sensors Review A Survey of Teleceptive Sensing for Wearable Assistive Robotic Devices Nili E. Krausz 1,2,* and Levi J. Hargrove 1,2,3 1 Neural Engineering for Prosthetics and Orthotics Lab, Center of Bionic Medicine, Shirley Ryan AbilityLab (Formerly Rehabilitation Institute of Chicago), Chicago, IL 60611, USA;
[email protected] 2 Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA 3 Physical Medicine and Rehabilitation Department, Northwestern University, Evanston, IL 60208, USA * Correspondence:
[email protected]; Tel.: +1-312-238-1562 Received: 16 September 2019; Accepted: 21 November 2019; Published: 28 November 2019 Abstract: Teleception is defined as sensing that occurs remotely, with no physical contact with the object being sensed. To emulate innate control systems of the human body, a control system for a semi- or fully autonomous assistive device not only requires feedforward models of desired movement, but also the environmental or contextual awareness that could be provided by teleception. Several recent publications present teleception modalities integrated into control systems and provide preliminary results, for example, for performing hand grasp prediction or endpoint control of an arm assistive device; and gait segmentation, forward prediction of desired locomotion mode, and activity-specific control of a prosthetic leg or exoskeleton. Collectively, several different approaches to incorporating teleception have been used, including sensor fusion, geometric segmentation, and machine learning. In this paper, we summarize the recent and ongoing published work in this promising new area of research. Keywords: assistive robotics; rehabilitation robotics; teleceptive sensing; environment; computer vision; depth sensing; prostheses; exoskeletons 1. Introduction Over the last few decades, the field of physical medicine and rehabilitation has seen a proliferation of wearable robotic devices designed to improve mobility, function, and quality of life for individuals with physical impairments.