The Numerical Taxonomy of Pathogenic Species of Candida

Total Page:16

File Type:pdf, Size:1020Kb

The Numerical Taxonomy of Pathogenic Species of Candida University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1985 The numerical taxonomy of pathogenic species of candida William James Crozier University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Crozier, William James, The numerical taxonomy of pathogenic species of candida, Master of Science thesis, Department of Biology, University of Wollongong, 1985. https://ro.uow.edu.au/theses/2618 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] THE NUMERICAL TAXONOMY OP PATHOGENIC SPECIES OP CANDIDA. A thesis submitted in partial fulfilment of the requirements of the degree of MASTER OF SCIENCE from THE UNIVERSITY OF WOLLONGONG by WILLIAM JAMES CROZIER B.Appl.Sc. (Hons) UNIVERSITY OF WOLLONGONG ARY BIOLOGY DEPARTMENT JUNE, 1985 898725 DECLARATION The work presented in this thesis, in fulfilment of conditions governing the award of the degree of Master of Science, was carried out by me between September 1978 and February 1982 externally at the Mycology Laboratory of the Wollongong Hospital through the Biology Department, University of Wollongong, Wollongong, Australia and has not been submitted to any other university or institution for a higher degree* William James Crozier, J*P June, 1985 - i - SUMMARY. One hundred and eighty-one isolates of Candida comprising C. albicans ( 58.6 % ), C. parapsilosis ( 25.2 % ), C. tropicalis ( 10.5 % )* C. krusei ( 4*4 % )* C. guilliermondii ( 2.2 % ), C. pseudotropicalis ( 0.6 % ) and C. ravauttii ( 0.6 f» ), were examined for 26 physiological characteristics. The characters obtained were subjected to 5 different clustering analyses ( MULTBET, MULCLAS using " incremental sum of squares " fusion strategy and MULCLAS using " group average " fusion strategy ). There appears to be little difference between the groupings obtained using a set of Candida species freshly isolated from clinical specimens and those obtained for the same yeast species maintained for many years on artificial media and under different conditions in a culture collection. Fewer characters were used in this study than are conventionally used in taxonomic studies of yeasts. The reasons were that it was intended to use rapid methods which were currently carried out in routine clinical microbiology laborat­ ories, or which could easily and cheaply adapt to the routine laboratory situation. Although the set of characters used in this study were fewer in number than those used in other taxonomic studies, the groupings obtained were comparable. In fact, this study suggests that, as a limited number of Candida species is encountered in the clinical situation, far fewer characters than were tested here may be used for satisfactory grouping. - ii - Finally, evidence was obtained to suggest that there was no statistically significant difference between the various species of Candida tested in the presence of Amphotericin B and 5 - Fluorocytosine. This study suggests that differences in antifungal tolerance by various species of pathogenic Candida may not constitute characters which are suitable for taxonomic applications. - iii - ACKNOWLEDGEMENTS. I would like to express my appreciation to my supervisor» Professor A#D# Brown» for his encouragement» guidance and helpful discussion throughout this project# Initially» Dr# Robert Cortis-Jones (as Director of Pathology) and then, Dr# Prank Jennis (as Director of Microbiology), at The Wollongong Hospital, kindly allowed me the time and facilities to carry out this study within the Mycology Laboratory. The assistance of the following people is also gratefully acknowledged : Dr# W.T. Williams, Australian Institute of Marine Science, for running the clustering analyses; Dr# V. Drastik, Mathematics Department, University of Wollongong, for running the analyses of variance; Dr. Peter Moran, initially Biology Department, University of Wollongong and then, Australian Institute of Marine Science, for helpful advice on numerical taxonomy methods; Dr# Prank Jennis, Director of Microbiology, The Wollongong Hospital, for running the correlation coefficient programmes and for helpful discussion; Dr. Rob Whelan, Biology Department, and Dr. John Reichelt, Roche Research Institute of Marine Pharma­ cology, for advice and discussion; Miss E. Meyer, Biology Dep­ artment, University of Wollongong, for the photographs used in figures 23* 24 and 25. Finally, I wish to sincerely thank my wife, Sylvia, without whose encouragement and understanding this study would not have been completed. iv - TABLE OF CONTENTS. Page. SUMMARY i ACKNOWLEDGEMENTS iii TABLE OP CONTENTS iv LIST OP TABLES vii LIST OP FIGURES viii INTRODUCTION 1. 1.1 The Classification of Fungi 1. 1.2 Brief History of Classification of Fungi 1. 1.3 The Classification of Yeasts 3» 1.4 Criteria used in Classification of Yeasts 8. 1.5 Criteria used in Classification of Genus : Candida 10. 1.6 History of Medical Mycology 12. 1.7 History of Yeasts within Medical Mycology 13* 1.8 History of Genus : Candida within Medical Mycology 20. 1.9 Basis for Ascribing * Pathogenicity 1 to 22. Certain Candida Species 1.10 * Candida ' versus 1 Torulopsis * 26. 1.11 Numerical Taxonomy of Yeasts 27. 1.12 Numerical Taxonomy Studies of Pathogenic 28. Candida Species MATERIALS AND METHODS 30. 2.1 Yeasts 30. 2.2 Characters used for Numerical Taxonomy 30. 2.3 Additional Tests 31« - v - TABLE OF CONTENTS ( continued )... Page 2.4 Media used for testing Characters 55. 2.5 Effect of Different Antifungal Substances on 55. Pathogenic Candida Species 2.6 Medium used for testing Antifungal Effects 56. 2.7 Cultures 57. 2.8 Yeast Growth in the Presence of Antifungals 58. 2.9 Purity 58. 2.10 Rate of Growth of Yeast Strains 59. 2 .11 Analysis of Exponential Growth Rates for each 59. Yeast to check for Possible Potential Species Characteristics 2.12 Taxonomy / Numerical Analysis 40. 2.15 Fusion Strategies 41. 2.14 Similarity Coefficients 42. RESULTS 44. 5.1 Numerical Taxonomy 44. 5.2 Effect of Amphotericin B and 5 - Fluorocytosine 57. (5 - FC) on Growth Rates of C. albicans, C. tropicalis and C. parapsilosis (i) Plots of log Absorbance (A) v s . Time 57. (ii) Growth Rates 60. (iii) Correlation Coefficients 61. (iv) Statistical Analysis 62. DISCUSSION OP RESULTS 64. 4.1 Numerical Taxonomy 64. 4.2 Substrate Choice as a Basis for Differentiation 68. of Pathogenic Candida Species - vi - TABLE OF CONTENTS ( continued )... Page. 4»3 Growth Plots 7 1 . CONCLUSIONS 76. APPENDIX 1 : GLOSSARY 78. APPENDIX 2 s Binary Data Accumulated from the Set 80. of 181 Strains of Yeasts Tested for 26 Characters APPENDIX 3 : Figures 1, 2, 3» 4* 5$ 6, 7» 8» 9$ 10, 94. 1 1 , 12 , 13, 22, 23, 24, 25, 26, 27 BIBLIOGRAPHY 112. ADDENDUM 130. - vii - LIST OF TABLES. Page# TABLE 1# Earliest known reports of the principal 15* types of Candidosis TABLE 2. Industrially-important Saccharomyces 19. species - Earliest accredited description * TABLE 3* First Taxonomic Description of "Pathogenic” 21. Candida species TABLE 4. Binary Data Accumulated from the Set of 80. 181 Strains of Yeasts tested for 26 Characters TABLE 5* Composition of Groups Generated by 49* Classification A TABLE 6. Composition of Groups Generated by 52. Classification B TABLE 7* Composition of Groups Generated by 55* Classification C TABLE 8. Exponential Growth Rate of Yeast Strains 60. in the Presence of Amphotericin B TABLE 9* Exponential Growth Rate of Yeast Strains 60. in the Presence of 5-Fluorocytosine TABLE 10. Correlation Coefficients for Plots of log ^ Absorbance (A) vs. Time; (Amphotericin B) TABLE 11. Correlation Coefficients for Plots of log 62. Absorbance (A) vs. Time; (5-Fluorocytosine) - viii LIST OF FIGURES. Page FIGURE 1. Candida tropicalis 94. FIGURE 2. Candida parapsilosis 95. FIGURE 3. Candida guilliermondii 96. FIGURE 4. Candida albicans 97. FIGURE 5. Torulopsis glabrata ( Candida glabrata) 98. FIGURE 6. Torulopsis famata ( Candida famata ) 99. FIGURE 7. Candidiasis; kidney abscess; caused by 100. C. albicans FIGURE 8. Candidiasis; peptic ulcer; caused by 101. C. albicans FIGURE 9. Onychomycosis; thumb nail; caused by 102. C. albicans FIGURE 10. Onychomycosis; finger nail; caused by 103. T. Candida ( C. famata) FIGURE 11. Onychomycosis; toe nail; caused by 104. C. ravauttii FIGURE 12. Vaginal Candidiasis; caused by 105. C. albicans FIGURE 13. Germ-Tubes of C. albicans 106. FIGURE 14. Dendogram of Classification A. (i) 45. FIGURE 15. Dendogram of Classification B. (i) 46. FIGURE 16. Dendogram of Classification C. (i) 47. FIGURE 17. Dendogram of Classification A. (ii) 50. FIGURE 18. Dendogram of Classification B. (ii) 53. FIGURE 19. Dendogram of Classification C. (ii) 56. - ix - LIST OF FIGURES ( continued)• • • Page. FIGURE 20 Plot of log Absorbance (A) vs. Time 58. C. albicans grown in varying Concentrations of 5 - FC FIGURE 21 Plot of log Absorbance (A) vs.
Recommended publications
  • Variable Absorption of Mutational Trends by Prion-Forming Domains During Saccharomycetes Evolution
    Variable absorption of mutational trends by prion-forming domains during Saccharomycetes evolution Paul M. Harrison Department of Biology, McGill University, Monteal, Quebec, Canada ABSTRACT Prions are self-propagating alternative states of protein domains. They are linked to both diseases and functional protein roles in eukaryotes. Prion-forming domains in Saccharomyces cerevisiae are typically domains with high intrinsic protein disorder (i.e., that remain unfolded in the cell during at least some part of their functioning), that are converted to self-replicating amyloid forms. S. cerevisiae is a member of the fungal class Saccharomycetes, during the evolution of which a large population of prion-like domains has appeared. It is still unclear what principles might govern the molecular evolution of prion-forming domains, and intrinsically disordered domains generally. Here, it is discovered that in a set of such prion-forming domains some evolve in the fungal class Saccharomycetes in such a way as to absorb general mutation biases across millions of years, whereas others do not, indicating a spectrum of selection pressures on composition and sequence. Thus, if the bias-absorbing prion formers are conserving a prion-forming capability, then this capability is not interfered with by the absorption of bias changes over the duration of evolutionary epochs. Evidence is discovered for selective constraint against the occurrence of lysine residues (which likely disrupt prion formation) in S. cerevisiae prion-forming domains as they evolve across Saccharomycetes. These results provide a case study of the absorption of mutational trends by compositionally biased domains, and suggest methodology for assessing selection pressures on the composition of intrinsically disordered regions.
    [Show full text]
  • Whole Genome Sequencing and Comparative Genomic Analysis Of
    Li et al. BMC Genomics (2020) 21:181 https://doi.org/10.1186/s12864-020-6593-1 RESEARCH ARTICLE Open Access Whole genome sequencing and comparative genomic analysis of oleaginous red yeast Sporobolomyces pararoseus NGR identifies candidate genes for biotechnological potential and ballistospores-shooting Chun-Ji Li1,2, Die Zhao3, Bing-Xue Li1* , Ning Zhang4, Jian-Yu Yan1 and Hong-Tao Zou1 Abstract Background: Sporobolomyces pararoseus is regarded as an oleaginous red yeast, which synthesizes numerous valuable compounds with wide industrial usages. This species hold biotechnological interests in biodiesel, food and cosmetics industries. Moreover, the ballistospores-shooting promotes the colonizing of S. pararoseus in most terrestrial and marine ecosystems. However, very little is known about the basic genomic features of S. pararoseus. To assess the biotechnological potential and ballistospores-shooting mechanism of S. pararoseus on genome-scale, the whole genome sequencing was performed by next-generation sequencing technology. Results: Here, we used Illumina Hiseq platform to firstly assemble S. pararoseus genome into 20.9 Mb containing 54 scaffolds and 5963 predicted genes with a N50 length of 2,038,020 bp and GC content of 47.59%. Genome completeness (BUSCO alignment: 95.4%) and RNA-seq analysis (expressed genes: 98.68%) indicated the high-quality features of the current genome. Through the annotation information of the genome, we screened many key genes involved in carotenoids, lipids, carbohydrate metabolism and signal transduction pathways. A phylogenetic assessment suggested that the evolutionary trajectory of the order Sporidiobolales species was evolved from genus Sporobolomyces to Rhodotorula through the mediator Rhodosporidiobolus. Compared to the lacking ballistospores Rhodotorula toruloides and Saccharomyces cerevisiae, we found genes enriched for spore germination and sugar metabolism.
    [Show full text]
  • Mycology Proficiency Testing Program
    Mycology Proficiency Testing Program Test Event Critique May 2013 Mycology Laboratory Table of Contents Mycology Laboratory 2 Mycology Proficiency Testing Program 3 Test Specimens & Grading Policy 5 Test Analyte Master Lists 7 Performance Summary 9 Commercial Device Usage Statistics 10 Yeast Descriptions 11 Y-1 Candida kefyr 11 Y-2 Candida tropicalis 14 Y-3 Candida guilliermondii 17 Y-4 Candida krusei 20 Y-5 Candida lusitaniae 23 Antifungal Susceptibility Testing - Yeast 26 Antifungal Susceptibility Testing - Mold (Educational) 28 1 Mycology Laboratory Mycology Laboratory at the Wadsworth Center, New York State Department of Health (NYSDOH) is a reference diagnostic laboratory for the fungal diseases. The laboratory services include testing for the dimorphic pathogenic fungi, unusual molds and yeasts pathogens, antifungal susceptibility testing including tests with research protocols, molecular tests including rapid identification and strain typing, outbreak and pseudo-outbreak investigations, laboratory contamination and accident investigations and related environmental surveys. The Fungal Culture Collection of the Mycology Laboratory is an important resource for high quality cultures used in the proficiency-testing program and for the in-house development and standardization of new diagnostic tests. Mycology Proficiency Testing Program provides technical expertise to NYSDOH Clinical Laboratory Evaluation Program (CLEP). The program is responsible for conducting the Clinical Laboratory Improvement Amendments (CLIA)-compliant Proficiency Testing (Mycology) for clinical laboratories in New York State. All analytes for these test events are prepared and standardized internally. The program also provides continuing educational activities in the form of detailed critiques of test events, workshops and occasional one-on-one training of laboratory professionals. Mycology Laboratory Staff and Contact Details Name Responsibility Phone Email Director Dr.
    [Show full text]
  • Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs.
    [Show full text]
  • Mycological Evaluation of Smoked-Dried Fish Sold at Maiduguri Metropolis, Nigeria: Preliminary Findings and Potential Health Implications
    Original Article / Orijinal Makale doi: 10.5505/eurjhs.2016.69885 Eur J Health Sci 2016;2(1):5-10 Mycological Evaluation of Smoked-Dried Fish Sold at Maiduguri Metropolis, Nigeria: Preliminary Findings and Potential Health Implications Nijerya’da Maiduguri Metropolis’te satılan tütsülenmiş balıkların mikolojik değerlendirilmesi: Ön bulgular ve sağlığa potansiyel etkileri 1 2 3 Fatima Muhammad Sani , Idris Abdullahi Nasir , Gloria Torhile 1Department of Medical Laboratory Science, College of Medical Sciences University of Maiduguri, Borno State, Nigeria 2Department of Medical Microbiology, University of Abuja Teaching Hospital, Gwagwalada, FCT Abuja, Nigeria 3Department of Medical Microbiology, Federal Teaching Hospital Gombe, Gombe, Nigeria ABSTRACT Background: Smoked-dried fish are largely consumed as source of nutrient by man. It has been established that fish food can act as vehicle for transmission of some mycological pathogens especially in immunocompromised individuals. Methods: Between 7th October 2011 and 5th January 2012, a total of 100 different species of smoke-dried fish comprising 20 each of Cat fish (Arius hendeloti), Tilapia (Oreochromis niloticus), Stock fish (Gadus morhua), Mud fish (Neoxhanna galaxiidae) and Bonga fish (Enthalmosa fimbriota) were processed and investigated for possible fungal contamination based on culture isolation using Sabouraud dextrose agar (SDA) and microscopy. Results: Organisms isolated and identified in pure culture were Mucor spp. (36%), Aspergillus niger (35%), Aspergillus fumigatus (6%), Candida tropicalis (3%), Candida stellatoidea (2%), Microsporum audunii (2%), Penicillium spp. (2%), and Trichophyton rubrum (1%) while Mucor spp. and Aspergillus niger (4%); Mucor spp. and Candida tropicalis (3%); Aspergillus fumigatus and Mucor spp. (1%); Aspergillus niger, Candida spp. and Mucor spp. (1%) were isolated in mixed culture.
    [Show full text]
  • Saccharomyces Eubayanus, the Missing Link to Lager Beer Yeasts
    MICROBE PROFILE Sampaio, Microbiology 2018;164:1069–1071 DOI 10.1099/mic.0.000677 Microbe Profile: Saccharomyces eubayanus, the missing link to lager beer yeasts Jose Paulo Sampaio* Graphical abstract Ecology and phylogeny of Saccharomyces eubayanus. (a) The ecological niche of S. eubayanus in the Southern Hemisphere – Nothofagus spp. (southern beech) and sugar-rich fructifications (stromata) of its fungal biotrophic parasite Cyttaria spp., that can attain the size of golf balls. (b) Schematic representation of the phylogenetic position of S. eubayanus within the genus Saccharomyces based on whole-genome sequences. Occurrence in natural environments (wild) or participation in different human-driven fermentations is highlighted, together with the thermotolerant or cold-tolerant nature of each species and the origins of S. pastorianus, the lager beer hybrid. Abstract Saccharomyces eubayanus was described less than 10 years ago and its discovery settled the long-lasting debate on the origins of the cold-tolerant yeast responsible for lager beer fermentation. The largest share of the genetic diversity of S. eubayanus is located in South America, and strains of this species have not yet been found in Europe. One or more hybridization events between S. eubayanus and S. cerevisiae ale beer strains gave rise to S. pastorianus, the allopolyploid yeasts responsible for lager beer production worldwide. The identification of the missing progenitor of lager yeast opened new avenues for brewing yeast research. It allowed not only the selective breeding of new lager strains, but revealed also a wild yeast with interesting brewing abilities so that a beer solely fermented by S. eubayanus is currently on the market.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Adhesins of Yeasts: Protein Structure and Interactions
    Journal of Fungi Review Adhesins of Yeasts: Protein Structure and Interactions Ronnie G. Willaert 1,2 1 Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), IJRG VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; [email protected] or [email protected]; Tel.: +32-26291846 2 Department Bioscience Engineering, University Antwerp, 2020 Antwerp, Belgium Received: 19 September 2018; Accepted: 24 October 2018; Published: 27 October 2018 Abstract: The ability of yeast cells to adhere to other cells or substrates is crucial for many yeasts. The budding yeast Saccharomyces cerevisiae can switch from a unicellular lifestyle to a multicellular one. A crucial step in multicellular lifestyle adaptation is self-recognition, self-interaction, and adhesion to abiotic surfaces. Infectious yeast diseases such as candidiasis are initiated by the adhesion of the yeast cells to host cells. Adhesion is accomplished by adhesin proteins that are attached to the cell wall and stick out to interact with other cells or substrates. Protein structures give detailed insights into the molecular mechanism of adhesin-ligand interaction. Currently, only the structures of a very limited number of N-terminal adhesion domains of adhesins have been solved. Therefore, this review focuses on these adhesin protein families. The protein architectures, protein structures, and ligand interactions of the flocculation protein family of S. cerevisiae; the epithelial adhesion family of C. glabrata; and the agglutinin-like sequence protein family of C. albicans are reviewed and discussed. Keywords: yeast adhesions; Saccharomyces cerevisiae; Candida albicans; Candida glabrata; the flocculation protein family; the epithelial adhesion family; the agglutinin-like sequence protein family; Flo proteins; Als proteins; Epa proteins 1.
    [Show full text]
  • Candida Albicans from Wikipedia, the Free Encyclopedia
    Candida albicans From Wikipedia, the free encyclopedia Candida albicans is a type of yeast that is a common member of the human gut flora. It does not proliferate outside the human body.[4] It is Candida albicans detected in the gastrointestinal tract and mouth in 40-60% of healthy adults.[5][6] It is usually a commensal organism, but can become pathogenic in immunocompromised individuals under a variety of conditions.[6][7] It is one of the few species of the Candida genus that causes the human infection candidiasis, which results from an overgrowth of the fungus.[6][7] Candidiasis is for example often observed in HIV-infected patients.[8] C. albicans is the most common fungal species isolated from biofilms either formed on (permanent) implanted medical devices or on human Candida albicans visualised using [9][10] tissue. C. albicans, together with C. tropicalis, C. parapsilosis scanning electron microscopy. Note the and C. glabrata, is responsible for 50–90% of all cases of candidiasis in abundant hypal mass. humans.[7][11][12] A mortality rate of 40% has been reported for patients with systemic candidiasis due to C. albicans.[13] Estimates Scientific classification range from 2800 to 11200 deaths caused annually in the USA due to C. Kingdom: Fungi albicans causes candidiasis.[14] Division: Ascomycota C. albicans is commonly used as a model organism for biology. It is generally referred to as a dimorphic fungus since it grows both as yeast Class: Saccharomycetes and filamentous cells. However it has several different morphological Order: Saccharomycetales phenotypes. C. albicans was for a long time considered an obligate diploid organism without a haploid stage.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • A Survey of Ballistosporic Phylloplane Yeasts in Baton Rouge, Louisiana
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 A survey of ballistosporic phylloplane yeasts in Baton Rouge, Louisiana Sebastian Albu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Plant Sciences Commons Recommended Citation Albu, Sebastian, "A survey of ballistosporic phylloplane yeasts in Baton Rouge, Louisiana" (2012). LSU Master's Theses. 3017. https://digitalcommons.lsu.edu/gradschool_theses/3017 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. A SURVEY OF BALLISTOSPORIC PHYLLOPLANE YEASTS IN BATON ROUGE, LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana Sate University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Plant Pathology by Sebastian Albu B.A., University of Pittsburgh, 2001 B.S., Metropolitan University of Denver, 2005 December 2012 Acknowledgments It would not have been possible to write this thesis without the guidance and support of many people. I would like to thank my major professor Dr. M. Catherine Aime for her incredible generosity and for imparting to me some of her vast knowledge and expertise of mycology and phylogenetics. Her unflagging dedication to the field has been an inspiration and continues to motivate me to do my best work.
    [Show full text]
  • Insights Into Candida Tropicalis Nosocomial Infections and Virulence Factors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Eur J Clin Microbiol Infect Dis (2012) 31:1399–1412 DOI 10.1007/s10096-011-1455-z ARTICLE Insights into Candida tropicalis nosocomial infections and virulence factors M. Negri & S. Silva & M. Henriques & R. Oliveira Received: 14 September 2011 /Accepted: 8 October 2011 /Published online: 30 October 2011 # Springer-Verlag 2011 Abstract Candida tropicalis is considered the first or the problem, since these infections are among the leading second non-Candida albicans Candida (NCAC) species causes of morbidity and mortality, causing an increase most frequently isolated from candidosis, mainly in patients in hospitalization time and, consequently, high costs admitted in intensive care units (ICUs), especially with associated to patient’s treatment [1, 2]. NIs have been cancer, requiring prolonged catheterization, or receiving particularly prominent in intensive care units (ICUs), broad-spectrum antibiotics. The proportion of candiduria where the incidence is two to five times higher than in and candidemia caused by C. tropicalis varies widely with the general population of hospitalized patients [3, 4]. The geographical area and patient group. Actually, in certain causes for the increased risk of NIs in ICUs have been countries, C. tropicalis is more prevalent, even compared associated with increased length of stay in ICU, invasive with C. albicans or other NCAC species. Although procedures, patients with compromised immune systems, prophylactic treatments with fluconazole cause a decrease and multiple exposure to antibiotics [5–7]. Beyond the in the frequency of candidosis caused by C.
    [Show full text]