis, epidermiology, strain differentiation, clinical aspects, pathogenesis, For personal use only. antifungal susceptibility Introduction The organism was first described in 1928 (Ashford 1928), and early reports of C. parapsilosis described the organ- Candida bloodstream infections (BSI) remain an ism as a relatively non-pathogenic yeast in the normal exceedingly common life-threatening fungal disease flora of healthy individuals that was of minor clinical and are now recognized as a major cause of hospital- significance (Weems 1992).
    [Show full text]
  • Nails: Tales, Fails and What Prevails in Treating Onychomycosis
    J. Hibler, D.O. OhioHealth - O’Bleness Memorial Hospital, Athens, Ohio AOCD Annual Conference Orlando, Florida 10.18.15 A) Onychodystrophy B) Onychogryphosis C)“Question Onychomycosis dogma” – Michael Conroy, MD D) All the above E) None of the above Nail development begins at 8-10 weeks EGA Complete by 5th month Keratinization ~11 weeks No granular layer Nail plate growth: Fingernails 3 mm/month, toenails 1 mm/month Faster in summer or winter? Summer! Index finger or 5th digit nail grows faster? Index finger! Faster growth to middle or lateral edge of each nail? Lateral! Elkonyxis Mee’s lines Aka leukonychia striata Arsenic poisoning Trauma Medications Illness Psoriasis flare Muerhrcke’s bands Hypoalbuminemia Chemotherapy Half & half nails Aka Lindsay’s nails Chronic renal disease Terry’s nails Liver failure, Cirrhosis Malnutrition Diabetes Cardiovascular disease True or False: Onychomycosis = Tinea Unguium? FALSE. Onychomycosis: A fungal disease of the nails (all causes) Dermatophytes, yeasts, molds Tinea unguium: A fungal disease of nail caused by dermatophyte fungi Onychodystrophy ≠ onychomycosis Accounts for up to 50% of all nail disorders Prevalence; 14-28% of > 60 year-olds Variety of subtypes; know them! Sequelae What is the most common cause of onychomycosis? A) Epidermophyton floccosum B) Microsporum spp C) Trichophyton mentagrophytes D) Trichophyton rubrum -Account for ~90% of infections Dermatophytes Trichophyton rubrum Trichophyton mentagrophytes Trichophyton tonsurans, Microsporum canis, Epidermophyton floccosum Nondermatophyte molds Acremonium spp, Fusarium spp Scopulariopsis spp, Sytalidium spp, Aspergillus spp Yeast Candida parapsilosis Candida albicans Candida spp Distal/lateral subungal Proximal subungual onychomycosis onychomycosis (DLSO) (PSO) Most common; T. rubrum Often in immunosuppressed patients T.
    [Show full text]
  • Candida Species – Morphology, Medical Aspects and Pathogenic Spectrum
    European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 07, 2020 Candida Species – Morphology, Medical Aspects And Pathogenic Spectrum. Shubham Koundal1, Louis Cojandaraj2 1 Assistant Professor, Department of Medical Laboratory Sciences, Chandigarh University, Punjab. 2Assistant Professor, Department of Medical Laboratory Sciences, Lovely Professional University, Punjab. Email Id: [email protected] ABSTRACT Emergence of candidal infections are increasing from decades and found to be a leading cause of human disease and mortality. Candida spp. is one of the communal of human body and is known to cause opportunistic superficial and invasive infections. Many of mycoses-related deaths were due to Candida spp. Major shift of Candida infection towards NAC (non-albicans Candida) is matter of concern worldwide. In this study we had given a systemic review about medically important Candidaspp. Along with their morphological features, treatment and drugs. Spectrum of the pathogen is also discussed. Morphology of Different Medically Important Candida Species with their medical aspects along and pathogenic spectrum. Corn meal agar morphology along with anti-candida drugs has been discussed. The study is done after considering various published review’s and the mycological studies. Key words: Candida, Yeast, C.albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. krusei and C. lusitaniae 1. INTRODUCTION Yeasts are unicellular, sometimes dimorphic fungi. It can give rise to wide range of infections in humans commonly called fungal infections. Yeast infections varies from superficial cutaneous/skin infections, mucosa related infections to multi-organ disseminated infections.(Sardi et al., 2013)Cutaneous and mucosal yeast infections can infect a number of regions in human body including the skin, nails, oral cavity, gastrointestinal tract, female genital tract and esophageal part and lead to chronic nature.
    [Show full text]
  • Candida Species (Volatile) Metabotyping Through Advanced Comprehensive Two-Dimensional Gas Chromatography
    microorganisms Article Candida Species (Volatile) Metabotyping through Advanced Comprehensive Two-Dimensional Gas Chromatography Carina Pedrosa Costa 1 , Ana Rita Bezerra 2, Adelaide Almeida 3,* and Sílvia M. Rocha 1,* 1 Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; [email protected] 2 Health Sciences Department, Institute for Biomedicine—iBiMED, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; [email protected] 3 Department of Biology & CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal * Correspondence: [email protected] (A.A.); [email protected] (S.M.R.); Tel.: +351-234-370784 (A.A.); +351-234-401524 (S.M.R.) Received: 5 November 2020; Accepted: 29 November 2020; Published: 30 November 2020 Abstract: Microbial metabolomics is a challenge strategy that allows a comprehensive analysis of metabolites within a microorganism and may support a new approach in microbial research, including the microbial diagnosis. Thus, the aim of this research was to in-depth explore a metabolomics strategy based on the use of an advanced multidimensional gas chromatography for the comprehensive mapping of cellular metabolites of C. albicans and non-C. albicans (C. glabrata and C. tropicalis) and therefore contributing for the development of a comprehensive platform for fungal detection management and for species distinction in early growth times (6 h). The volatile fraction comprises 126 putatively identified metabolites distributed over several chemical families: acids, alcohols, aldehydes, hydrocarbons, esters, ketones, monoterpenic and sesquiterpenic compounds, norisoprenoids, phenols and sulphur compounds. These metabolites may be related with different metabolic pathways, such as amino acid metabolism and biosynthesis, fatty acids metabolism, aromatic compounds degradation, mono and sesquiterpenoid synthesis and carotenoid cleavage.
    [Show full text]
  • The Quest for a General and Reliable Fungal DNA Barcode
    The Open Applied Informatics Journal, 2011, 5, (Suppl 1-M6) 45-61 45 Open Access The Quest for a General and Reliable Fungal DNA Barcode Vincent Robert*,1, Szaniszlo Szöke1, Ursula Eberhardt1, Gianluigi Cardinali2, Wieland Meyer3, Keith A. Seifert4, C. Andre Lévesque4 and Chris T. Lewis4 1CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands 2Dipartimento Biologia Applicata- Microbiologia, Università degli Studi di Perugia, Perugia, Italy 3Molecular Mycology Research Laboratory, CIDM, Westmead Millennium Institute, SEIB, Sydney Medical School - Westmead Hospital, The University of Sydney, Sydney, Australia 4Biodiversity (Mycology & Botany), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, Canada Abstract: DNA sequences are key elements for both identification and classification of living organisms. Mainly for historical reasons, a limited number of genes are currently used for this purpose. From a mathematical point of view, any DNA segment, at any location, even outside of coding regions and even if they do not align, could be used as long as PCR primers could be designed to amplify them. This paper describes two methods to search genomic data for the most efficient DNA segments that can be used for identification and classification. Keywords: Genome, molecular, sequences, barcoding, identification, classification, fungi. 1. INTRODUCTION When first large molecular phylogenetic studies were completed, it was obvious that many clades were poorly Since the early days of classification, taxonomists have supported statistically when only one or two genes were struggled with the available information and characteristics used. Recently, several authors explored possibilities for of their organisms of interest to develop systems that reflect analyzing several genes to obtain the true phylogeny [1-7].
    [Show full text]
  • Fungal Infections in Gastroenterology
    Current Trends in Gastroenterology L UPINE PUBLISHERS and Hepatology Open Access DOI: 10.32474/CTGH.2018.01.000114 ISSN: 2641-1652 Review article Fungal Infections in Gastroenterology Michael AB Naafs MD* MD, Endocrinologist, Health Consultant at Naafs, International Health Consultancy, Rhodoslaan, Oldenzaal, The Netherlands Received: August 13, 2018; Published: August 20, 2018 *Corresponding author: Michael AB Naafs, Dutch Internist Endocrinologist, Health Consultant at Naafs, International Health Consultancy, Rhodoslaan 20,7577KN, Oldenzaal, The Netherlands Abstract Fungal infections are increasing in gastroenterology. Cirrhotic patients, liver transplantation recipients, and patients with The advent of sequencing technology can identify now previously unculturable fungi. Dysbiosis of the mycobiome and microbiome inflammatory bowel disease (IBD) are vulnerable to these infections. The origin of these fungal infections is frequently the GI tract. can uncheck normal commensal fungi and turn pathogenic by largely unknown mechanisms Resistance to antifungals is becoming a global problem. New antifungals are in development and they are badly needed. In this mini-review the enteric mycobiota and fungal infections in GI disease are discussed. Introduction to be increased in Crohn’s disease (CD) patients [14-17]. Most Fungi are normally present in the gastrointestinal tract as part Candida ssp. can also be detected in the feces or intestinal mucosa of the gut microbiome. With the advent of sequencing technology of patients with ulcerative colitis (UC)- [18,19]. To characterize the microbes can be studied now that were previous non-culturable. mycebiota by sequencing variable portions of the fungi genome are Fungal species, also called the “silent population” are known as targeted, which characterize the fungi to the genes level, such as the mycobiome [1].
    [Show full text]
  • Molecular Markers of Antifungal Resistance: Potential Uses in Routine Practice and Future Perspectives
    Journal of Fungi Review Molecular Markers of Antifungal Resistance: Potential Uses in Routine Practice and Future Perspectives Guillermo Garcia-Effron 1,2 1 Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe CP3000, Argentina; [email protected]; Tel.: +54-9342-4575209 (ext. 135) 2 Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe CP3000, Argentina Abstract: Antifungal susceptibility testing (AST) has come to establish itself as a mandatory routine in clinical practice. At the same time, the mycological diagnosis seems to have headed in the direction of non-culture-based methodologies. The downside of these developments is that the strains that cause these infections are not able to be studied for their sensitivity to antifungals. Therefore, at present, the mycological diagnosis is correctly based on laboratory evidence, but the antifungal treatment is undergoing a growing tendency to revert back to being empirical, as it was in the last century. One of the explored options to circumvent these problems is to couple non-cultured based diagnostics with molecular-based detection of intrinsically resistant organisms and the identification of molecular mechanisms of resistance (secondary resistance). The aim of this work is to review the available molecular tools for antifungal resistance detection, their limitations, and their advantages. A comprehensive description of commercially available and in-house methods is included. In addition, gaps in the development of these molecular technologies are discussed. Citation: Garcia-Effron, G. Molecular Keywords: antifungal resistance; molecular tools; intrinsic resistance; secondary resistance; Cyp51A; Markers of Antifungal Resistance: FKS; Candida; Aspergillus Potential Uses in Routine Practice and Future Perspectives.
    [Show full text]
  • Validation of a Simplex PCR Assay Enabling Reliable Identification Of
    Fidler et al. BMC Infectious Diseases (2018) 18:393 https://doi.org/10.1186/s12879-018-3283-6 RESEARCH ARTICLE Open Access Validation of a simplex PCR assay enabling reliable identification of clinically relevant Candida species Gabor Fidler1, Eva Leiter2, Sandor Kocsube3, Sandor Biro1 and Melinda Paholcsek1* Abstract Background: Fungal bloodstream infections (BSI) may be serious and are associated with drastic rise in mortality and health care costs. Candida spp. are the predominant etiological agent of fungal sepsis. The prompt and species-level identification of Candida may influence patient outcome and survival. The aim of this study was to develop and evaluate the CanTub-simplex PCR assay coupled with Tm calling and subsequent high resolution melting (HRM) analysis to barcode seven clinically relevant Candida species. Methods: Efficiency, coefficient of correlation and the limit of reliable detection were estimated on purified Candida EDTA-whole blood (WB) reference panels seeded with Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, Candida guilliermondii, Candida dubliniensis cells in a 6-log range. Discriminatory power was measured on EDTA-WB clinical panels on three different PCR platforms; LightCycler®96, LightCycler® Nano, LightCycler® 2.0. Inter- and intra assay consistencies were also calculated. Results: The limit of reliable detection proved to be 0.2–2 genomic equivalent and the method was reliable on broad concentration ranges (106–10 CFU) providing distinctive melting peaks and characteristic HRM curves. The diagnostic accuracy of the discrimination proved to be the best on Roche LightCycler®2.0 platform. Repeatability was tested and proved to be % C.V.: 0.14 ± 0.06 on reference- and % C.V.: 0.14 ± 0.02 on clinical-plates accounting for a very high accuracy.
    [Show full text]
  • Prospects for Fungus Identification Using CO1 DNA Barcodes, with Penicillium As a Test Case
    Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case Keith A. Seifert*†, Robert A. Samson‡, Jeremy R. deWaard§, Jos Houbraken‡, C. Andre´ Le´ vesque*, Jean-Marc Moncalvo¶, Gerry Louis-Seize*, and Paul D. N. Hebert§ *Biodiversity (Mycology and Botany), Environmental Sciences, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6; ‡Fungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, 3508 AD, Utrecht, The Netherlands; §Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada N1G 2W1; and ¶Department of Natural History, Royal Ontario Museum, and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 2C6 Communicated by Daniel H. Janzen, University of Pennsylvania, Philadelphia, PA, January 3, 2007 (received for review September 11, 2006) DNA barcoding systems employ a short, standardized gene region large ribosomal subunit (2), the internal transcribed spacer (ITS) to identify species. A 648-bp segment of mitochondrial cytochrome cistron (e.g., refs. 3 and 4), partial ␤-tubulin A (BenA) gene c oxidase 1 (CO1) is the core barcode region for animals, but its sequences (5), or partial elongation factor 1-␣ (EF-1␣) se- utility has not been tested in fungi. This study began with an quences (6), and sometimes other protein-coding genes. examination of patterns of sequence divergences in this gene The concept of DNA barcoding proposes that effective, broad region for 38 fungal taxa with full CO1 sequences. Because these spectrum identification systems can be based on sequence results suggested that CO1 could be effective in species recogni- diversity in short, standardized gene regions (7–9). To date, this tion, we designed primers for a 545-bp fragment of CO1 and premise has been tested most extensively in the animal kingdom, generated sequences for multiple strains from 58 species of Pen- where a 648-bp region of the cytochrome c oxidase 1 (CO1) gene icillium subgenus Penicillium and 12 allied species.
    [Show full text]
  • Metabolic Profiling of Candida Clinical Isolates of Different Species And
    www.nature.com/scientificreports OPEN Metabolic profling of Candida clinical isolates of diferent species and infection sources Josidel Conceição Oliver1,4,5, Luca Laghi2,5, Carola Parolin1, Claudio Foschi3, Antonella Marangoni3, Andrea Liberatore3, Amanda Latercia Tranches Dias4, Monica Cricca3* & Beatrice Vitali1 Candida species are the most common cause of opportunistic fungal infections. Rapid identifcation and novel approaches for the characterization of these fungi are of great interest to improve the diagnosis and the knowledge about their pathogenic properties. This study aimed to characterize clinical isolates of Candida spp. by proteomics (MALDI-TOF MS) and metabolomics (1H-NMR), and to correlate their metabolic profles with Candida species, source of infection and diferent virulence associated parameters. In particular, 49 Candida strains from diferent sources (blood, n = 15; vagina, n = 18; respiratory tract, n = 16), belonging mainly to C. albicans complex (61%), C. glabrata (20%) and C. parapsilosis (12%) species were used. Several extracellular and intracellular metabolites showed signifcantly diferent concentrations among isolates recovered from diferent sources of infection, as well as among diferent Candida species. These metabolites were mainly related to the glycolysis or gluconeogenesis, tricarboxylic acid cycle, nucleic acid synthesis and amino acid and lipid metabolism. Moreover, we found specifc metabolic fngerprints associated with the ability to form bioflm, the antifungal resistance (i.e. caspofungin and fuconazole) and the production of secreted aspartyl proteinase. In conclusion, 1H-NMR-based metabolomics can be useful to deepen Candida spp. virulence and pathogenicity properties. Candida species are the most common cause of opportunistic fungal infections mainly in immunocompromised individuals1. Candida spp. are able to cause mucocutaneous lesions, such as oropharyngeal or vaginal candidi- asis, and systemically invasive infections that are associated with high mortality 2–4.
    [Show full text]
  • The Identification and Differentiation of the Candida Parapsilosis Complex
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 111(4): 267-270, April 2016 267 The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA Leonardo Silva Barbedo/+, Maria Helena Galdino Figueiredo-Carvalho, Mauro de Medeiros Muniz, Rosely Maria Zancopé-Oliveira Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, and Candida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economi- cal identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
    [Show full text]
  • Guidelines for Treatment of Candidemia in Adults
    GUIDELINES FOR TREATMENT OF CANDIDEMIA IN ADULTS General Statements: Yeast in a blood culture should NOT be considered a contaminant If there is a high suspicion that yeast growing in a blood culture is Histoplasma or Cryptococcus, do not use micafungin and consult Infectious Diseases Infectious Diseases consultation is strongly recommended in all cases of candidemia Blood cultures should be repeated every 24-48 hours until clearance has been documented Remove all intravascular catheters whenever possible. In neutropenic patients, as sources of candidiasis other than CVCs predominate, catheter removal should be considered on an individual basis Patients should have a dilated fundoscopic exam performed to rule out endophthalmitis within the first week after initiation of therapy In neutropenic patients, repeat ophthalmological exam should be considered once neutropenia has resolved Additional evaluation for metastatic foci (e.g. echocardiogram) should be considered in patients with persistently positive blood cultures Duration of therapy: o Patients with no evidence of metastatic complications should be treated for 14 days following the first negative blood culture o Patients with metastatic complications (e.g,. endophthalmitis, endocarditis) should have an ID Consult to determine length of therapy o Neutropenic patients with no evidence of metastatic complications should be treated for 14 days following the first negative blood culture, provided neutropenia has resolved INITIAL THERAPY IN PATIENTS WITH POSITIVE BLOOD CULTURES
    [Show full text]