Molecular Methods Developed for the Identification and Characterization

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Methods Developed for the Identification and Characterization www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Review Article International Journal of Genetic Science Open Access Molecular Methods Developed for the Identification and Characterization of Candida Species Danielly Beraldo dos Santos Silva, Kelly Mari Pires de Oliveira, Alexéia Barufatti Grisolia* Universidade Federal da Grande Dourados, Dourados, MS, Brazil Received: 21 June, 2016; Accepted: 01 September, 2016; Published: 10 September, 2016 *Corresponding author: Grisolia AB, Faculty of Biological and Environmental Sciences (FCBA), Federal University of Grande Dourados (UFGD). Rodovia Dourados-Itahum KM 12, P.O. Box:533, Zip Code:79804-970, Dourados/ Mato Grosso do Sul/ Brazil, Tel: +55 (067) 34102223; E-mail: [email protected] Abstract Candida species Candida species are commensally microorganisms in healthy andThis reviewdiscusses summarizes future perspectives: the insights omicsthe main technologies methods used for individuals, but is also the most opportunistic fungal pathogen of in the identificationCandida and characterization species. the human. From benign skin-mucosal forms to invasive ones, Candida infection, can compromise various organs systematic and cause characterizationGeneral features: of Candida species diseases in immunocompromised or critically ill patients. Hence the Candida strains is crucial for diagnosis, clinical treatment and epidemiological Fungi, phylum Ascomycota, class Saccharomycetes, family accurate identification and characterization of the disease-causing Saccharomycetaceae,species are and taxonomically genus Candida classified. These in the yeasts kingdom are unicellular microorganisms that are pleomorphic and ovoid studies of candidacies. Molecular methods the identification and or spherical in shape with an incomplete sexual cycle. Candida especiallycharacterization in the support case of gives resistant in epidemiological Candida species. research This reviewand in development of novel antifungal with specific molecular targets, species commensally inhabit the human body and can be found in Candida species and discusses future the respiratory tract, gastrointestinal tract, vaginal mucosa, oral perspectives.aims to describe the main methods used in the identification cavity, and skin of healthy individuals [4]; they can also be isolated and characterization the from plants, water, soil, and other environments. Moreover, they Keywords: Candidiasis; ITS; Genomes; Molecular typing can degrade proteins and carbohydrates as a source of carbon and nitrogen, which are essential for their development [5]. Introduction The relationship between an autochthonous Candida species Candida species commensally inhabit the human body. The and its human host can be affected by pathological, physiological, relationship between an autochthonous Candida species and mechanical, and iatrogenic factors. In this sense, Candida species its human host can be affected by pathological, physiological, can cause several types of infections with a wide spectrum of mechanical and iatrogenic factors. In this sense, Candida species can cause several types of infections with a wide spectrum of ones that compromise several organs, leading to host death [1]. clinical presentations, from superficial benign forms to invasive There are close to 200 different ones that compromise several organs, leading to host death [1]. Candida Candidaclinical presentations, species exhibit from a large superficial clinical benign relevance, forms therefore to invasive is Candida albicans, Candida tropicalis, Candida glabrata, Candida krusei, and Candida parapsilosis [subdividedspecies, into C. fiveparapsilosis, of which molecular level for understanding the spread of species and the Candida orthopsilosis, and Candida metapsilosis] (Figure 1) are mechanismsnecessary to correctlyof their resistance identify and to antifungal characterize agents the isolates [2]. at the involved in more than 90% of invasive infections [6,7]. Other emergent Candida species, such as Candida guilliermondii, The resistance of Candida species to antifungal agents Candida dubliniensis, Candida lusitaniae, Candida kefyr, Candida can often be attributed to a mutation gene or other alteration rugosa, Candida famata, Candida utilis, Candida lipolytica, Candida (such as increased expression) of the drug target [3]. In this norvegensis, and Candida inconspícua, also have clinical relevance, sense, were developed several effective molecular methods Candida species. systemic itches [7,8]. These methods support gives in epidemiological research and and have been identified as causative agents of superficial and for the identification and characterization of C. albicans is considered the most frequently isolated species targets, especially in the case of resistant Candida species. tions of different in development of novel antifungal with specific molecular from patients with superficial and invasive infec Symbiosis Group *Corresponding author email: [email protected] Molecular Methods Developed for the Identification and Characterization of Candida Species Copyright: © 2016 Chandrasekera, et al. Together,amphotericin Candida B and species azoles. exhibit However, a large in clinical clinical studies, relevance isolates due with reduced sensitivity to fluconazole have been reported [18]. body. It is therefore necessary to correctly identify and diagnose theto their yeast incidence species responsible of colonization for an and infection infection and of subsequently the human prescribe the proper antifungal agent for treatment. Candida species are based on analysis of Phenotypic methods used in the identification and Thecharacterization of morphological and biochemicalCandida profile species of are these observation organisms. of most widely used phenotypic methods for identification assimilativeand characterization capacity and the substrate fermentation [19]. microscopic structures, evaluation tests of enzyme activity and Several commercial products and systems have been clinical microbiology laboratories in the diagnosis of infections causeddeveloped by theCandida aim of species solve some[20], difficultiesfor example experienced Agar containing by the Figure 1: Candida species clinical, isolated on selective and differential chromo gens, kits and panels semi or full automated to the CHROMagar™ Candida DIFICO®. A) Candidaalbicans; B) Candidatropica- lis; C) Candidaglabrata; D) Candidaparapsilosis; E) Candidakrusei.. [21,22]. The use of only phenotypic testing is not highly effective presumed or definitive Candidaidentification species of the because most prevalent some species anatomical sites in case studies from around the world [9]. Its has few morphological and biochemical variations, therefore main pathogenic mechanisms and virulence factors appear to be phenotypicfor identification and molecular of methods can be used in together to its ability to adhere to different mucous membranes and epithelia, increaseIdentification reliability and in the Molecular identification Characterization of these species. phospholipases.its ability to produce Such filamentousspecies are naturally structures sensitive that assist to antifungal in tissue In recent decades, molecular biological techniques have been agentsinvasion, when and usedits production systemically, of enzymes but cases such of acquired as proteinases resistance and used to better understand the pathogenicity of Candida species and to expand the search for new molecular drug targets. Candida patients that receive long-term antifungal therapy [10]. to azolics, in particular to fluconazole, have been described in features which recent genomic approaches have been able to C. tropicalis is species are diploid, heterozygous, andCandida contain Genome a plastid Sequencing genome, detected in 20-24% of blood-borne infections [10,11], mainly in Project was initiated with a goal of sequencing the genome of In Latin American countries, especially Brazil, elderly patients and those with conditions such as neutropenia C.better albicans characterize. SC5314 [23,24].In 1996, This the goal necessitated the use of and Diabetes mellitus [12]. Clinical isolates of this species are bioinformatics tools that were able to predict and annotate genes in the sequence. The result was the description of 6,354 genes, beentypically recently sensitive reported to amphotericin and described B and [14]. triazoles [13]; however, still not been determined. cases of resistance to these drugs, especially to fluconazole, have although the DNA sequences of some specific chromosomes had The species C. glabrata and, C. krusei also have pathogenic Comparison of the C. albicans genome with the genomes of potential [10,11]. C. glabrata ranks second among isolates from blood-borne infections in the United States. This species has therapies.other fungal It wasspecies observed allowed that for compared the identification with other offungi, several the resistant isolates as well the incidence of isolates with reduced codingspecific sequencegenes that of couldthe C. bealbicans potential genome targets was forrich antifungal in short sensitivityalso experienced to amphotericin an increase Bin andthe percentagecross-resistance of fluconazole- to other tandem repeats (STRs). It was also possible to identify and C. krusei has been shown to conduct detailed analyses of multi genic families found in C. be an occasional hospital pathogen, particularly in patients albicans, many of which were related to its pathogenicity
Recommended publications
  • Mycology Proficiency Testing Program
    Mycology Proficiency Testing Program Test Event Critique May 2013 Mycology Laboratory Table of Contents Mycology Laboratory 2 Mycology Proficiency Testing Program 3 Test Specimens & Grading Policy 5 Test Analyte Master Lists 7 Performance Summary 9 Commercial Device Usage Statistics 10 Yeast Descriptions 11 Y-1 Candida kefyr 11 Y-2 Candida tropicalis 14 Y-3 Candida guilliermondii 17 Y-4 Candida krusei 20 Y-5 Candida lusitaniae 23 Antifungal Susceptibility Testing - Yeast 26 Antifungal Susceptibility Testing - Mold (Educational) 28 1 Mycology Laboratory Mycology Laboratory at the Wadsworth Center, New York State Department of Health (NYSDOH) is a reference diagnostic laboratory for the fungal diseases. The laboratory services include testing for the dimorphic pathogenic fungi, unusual molds and yeasts pathogens, antifungal susceptibility testing including tests with research protocols, molecular tests including rapid identification and strain typing, outbreak and pseudo-outbreak investigations, laboratory contamination and accident investigations and related environmental surveys. The Fungal Culture Collection of the Mycology Laboratory is an important resource for high quality cultures used in the proficiency-testing program and for the in-house development and standardization of new diagnostic tests. Mycology Proficiency Testing Program provides technical expertise to NYSDOH Clinical Laboratory Evaluation Program (CLEP). The program is responsible for conducting the Clinical Laboratory Improvement Amendments (CLIA)-compliant Proficiency Testing (Mycology) for clinical laboratories in New York State. All analytes for these test events are prepared and standardized internally. The program also provides continuing educational activities in the form of detailed critiques of test events, workshops and occasional one-on-one training of laboratory professionals. Mycology Laboratory Staff and Contact Details Name Responsibility Phone Email Director Dr.
    [Show full text]
  • Mycological Evaluation of Smoked-Dried Fish Sold at Maiduguri Metropolis, Nigeria: Preliminary Findings and Potential Health Implications
    Original Article / Orijinal Makale doi: 10.5505/eurjhs.2016.69885 Eur J Health Sci 2016;2(1):5-10 Mycological Evaluation of Smoked-Dried Fish Sold at Maiduguri Metropolis, Nigeria: Preliminary Findings and Potential Health Implications Nijerya’da Maiduguri Metropolis’te satılan tütsülenmiş balıkların mikolojik değerlendirilmesi: Ön bulgular ve sağlığa potansiyel etkileri 1 2 3 Fatima Muhammad Sani , Idris Abdullahi Nasir , Gloria Torhile 1Department of Medical Laboratory Science, College of Medical Sciences University of Maiduguri, Borno State, Nigeria 2Department of Medical Microbiology, University of Abuja Teaching Hospital, Gwagwalada, FCT Abuja, Nigeria 3Department of Medical Microbiology, Federal Teaching Hospital Gombe, Gombe, Nigeria ABSTRACT Background: Smoked-dried fish are largely consumed as source of nutrient by man. It has been established that fish food can act as vehicle for transmission of some mycological pathogens especially in immunocompromised individuals. Methods: Between 7th October 2011 and 5th January 2012, a total of 100 different species of smoke-dried fish comprising 20 each of Cat fish (Arius hendeloti), Tilapia (Oreochromis niloticus), Stock fish (Gadus morhua), Mud fish (Neoxhanna galaxiidae) and Bonga fish (Enthalmosa fimbriota) were processed and investigated for possible fungal contamination based on culture isolation using Sabouraud dextrose agar (SDA) and microscopy. Results: Organisms isolated and identified in pure culture were Mucor spp. (36%), Aspergillus niger (35%), Aspergillus fumigatus (6%), Candida tropicalis (3%), Candida stellatoidea (2%), Microsporum audunii (2%), Penicillium spp. (2%), and Trichophyton rubrum (1%) while Mucor spp. and Aspergillus niger (4%); Mucor spp. and Candida tropicalis (3%); Aspergillus fumigatus and Mucor spp. (1%); Aspergillus niger, Candida spp. and Mucor spp. (1%) were isolated in mixed culture.
    [Show full text]
  • Candida Parapsilosis: a Review of Its Epidemiology, Pathogenesis, Clinical Aspects, Typing and Antimicrobial Susceptibility
    Critical Reviews in Microbiology Critical Reviews in Microbiology, 2009; 35(4): 283–309 2009 REVIEW ARTICLE Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility Eveline C. van Asbeck1,2, Karl V. Clemons1, David A. Stevens1 1Division of Infectious Diseases, Santa Clara Valley Medical Center, and California Institute for Medical Research, San Jose, CA 95128 USA and Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, and 2Eijkman-Winkler Institute for Medical and Clinical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands Abstract The Candida parapsilosis family has emerged as a major opportunistic and nosocomial pathogen. It causes multifaceted pathology in immuno-compromised and normal hosts, notably low birth weight neonates. Its emergence may relate to an ability to colonize the skin, proliferate in glucose-containing solutions, and adhere to plastic. When clusters appear, determination of genetic relatedness among strains and identifica- tion of a common source are important. Its virulence appears associated with a capacity to produce biofilm and production of phospholipase and aspartyl protease. Further investigations of the host-pathogen inter- actions are needed. This review summarizes basic science, clinical and experimental information about C. parapsilosis. Keywords: Candida parapsilosis, epidermiology, strain differentiation, clinical aspects, pathogenesis, For personal use only. antifungal susceptibility Introduction The organism was first described in 1928 (Ashford 1928), and early reports of C. parapsilosis described the organ- Candida bloodstream infections (BSI) remain an ism as a relatively non-pathogenic yeast in the normal exceedingly common life-threatening fungal disease flora of healthy individuals that was of minor clinical and are now recognized as a major cause of hospital- significance (Weems 1992).
    [Show full text]
  • Council of State and Territorial Epidemiologists
    Appendix 1 Identification of Candida auris (as of August 20, 2018). This appendix will be updated as new information about C. auris identification becomes available. Some yeast identification methods are unable to differentiate C. auris from other yeast species. C. auris can be misidentified as a number of different organisms when using traditional biochemical methods for yeast identification such as VITEK 2 YST, API 20C, BD Phoenix yeast identification system, and MicroScan. The most common misidentification of C. auris is Candida haemulonii. C. haemulonii have been less commonly observed to cause invasive infections. Therefore, C. auris should be suspected when C. haemulonii is identified on culture of blood or other normally sterile site unless the method used can reliably detect C. auris. Candida isolates from the urine and respiratory tract ultimately confirmed as C. auris have been initially identified as C. haemulonii; less data are available about the ability of C. haemulonii to grow in urine or the respiratory tract, although true C. haemulonii infections in general appear to be rare in the United States. The table below summarizes common misidentifications based on the yeast identification method used. If any of the species listed below are identified using the specified identification method, or if species identity cannot be determined by any method, further characterization using appropriate methodology should be sought. Common misidentifications for C. auris by yeast identification method Identification Method Organism C. auris can be misidentified as No misidentifications of Candida auris. Bruker Bruker MALDI Biotyper (FDA database) MALDI-TOF is able to accurately identify C. auris bioMérieux VITEK MS (IVD/RUO database) Candida haemulonii Candida haemulonii VITEK 2 YST (Ver.
    [Show full text]
  • Pdf 839.18 K
    Current Medical Mycology 2019, 5(4): 26-34 Species distribution and susceptibility profiles of Candida species isolated from vulvovaginal candidiasis, emergence of C. lusitaniae Seyed Ebrahim Hashemi1, Tahereh Shokohi2, 3*, Mahdi Abastabar2, 3, Narges Aslani4, Mahbobeh Ghadamzadeh5, Iman Haghani3 1 Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran 2 Invasive Fungi Research Centre (IFRC), Mazandaran University of Medical Sciences, Sari, Iran 3 Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran 4 Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran 5 Gynecology and Obstetrics Department of Hazrat-e- Zainab Hospital, Babolsar, Iran Article Info A B S T R A C T Article type: Background and Purpose: The aim of the current study was to investigate the Original article epidemiology of vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC), as well as the antifungal susceptibility patterns of Candida species isolates. Materials and Methods: A cross-sectional study was carried out on 260 women suspected of VVC from February 2017 to January 2018. In order to identify Candida Article History: species isolated from the genital tracts, the isolates were subjected to polymerase chain Received: 02 August 2019 reaction restriction fragment length polymorphism (PCR-RFLP) using enzymes Msp I Revised: 20 October 2019 and sequencing. Moreover, antifungal susceptibility testing was performed according to Accepted: 10 November 2019 the Clinical and Laboratory Standards Institute guidelines (M27-A3). Results: Out of 250 subjects, 75 (28.8%) patients were affected by VVC, out of whom 15 (20%) cases had RVVC. Among the Candida species, C.
    [Show full text]
  • The Numerical Taxonomy of Pathogenic Species of Candida
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1985 The numerical taxonomy of pathogenic species of candida William James Crozier University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Crozier, William James, The numerical taxonomy of pathogenic species of candida, Master of Science thesis, Department of Biology, University of Wollongong, 1985. https://ro.uow.edu.au/theses/2618 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • Of Candida Dubliniensis, Ireland* Isolate Source Year of Isolation Location DST† Mating Type TAG Reference SL411 Ixodes Uriae Ticks 2007 GSI 27 Aa + (5) SL422 I
    cans isolates from humans and animals (3,4). The purpose Genetic Differences of our study was to use MLST, the presence or absence of a previously identified polymorphism in the CDR1 gene (8), between Avian and and mating type analysis to determine genetic relatedness between avian-associated and human C. dubliniensis iso- Human Isolates lates and whether avian-associated isolates are a source of of Candida human opportunistic infections. dubliniensis The Study To obtain avian-associated C. dubliniensis isolates Brenda A. McManus, Derek J. Sullivan, from a novel geographic site, fresh seabird excrement Gary P. Moran, Christophe d’Enfert, was sampled from the campus of Trinity College Dublin, Marie-Elisabeth Bougnoux, Miles A. Nunn, ≈150 km north of Great Saltee Island by using nitrogen- and David C. Coleman gassed VI-PAK sterile swabs (Sarstedt-Drinagh, Wexford, Ireland). Samples were plated within 2 h of collection When Candida dubliniensis isolates obtained from on CHROMagar Candida medium (CHROMagar, Paris, seabird excrement and from humans in Ireland were com- France), incubated at 30°C for 48 h, and identified as de- pared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The scribed (7,9–12). Three new C. dubliniensis isolates were remaining avian isolate was indistinguishable from a human obtained from 134 fecal samples. Like isolates from Great isolate, suggesting that transmission may occur between Saltee Island (5), these 3 isolates obtained directly from humans and birds. freshly deposited herring gull (Larus argentatus) excre- ment were ITS genotype 1 (13). Because the isolates origi- nally described by Nunn et al.
    [Show full text]
  • Candida Parapsilosis Complex Francesco Barchiesi1* , Elena Orsetti1, Patrizia Osimani3, Carlo Catassi2, Fabio Santelli4 and Esther Manso5
    Barchiesi et al. BMC Infectious Diseases (2016) 16:387 DOI 10.1186/s12879-016-1704-y RESEARCH ARTICLE Open Access Factors related to outcome of bloodstream infections due to Candida parapsilosis complex Francesco Barchiesi1* , Elena Orsetti1, Patrizia Osimani3, Carlo Catassi2, Fabio Santelli4 and Esther Manso5 Abstract Background: Although Candida albicans is the most common cause of fungal blood stream infections (BSIs), infections due to Candida species other than C. albicans are rising. Candida parapsilosis complex has emerged as an important fungal pathogen and became one of the main causes of fungemia in specific geographical areas. We analyzed the factors related to outcome of candidemia due to C. parapsilosis in a single tertiary referral hospital over a five-year period. Methods: A retrospective observational study of all cases of candidemia was carried out at a 980-bedded University Hospital in Italy. Data regarding demographic characteristics and clinical risk factors were collected from the patient’s medical records. Antifungal susceptibility testing was performed and MIC results were interpreted according to CLSI species-specific clinical breakpoints. Results: Of 270 patients diagnosed with Candida BSIs during the study period, 63 (23 %) were infected with isolates of C. parapsilosis complex which represented the second most frequently isolated yeast after C. albicans. The overall incidence rate was 0.4 episodes/1000 hospital admissions. All the strains were in vitro susceptible to all antifungal agents. The overall crude mortality at 30 days was 27 % (17/63), which was significantly lower than that reported for C. albicans BSIs (42 % [61/146], p = 0.042). Being hospitalized in ICU resulted independently associated with a significant higher risk of mortality (HR 4.625 [CI95% 1.015–21.080], p = 0.048).
    [Show full text]
  • Identification of Culture-Negative Fungi in Blood and Respiratory Samples
    IDENTIFICATION OF CULTURE-NEGATIVE FUNGI IN BLOOD AND RESPIRATORY SAMPLES Farida P. Sidiq A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2014 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative George Bullerjahn Raymond Larsen Vipaporn Phuntumart © 2014 Farida P. Sidiq All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Fungi were identified as early as the 1800’s as potential human pathogens, and have since been shown as being capable of causing disease in both immunocompetent and immunocompromised people. Clinical diagnosis of fungal infections has largely relied upon traditional microbiological culture techniques and examination of positive cultures and histopathological specimens utilizing microscopy. The first has been shown to be highly insensitive and prone to result in frequent false negatives. This is complicated by atypical phenotypes and organisms that are morphologically indistinguishable in tissues. Delays in diagnosis of fungal infections and inaccurate identification of infectious organisms contribute to increased morbidity and mortality in immunocompromised patients who exhibit increased vulnerability to opportunistic infection by normally nonpathogenic fungi. In this study we have retrospectively examined one-hundred culture negative whole blood samples and one-hundred culture negative respiratory samples obtained from the clinical microbiology lab at the University of Michigan Hospital in Ann Arbor, MI. Samples were obtained from randomized, heterogeneous patient populations collected between 2005 and 2006. Specimens were tested utilizing cetyltrimethylammonium bromide (CTAB) DNA extraction and polymerase chain reaction amplification of internal transcribed spacer (ITS) regions of ribosomal DNA utilizing panfungal ITS primers.
    [Show full text]
  • Candida Species
    Introduction Introduction ulvovaginal candidiasis (VVC) is a disease caused by V the abnormal growth of yeast-like fungi on the mucosa of the female genital tract (Souza et al., 2009). Although Candida species occur as normal vaginal flora, opportunistic conditions such as diabetes, pregnancy and other immune depressants in the host enable them to proliferate and cause infection (Pam et al., 2012). There are approximately 200 Candida species, among which are Candida albicans, glabrata, tropicalis, stellatoidea, parapsilosis, catemilata, ciferri, guilliermondii, haemulonii, kefyr and krusei. Candida albicans is the most common species (Pam et al., 2012). The most frequent cause of VVC is Candida albicans. Non-Candida albicans species of Candida, predominantly Candida glabrata, are responsible for the remainder of cases (Ge et al., 2010). It is estimated that 75% of women experience at least one episode of vulvovaginal candidiasis throughout their life and 40-50% of them have at least one recurrence (González et al., 2011). Most patients with symptomatic VVC may be readily diagnosed on the basis of microscopic examination of vaginal 1 Introduction secretions. Culture is a more sensitive method of diagnosis than vaginal smears, especially in a suspected patient with a negative result for microscopy (Khosravi et al., 2011). Antifungal agents that are used for treatment of VVC include imidazole antifungals (e.g., butoconazole, clotrimazole, and miconazole), triazole antifungals (eg, fluconazole, terconazole), and polyene antifungals (e.g., nystatin) (Abdelmonem et al., 2012). The azoles, particularly fluconazole, remain among the most common antifungal drugs used for prophylaxis and treatment (Pietrella et al., 2011). It is recommended in various guidelines as the first drug of choice because it is less toxic and can be taken as a single oral dose (Pam et al., 2012).
    [Show full text]
  • Nails: Tales, Fails and What Prevails in Treating Onychomycosis
    J. Hibler, D.O. OhioHealth - O’Bleness Memorial Hospital, Athens, Ohio AOCD Annual Conference Orlando, Florida 10.18.15 A) Onychodystrophy B) Onychogryphosis C)“Question Onychomycosis dogma” – Michael Conroy, MD D) All the above E) None of the above Nail development begins at 8-10 weeks EGA Complete by 5th month Keratinization ~11 weeks No granular layer Nail plate growth: Fingernails 3 mm/month, toenails 1 mm/month Faster in summer or winter? Summer! Index finger or 5th digit nail grows faster? Index finger! Faster growth to middle or lateral edge of each nail? Lateral! Elkonyxis Mee’s lines Aka leukonychia striata Arsenic poisoning Trauma Medications Illness Psoriasis flare Muerhrcke’s bands Hypoalbuminemia Chemotherapy Half & half nails Aka Lindsay’s nails Chronic renal disease Terry’s nails Liver failure, Cirrhosis Malnutrition Diabetes Cardiovascular disease True or False: Onychomycosis = Tinea Unguium? FALSE. Onychomycosis: A fungal disease of the nails (all causes) Dermatophytes, yeasts, molds Tinea unguium: A fungal disease of nail caused by dermatophyte fungi Onychodystrophy ≠ onychomycosis Accounts for up to 50% of all nail disorders Prevalence; 14-28% of > 60 year-olds Variety of subtypes; know them! Sequelae What is the most common cause of onychomycosis? A) Epidermophyton floccosum B) Microsporum spp C) Trichophyton mentagrophytes D) Trichophyton rubrum -Account for ~90% of infections Dermatophytes Trichophyton rubrum Trichophyton mentagrophytes Trichophyton tonsurans, Microsporum canis, Epidermophyton floccosum Nondermatophyte molds Acremonium spp, Fusarium spp Scopulariopsis spp, Sytalidium spp, Aspergillus spp Yeast Candida parapsilosis Candida albicans Candida spp Distal/lateral subungal Proximal subungual onychomycosis onychomycosis (DLSO) (PSO) Most common; T. rubrum Often in immunosuppressed patients T.
    [Show full text]
  • Insights Into Candida Tropicalis Nosocomial Infections and Virulence Factors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Eur J Clin Microbiol Infect Dis (2012) 31:1399–1412 DOI 10.1007/s10096-011-1455-z ARTICLE Insights into Candida tropicalis nosocomial infections and virulence factors M. Negri & S. Silva & M. Henriques & R. Oliveira Received: 14 September 2011 /Accepted: 8 October 2011 /Published online: 30 October 2011 # Springer-Verlag 2011 Abstract Candida tropicalis is considered the first or the problem, since these infections are among the leading second non-Candida albicans Candida (NCAC) species causes of morbidity and mortality, causing an increase most frequently isolated from candidosis, mainly in patients in hospitalization time and, consequently, high costs admitted in intensive care units (ICUs), especially with associated to patient’s treatment [1, 2]. NIs have been cancer, requiring prolonged catheterization, or receiving particularly prominent in intensive care units (ICUs), broad-spectrum antibiotics. The proportion of candiduria where the incidence is two to five times higher than in and candidemia caused by C. tropicalis varies widely with the general population of hospitalized patients [3, 4]. The geographical area and patient group. Actually, in certain causes for the increased risk of NIs in ICUs have been countries, C. tropicalis is more prevalent, even compared associated with increased length of stay in ICU, invasive with C. albicans or other NCAC species. Although procedures, patients with compromised immune systems, prophylactic treatments with fluconazole cause a decrease and multiple exposure to antibiotics [5–7]. Beyond the in the frequency of candidosis caused by C.
    [Show full text]