South America ­ Accessscience from Mcgraw­Hill Education

Total Page:16

File Type:pdf, Size:1020Kb

South America ­ Accessscience from Mcgraw­Hill Education 7/27/2015 South America ­ AccessScience from McGraw­Hill Education South America Article by: Salazar, Deborah A. Department of Geography, Oklahoma State University, Stillwater, Oklahoma. White, C. Langdon Formerly, Stanford University, Palo Alto, California. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097­8542.638200 (http://dx.doi.org/10.1036/1097­8542.638200) Content Regional characteristics Physiographic features Biotic features Deforestation and environmental contamination Bibliography Additional Readings The southernmost of the New World or Western Hemisphere continents, with three­fourths of it lying within the tropics. South America is approximately 4500 mi (7200 km) long and at its greatest width 3000 mi (4800 km). Its area is estimated to be about 7,000,000 mi2 (18,000,000 km2). South America has many unique physical features, such as the Earth's longest north­south mountain range (the Andes), highest waterfall (Angel Falls), highest navigable freshwater lake (Lake Titicaca), and largest expanse of tropical rainforest (Amazonia). The western side of the continent has a deep subduction trench offshore, whereas the eastern continental shelf is more gently sloping and relatively shallow. See also: Continent (/content/continent/158900) Regional characteristics South America has three distinct regions: the relatively young Andes Mountains located parallel to the western coastline, the older Guiana and Brazilian Highlands located near the eastern margins of the continent, and an extensive lowland plains, which occupies the central portion of the continent. The regions have distinct physiographic and biotic features. The Andes represent the highest and longest north­south mountain system on Earth. Altitudes often exceed 20,000 ft (6000 m) and perpetual snow tops many of the peaks, even along the Equator (Fig. 1). So high are the Andes in the northern half of the continent that few passes lie below 12,000 ft (3600 m). Over most of their length the Andes are not just a single range but two or three parallel ranges. Within the parallel peaks lie a vast series of intermontane basins and plateaus. Ecuador contains a string of 10 such basins. Bolivia has the Altiplano, an extensive basin about 400 mi (640 km) long and up to 200 mi (320 km) wide that is almost entirely surrounded by rugged and lofty peaks. The http://www.accessscience.com/content/south­america/638200 1/11 7/27/2015 South America ­ AccessScience from McGraw­Hill Education Altiplano is cold and high, averaging 12,000 ft (3600 m), and is mostly level. The Altiplano is distinctive in that it possesses the highest navigable freshwater body, Lake Titicaca, measuring approximately 3488 mi2 (8965 km2 ) at 12,497 ft (3750 m) elevation and approximately 918 ft (275 m) in depth. Fig. 1 Andes Mountains, Chile. The Andes, which parallel the Pacific coast, constitute one of the Earth's most majestic features. Only the Himalayas exceed them in elevation and mass. (United Press International) On the northeastern and eastern continental periphery lie the Guiana and the Brazilian Highlands. These vast areas of hilly uplands and low mountains are separated from each other by the Amazon River drainage (Fig. 2). Together these two plateaus form the geologically oldest part of South America. Rocks of ancient igneous and metamorphic origin are partially covered by younger sedimentary beds and sandstones. The vegetation and animal life associated with the flat­topped mesas of the highlands, called tepuis, show a high proportion of endemicity (in­situ speciation) resulting from long periods of isolation and ecosystem stability. http://www.accessscience.com/content/south­america/638200 2/11 7/27/2015 South America ­ AccessScience from McGraw­Hill Education Fig. 2 Representative view of the hilly uplands and low mountain country of the Guiana Highlands. One of five waterfalls on the Canaima River, Gran Sabana in southern Venezuela. (Venezuelan Information Service) More than 65% of South America's total area is characterized by lowland plains under 1000 ft (300 m) in elevation. Some 40% of the continent is less than 650 ft (200 m) above sea level. The plains lie from about 8°N to 40°S between the lofty Andean backbone on the west coast and the Guiana and the Brazilian Highlands on the east coast, and between the Río Orinoco in the north and the Río Colorado in the south. Also in this region are the Llanos of Venezuela and Colombia, the Amazon plain of Brazil, the Paraguayan Chaco, and the Pampas of Argentina. Some of these areas are quite flat while others are undulating. Some, such as the Llanos and Chaco, are alternately flooded and baked. Physiographic features The three Andes regions, the lowlands, and the eastern highlands are composed and bounded by many physiographic features, including mountains, intermontane basins, extensive lowland plains, coastlines, and rivers. M o u n t a i n s Because of the vast extent of the Andes, a greater proportion of South America than of any other continent lies above 10,000 ft (3000 m). The young, rugged, folded Andean peaks stand in sharp contrast to the old, worn­down mountains of the eastern highlands. Although the Andes appear to be continuous, most geologists believe that they consist of several structural units, more or less joined. They are a single range in southern Chile, two ranges in Bolivia, and dominantly three ranges in Peru, Ecuador, and Colombia. Except in Bolivia, where they attain their maximum width of 400 mi (640 km), the Andes are seldom more than 200 mi (320 km) wide. They do not equal the Himalayas in height, but have at least 30 peaks above 20,000 ft (6000 m). The average height of the Andes is estimated to be 13,000 ft (3900 m). However, it is only north of latitude 35°S that the mountains exceed elevations of 10,000 ft (3000 m) [see table]. http://www.accessscience.com/content/south­america/638200 3/11 7/27/2015 South America ­ AccessScience from McGraw­Hill Education Table ­ Principal Andean peaks* Peak Height, ft (m) Aconcagua, Argentina 22,835 (6960) Ampato, Peru 21,702 (6615) Caca Aca, Bolivia 20,329 (6196) Cachi, Argentina 21,326 (6500) Chimborazo, Ecuador 20,577 (6272) Cincel, Bolivia 20,102 (6127) Condoriri, Bolivia 20,043 (6109) Coropuna, Peru 22,802 (6950) Cuzco (Ausangate), Peru 20,187 (6153) Del Acay, Argentina 20,801 (6340) Dos Conos, Argentina 22,507 (6860) Falso Azufre, Argentina­Chile 22,277 (6790) Huascaran, Peru 22,188 (6763) Illampu, Bolivia 21,276 (6485) Illimani, Bolivia 21,282 (6487) Incahuasu, Argentina­Chile 21,720 (6620) Llullaillaco, Argentina­Chile 22,015 (6710) Mercedario, Argentina­Chile 21,884 (6670) Ojos del Salado, Argentina­Chile 22,573 (6880) Payachata, Bolivia 20,768 (6330) Pissis, Argentina 22,245 (6780) Porongos, Argentina­Chile 20,512 (6252) Pular, Chile 20,342 (6200) Sajama, Bolivia 21,390 (6520) Sarmiento, Chile 20,670 (6300) Socompa, Argentina­Chile 19,787 (6031) Tocorpuri, Bolivia­Chile 22,163 (6755) Tortolas, de las, Chile 20,018 (6101) Tres Cruces, Chile 21,720 (6620) Turpungato, Chile 21,490 (6550) Valadero, Argentina 20,735 (6320) * http://www.accessscience.com/content/south­america/638200 4/11 7/27/2015 South America ­ AccessScience from McGraw­Hill Education *The elevations are approximate and some are controversial. Data based mostly on tables in Goode's World Atlas, 12th ed., Rand McNally, 1964. Both active and quiescent volcanic formations are common in southern Colombia, Ecuador, central and southern Peru, and western Bolivia. These volcanic peaks are the surface expression of the subduction of the Nazca tectonic plate beneath the South American plate, forming the offshore Peru­Chile Trench. The Andes were raised up by tectonic forces from 6560 ft (1970 m) to an average 13,120 ft (3940 m) during the Pliocene uplift approximately 5 million years ago, and they continue to rise incrementally each year. As a result of these powerful tectonic forces, there is a spectacular series of volcanic peaks in western Bolivia and on each side of the structural depression in Ecuador. See also: Plate tectonics (/content/plate­tectonics/527000) Stratification of climate and vegetation with altitude can be readily observed in the Andes. At their eastern base is a zone with hot, humid lowland and foothills up to 3300 ft (1000 m), known as tierra caliente. Tierra templada, the zone from 3300 to 6600 ft (1000 to 2000 m), has a relatively mild, frost­free climate and was preferred for European settlement and the production of plantation crops such as coffee and coca. From 6600 to 13,200 ft (2000 to 4000 m) is tierra fria, a montane zone with occasional frosts. Tierra helada, at 13,200 to 19,800 ft (4000 to 6000 m), occupies the zone between the daily frost line and the final zone of permanent snow called tierra nevada. Because of the great north­south extent of the Andes, the processes of their erosion and denudation have varied. Southward from about 40°S, and especially in the far south, the Andes were heavily glaciated during the Ice Age, and an extensive area north of the Strait of Magellan still has a broad mantle of permanent ice. Glaciers descend to the heads of many fiords on the Pacific coast or into lakes on the eastern side of the mountains. Coastal features From the southern tip of Cape Horn north to 41°S latitude, the western coastal zone consists of a broad chain of islands where a mountainous strip subsided and the ocean invaded its valleys. This is one of the world's finest examples of a fiorded coast. Nowhere along the Pacific coast is there a true coastal plain. South of Arica, Chile, the bold, precipitous coast is broken by only a few deep streams, the majority of which carry no water for years at a time.
Recommended publications
  • Antônio Gilberto Costa1 Nos Primeiros Anos Do Século XVIII Já Eram
    A Estrada Real e a Transferência da Corte Portuguesa | 7 AS ESTRADAS REAIS PARA AS MINAS NA CARTOGRAFIA HISTÓRICA DO BRASIL Antônio Gilberto Costa1 RESUMO Nos primeiros anos do século XVIII já eram muitos os caminhos que conduziam às minas de Minas Gerais, mas também muitos eram os seus descaminhos. Para evitar estes descaminhos do ouro e dos diamantes determinou o governo da metrópole que estes bens deixassem a região apenas por algumas trilhas ou caminhos, que a partir de então receberam a denominação de Estrada Real. Nos pontos em que as Estradas Reais cruzavam as fronteiras entre capitanias foram construídos Registros para as necessárias cobranças de impostos. Das Estradas Reais do Brasil, as de Minas foram as mais famosas e ficaram conhecidas como Caminho Velho e Caminho Novo. Neste trabalho, descrevem-se as estradas citadas, ressaltando-se, particularmente, seus trajetos. 1. INTRODUÇÃO Desde a chegada dos portugueses à porção da América que lhes cabia pelo Tratado de Tordesilhas, esperavam estes encontrar a sua parte da riqueza nesse imenso território. As notícias vindas da Espanha, dando conta de importantes descobertas de prata e ouro em regiões não muito distantes da costa, mas do lado oeste do continente sul-americano, só faziam aumentar as expectativas da Coroa portuguesa. Sem noção das reais dimensões da nova colônia, limitaram-se os novos habitantes do Brasil à ocupação apenas de sua costa, onde não foram encontrados nada além de indícios da existência dos almejados tesouros. Apesar disso e mesmo diante do grande interesse pelo ouro, pela prata e pelas pedras preciosas, os portugueses, que imaginavam o interior do seu território como sendo um grande desertão, que com o tempo acabou virando apenas sertão, tiveram que manter, por quase duzentos anos, suas atenções voltadas para as costas do seu território, 1 Universidade Federal de Minas Gerais - UFMG Programa RUMYS / Projeto Estrada Real 8 | A Estrada Real e a Transferência da Corte Portuguesa procurando defendê-lo das freqüentes investidas de franceses, de holandeses e de ingleses.
    [Show full text]
  • Parque Nacional Da Serra Dos Órgãos: Uma Visão Geral1
    Parque Nacional da Serra dos A colonização da região deu-se inicial- Órgãos: uma visão geral1 mente em Magé, no fundo da Baía de Guana- bara. Em 1696, a localidade de Magé foi ele- A Serra dos Órgãos localizada a cerca de vada à condição de freguesia (SANTOS, 1957, 20 quilômetros da Baía de Guanabara, fascinou DRUMMOND, 1997). Naquela época, toda a re- aqueles que chegaram ao Rio de Janeiro no gião (as atuais Duque de Caxias, Nova Iguaçu, início da colonização. O fantástico relevo da serra Guapimirim, Petrópolis, Teresópolis, Sapucaia e inspirou seu nome, dado pelos portugueses pela Paraíba do Sul) era parte de Magé. A base da associação com os tubos de um órgão de igreja. serra, em Guapimirim, já era, à época, ocupada O Parque Nacional da Serra dos Órgãos por fazendas. A capela de Nossa Senhora da o o (Parnaso) localiza-se entre 22 52’ e 22 54’ Sul Conceição do Soberbo, hoje tombada pelo e 42o09’ e 45o06’ Oeste (Figura 1). A área do Instituto Estadual do Patrimônio Artístico e Cul- parque é de 10.653 hectares com 71 km de pe- tural (INEPAC, 2005) e protegida pelo Parnaso rímetro. A maior parte, 42,9%, encontra-se inserida data de 1713 (Figura 2). no município de Petrópolis; 25,9% de seu território encontram-se no município de Guapimirim, 17,7% em Magé e 13,4% em Teresópolis. Apesar disso, a administração do parque esteve historicamente voltada para Teresópolis, onde localizada-se sua sede principal, e Guapimirim, onde existe outra se- de, tendo por muitos anos negligenciado a porção Elizabeth Bravo petropolitana do parque, bem como a área inserida no município de Magé.
    [Show full text]
  • Continued Bird Surveys in Southeastern Coastal Brazilian Atlantic Forests and the Importance of Conserving Elevational Gradients
    Revista Brasileira de Ornitologia, 22(4), 383-409 ARTICLE December 2014 Continued bird surveys in southeastern coastal Brazilian Atlantic forests and the importance of conserving elevational gradients Vagner Cavarzere1,2,4, Thiago Vernaschi Vieira da Costa1,2, Giulyana Althmann Benedicto3, Luciano Moreira-Lima1,2 and Luís Fábio Silveira2 1 Pós-Graduação, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, travessa 14, 101, CEP 05508- 900, São Paulo, SP, Brazil. 2 Seção de Aves, Museu de Zoologia da Universidade de São Paulo. Avenida Nazaré, 481, CEP 04218-970, São Paulo, SP, Brazil. 3 Rua Tiro Onze, 04, CEP 11013-040, Santos, SP, Brazil. 4 Corresponding author: [email protected] Received on 15 January 2014. Accepted on 18 November 2014. ABSTRACT: Although the Atlantic forest is the best-studied Brazilian phytogeographic domain, few coastal municipalities of the state of São Paulo can count on published and critically revised bird species list, which are important initial steps to organize conservation inniciatives. Here we present historical records from Bertioga, a northern coastline municipality of the state of São Paulo, as well as recent records obtained in surveys during the past years within the municipality. Surveying methods, carried out between 2008-2011, included point counts, 10-species lists, transect counts and mist nets. This compendium resulted in 330 documented species, 90 of which still await documentation. Of these 420 bird species, 85 (20.4%) are Atlantic forest endemic species and as many as eight, six and 23 are threatened at the global, national and state levels, respectively. Seventeen species are reported from Bertioga for the first time.
    [Show full text]
  • Hoyas Hidrográficas De Chile: Segunda Región
    HOYAS HIDROGRÁFICAS DE CHILE: SEGUNDA REGIÓN REALIZADO POR: HANS NIEMEYER F. HOVA DEL RlO LOA La hoya hidrográfica del río Loa~ con una superf! cie tota~'de 33 570 km2 , se desarrolla en el tercio norte de la IIa R~ gión de Chile, entre latitudes extremas 20Q52' y 22Q57' L.S. ylongit~ des 68QOO' y 7oQ02' L.o. El río Loa nace en la falda norte del Vn. Mi­ ño~ en los Ojos del Hiño, casi en los límites entre la la y IIa Regio­ nes de Chile, en 21Q15' L.S. y 70Q L.O~ Su longitud total se acerca a 440 km. A pesar de su extensa hoya, los recursos h!dricos provienen de la cuenca alta que comprende alrededor del 20% de la su~ perficie total. Con curso aproximadamente norte-sur~ el Loa reco­ rre casi 150 km en un profundo cañón de altura variable, desde su nací miento hasta el oasis de Chiu ~hiu, pueblo que se levanta en su margen izquierda. En este trayecto recibe sus dos tributarios más importantes que le caen del este: el río San Pedro o Inacaliri y el río Salado. En Chiu Chiu dobla su curso sensiblemente hacia el oeste para alcanzar en un recorrido de 115 km el punto denominado Chacance. En él se le reúne por la derecha el río San Salvador. En Chacance,el Loa toma franca di= recci6n sur-norte hasta fertilizar el oasis de Quillagua, despu~s de una trayectoria de 80 km. A partir de Quillagua el Loa describe un gran arco y luego desemboca en el Pacífico~ en Caleta Huel~n, despu~8 de trasponer el macizo costero en un tajo profundo~ de más de 500 m de al­ tura.
    [Show full text]
  • Florística Das Praias Da Ilha De São Luís, Estado Do Maranhão (Brasil): Diversidade De Espécies E Suas Ocorrências No Litoral Brasileiro
    FLORÍSTICA DAS PRAIAS DA ILHA DE SÃO LUÍS, ESTADO DO MARANHÃO (BRASIL): DIVERSIDADE DE ESPÉCIES E SUAS OCORRÊNCIAS NO LITORAL BRASILEIRO. Maria Cristina C. CABRAL FREIRE, Reinaldo MONTEIRO 1 RESUMO — A Ilha de São Luís, situada ao norte do Estado do Maranhão, constitui-se numa região de transição entre duas floras distintas: flora amazônica e flora nordestina. Considerando esta peculiar situação fitogeográfica, o objetivo deste trabalho foi realizar o levantamento florístico nas prais arenosas da Ilha de São Luis e compaará-lo com os de outras áreas amostradas no litoral brasileiro. Foram totalizadas 260 espécies, compreendidas em 76 famílias, sendo Fabaceae com o maior número de espécies (24). A comparação floristica constatou que o estado da Bahia apresentou o maior número de espécies em comum com São Luís (63) e, em seguida, o estado do Pará (59). Dentre as espécies amostradas em São Luís, 125 foram exclusivas da região. Palavras-chave: florística, praia, diversidade. Floristics of the Beaches of São Luis Island, State of Maranhão (Brazil): Species Diversity and Occurrence in the Brazilian Coast. ABSTRACT — São Luís Island, located in the north of the State of Maranhão is itself a tran­ sitional region between the Amazonian and the northeastern floras. With such phytogeographi- cal background, the aim of this paper was to realize a floristic survey on the sandy beaches of the São Luís Island and to compare this 'survey with other areas sampled along the Brazilian coast. A total of 260 species was found, distributed in 76 families, and among these the Fabaceae presenting the highest number of species (24).
    [Show full text]
  • South Atlantic Route – Serra Do Mar to Iguazu Falls
    South Atlantic Route – Serra do Mar to Iguazu Falls Explore charming Curitiba,Paraná and it’s famous biking routes, scenic vistas and award-winning coffee ​ scene. Fly to Iguazú Falls and see this natural seven wonders of the world up close by exploring on foot, ​ electric cart and by boat. ● Bike tour along Graciosa´s Road ● Tour Curitiba’s rich specialty coffee culture by bike ● Embark on a luxury train ride through the Atlantic Forest ● Raft the Iguazu River and trek in Iguazu National Park Flight Information: November 2, 2018: Arrival to Afonso Pena International Airport (CWB) in Curitiba, Paraná, Brazil ​ ​ ​ before 18:00. You will be met and transferred to a local restaurant for dinner and hotel for overnight. November 4, 2018: Depart Curitiba, Paraná, Brazil for Foz do Iguaçu International´s Airport (IGR) ​ ​ ​ LATAM flight #JJ3232 at 11:40 a.m. arriving 12:55 p.m. November 7, 2018: Depart Foz do Iguaçu International´s Airport (IGR) for Campo Grande, Mato ​ Grosso do Sul, Brazil (CGR) GOL flight #G31169 at 06:05 a.m. /arriving 07:50 at GRU connecting to CGR on GOL flight #G31494 at 09:40 a.m./arriving 10:30 a.m. November 10, 2018: Depart Campo Grande, Mato Grosso do Sul, Brazil (CGR) anytime. ​ Day 1 – Friday – November 02, 2018 – CURITIBA Upon arrival to Curitiba´s International Airport (CWB), you will be met and transferred to the group hotel, Mabu Business Hotel, to check-in and enjoy time at leisure. In the evening, meet the group and transfer to local restaurant Madalosso in the Italian district of Santa Felicidade.
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • O Parque Nacional Da Serra Da Bocaina
    ENCARTE 1 INFORMAÇÕES GERAIS DO PARQUE NACIONAL DA SERRA DA BOCAINA 1 INFORMAÇÕES GERAIS DA UNIDADE DE CONSERVAÇÃO O Parque Nacional da Serra da Bocaina (PNSB) representa um importante fragmento do Domínio da Mata Atlântica, agrupando ampla diversidade de tipos vegetacionais, grandes extensões contínuas de áreas florestadas, sob diversos domínios geomorfológicos. Abrange desde áreas costeiras até vertentes íngremes no alto do planalto dissecado da Bocaina, do nível do mar a 2.088 metros de altitude. É considerado um dos principais redutos de Floresta Atlântica, coberto pela Floresta Ombrófila Densa (Submontana, Montana e Alto Montana), Floresta Ombrófila Mista Alto Montana e Campos de Altitude, ainda em bom estado de conservação, apesar de inúmeros pontos de interferência humana. Deve-se destacar a alta diversidade e complexidade natural da área, resultantes das inúmeras combinações entre tipos de relevo, altitudes, características topográficas, rede de drenagem, substrato rochoso, solos e cobertura vegetal natural. É um território com endemismos, refúgios ecológicos e espécies ameaçadas de extinção. Sua localização geográfica está compreendida entre as coordenadas 22°40' e 23°20'S e 44° 24'e 44°54'W, na divisa entre os Estados do Rio de Janeiro e São Paulo, sendo circundado por importantes núcleos populacionais, como Angra dos Reis, Mambucaba, Paraty, Ubatuba, Cunha, Areias, São José do Barreiro e Bananal (Figura 1.1). Para estes centros a conservação do Parque é vital, uma vez que concentra grande parte das nascentes que fornecem ou podem fornecer água potável à população. Contém os cursos dos rios Mambucaba, Bracuí, Barra Grande, Perequê-Açu, Iriri, Promirim, Paraitinga, Paraibuna e cabeceiras do rio Paraíba do Sul, além das praias do Cachadaço, do Meio e Ilha da Trindade.
    [Show full text]
  • AVALIAÇÃO QUANTITATIVA DO USO DOS RECURSOS HÍDRICOS EM UNIDADE DE CONSERVAÇÃO: ESTUDO DE CASO DO PARQUE ESTADUAL SERRA DO MAR Sociedade & Natureza, Vol
    Sociedade & Natureza ISSN: 0103-1570 [email protected] Universidade Federal de Uberlândia Brasil Starzynski, Roberto; Simões, Silvio Jorge AVALIAÇÃO QUANTITATIVA DO USO DOS RECURSOS HÍDRICOS EM UNIDADE DE CONSERVAÇÃO: ESTUDO DE CASO DO PARQUE ESTADUAL SERRA DO MAR Sociedade & Natureza, vol. 27, núm. 2, mayo-agosto, 2015, pp. 327-340 Universidade Federal de Uberlândia Uberlândia, Brasil Disponível em: http://www.redalyc.org/articulo.oa?id=321342816011 Como citar este artigo Número completo Sistema de Informação Científica Mais artigos Rede de Revistas Científicas da América Latina, Caribe , Espanha e Portugal Home da revista no Redalyc Projeto acadêmico sem fins lucrativos desenvolvido no âmbito da iniciativa Acesso Aberto Avaliação quantitativa do uso dos recursos hídricos em unidade de conservação: Estudo de caso do parque estadual Serra do Mar Roberto Starzynski, Silvio Jorge Simões AVALIAÇÃO QUANTITATIVA DO USO DOS RECURSOS HÍDRICOS EM UNIDADE DE CONSERVAÇÃO: ESTUDO DE CASO DO PARQUE ESTADUAL SERRA DO MAR Quantitative evaluation of the use of water resources in protected area: Case study of the Serra Mar State Park Roberto Starzynski Instituto Florestal, São Paulo, São Paulo, Brasil [email protected] Silvio Jorge Simões Universidade Estadual Paulista, Guaratinguetá, São Paulo, Brasil [email protected] Artigo recebido em 06/05/2014 e aceito para publicação em 29/09/2015 RESUMO: Este trabalho é um estudo de caso sobre o serviço ambiental hídrico prestado pelo Parque Estadual da Serra do Mar (PESM) ao promover a regularização dos mananciais e garantir o suprimento de água para adensadas regiões urbanas do Estado de São Paulo. Foi realizado através da análise de dados populacionais e de outorga de água na região de estudo, com o objetivo de avaliar a pressão antrópica, quantificar o volume de água outorgado, bem como identificar as principais categorias de usuários.
    [Show full text]
  • A Similar Magma Source for Ignimbrites and Non-Ignimbritic
    Second ISAG, Oxford (UK)?21-23/9/2993 351 A SIMJLAR MAGMA SOURCE FOR IGNIMBRITES AND NON-IGNIMBRITIC LAVAS FROM SOUTH-CENTRAL ANDES. Bernard DÉRUELLE (l) and Stephen MOORBATH (2) (1) Laboratoire de Magmatologie et GCochimie Inorganique et ExpCrimentale, Universid Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris Cedex 05, France. (2) Department of Earth Sciences, University of Oxford, Parh Road, Oxford0x1 3PR, U.K. &SUMÉ. Les ignimbrites contemporaines et avoisinantes des strato-volcans des Andes Centrales du Sud ont des rapports 87Sr/86Sr compris entre 0.7062 et 0.7096 semblables à ceux (0.7056 - 0.7089) des laves non-ignimbritiques de ces volcans. La zonation géochimique d6jà ObSeNh pour les laves non-ignimbriti- ques, est la même pour les ignimbrites, impliquantbien des sources magmatiques et des processus de genese communs pour ces deux types de laves. KEY WORDS : Ignimbrites, Non-ignimbritic lavas, South-Central Andes, 87Sr/86Sr. INTRODUCTION Ten Plio-Quaternary calc-alkaline strato-volcanoes and groupsof small volcanoes haveken studied in the South Central Andes (SCA), southern part of the Central Volcanic Zone, between latitudes 22'- 24'30's (Déruelle, 1982; Déruelle et al., 1983; Harmon et al,, 1984). Field evidence shows that these volcanoes erupted contemporaneously with large ignimbritic lavas. Numerous data on these ignimbrites indicate ages younger than 10.7 Ma (De Silva, 1989a and references therein). Non-ignimbritic lavas were probably produced from mantle-derived magmas subsequently modified by crustal contributions as in the MASH mode1 (Hildreth and Moorbath, 1988). The origin of ignimbrites is still controversial but crustal anatexis is generally invoked to explain the large volumes of ignimbrite erupted (De Silva, 1989b, Francis et al., 1989).
    [Show full text]
  • Geological and Structural Evolution of Apacheta-Aguilucho Volcanic Complex (AAVC), Northern Chile
    XII Congreso Geológico Chileno Santiago, 22-26 Noviembre, 2009 S7_002 Geological and Structural Evolution of Apacheta-Aguilucho Volcanic Complex (AAVC), Northern Chile Mercado, J.L.1, Ahumada, S.1, Aguilera, F.2, Medina, E.1, Renzulli, A.3, Piscaglia, F.3 (1) Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0619, Antofagasta, Chile (2) Departamento de Geología, Universidad de Atacama, Copayapu 485, Copiapó, Chile (3) Istituto di Scienze della Terra, Università degli Studi “Carlo Bo”, Urbino, Italia [email protected] Introduction The Apacheta-Aguilucho Volcanic Complex (AAVC) is located in the Central Andean Volcanic Zone (CAVZ), at the 21º50’ Lat S and 68º10’ Long W, 105 km NE from city of Calama and 55 km NW from El Tatio geothermal Field, in the northwestern most part of Pabelloncito Graben, a prominent structural featured associated to Palpana-Azufre- Inacaliri NW-SE trend lineament. The AAVC is part of the Altiplano Puna Volcanic Complex (APVC) which is a large zone of silicic volcanism occupying the 21-24°S segment of the Central Andean Volcanic Zone (ACVZ; [1,2]) an area characterized by continental crust >70 km thick [3]. The APVC is dominated by 1-10 Ma ignimbrite flare up [4] and, although no major ignimbrite-caldera forming eruptions of < 1 Ma are known, relatively young dacite to rhyolite lavas (e.g. Chao) and domes (e.g. La Torta de Tocorpuri dome) erupted in the past 100 ka and the presence of famous active geothermal fields (i.e El Tatio and Sol de la Mañana) seem to indicate that the magmatic system of the APVC is currently active [1].
    [Show full text]
  • Local Meteoric Water Line of Northern Chile
    water Article Local Meteoric Water Line of Northern Chile ◦ ◦ (18 S–30 S): An Application of Error-in-Variables Regression to the Oxygen and Hydrogen Stable Isotope Ratio of Precipitation Tiziano Boschetti 1,* , José Cifuentes 2, Paola Iacumin 1 and Enricomaria Selmo 1 1 Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; [email protected] (P.I.); [email protected] (E.S.) 2 Servicio Nacional de Geología y Minería, Avenida Santa María #0104, 7520405 Santiago, Chile; [email protected] * Correspondence: [email protected]; Tel.: +39-0521-905300 Received: 13 March 2019; Accepted: 11 April 2019; Published: 16 April 2019 Abstract: In this study, a revision of the previously published data on hydrogen (2H/1H) and oxygen (18O/16O) stable isotope ratio of precipitation in northern Chile is presented. Using the amount-weighted mean data and the combined standard deviation (related to both the weighted mean calculation and the spectrometric measurement), the equation of the local meteoric line calculated by error-in-variables regression is as follows: Northern Chile EIV-LMWL: δ2H = [(7.93 0.15) δ18O] ± + [12.3 2.1]. The slope is similar to that obtained by ordinary least square regression or other ± types of regression methods, whether weighted or not (e.g., reduced major axis or major axis) by the amount of precipitation. However, the error-in-variables regression is more accurate and suitable than ordinary least square regression (and other types of regression models) where statistical assumptions (i.e., no measurement errors in the x-axis) are violated.
    [Show full text]