CARACTERISTICAS GEOQUIMICAS Y PETROGENESIS DEL COMPLEJO VOLCANICO LAGUNA DEL MAULE, ANDES DEL SUR, 36°00'S

Total Page:16

File Type:pdf, Size:1020Kb

CARACTERISTICAS GEOQUIMICAS Y PETROGENESIS DEL COMPLEJO VOLCANICO LAGUNA DEL MAULE, ANDES DEL SUR, 36°00'S CARACTERISTICAS GEOQUIMICAS y PETROGENESIS DEL COMPLEJO VOLCANICO LAGUNA DEL MAULE, ANDES DEL SUR, 36°00'S LEOPOLDO LOPEZ E. Univ. Chile, Depto. Geol. y Geofís., Casilla 13518. Correo 21, Santiago, Chile. FRANCISCO MUNIZAGA V. RESUMEN El complejo volcánico Laguna del Maule es uno de los escasos centros volcánicos andinos, cuyas rocas varían en composición de basaltos a riolitas. Este complejo consta de cuatro unidades. Las Unidades 1 y II son predomi· nantemente basálticas, estando ausentes los términos con SiO, > 58% peso. La Unidad III es fundamentalmente riolítica y la Unidad IV, consistente en un cuello volcánico y en una serie de pequeños diques, es principalmente dacítica. La plagioc1asa es el fenocristal más abundante, siguiéndole olivino y c1inopiroxeno en las rocas de las Unidades 1 y II Y anffbola y biotita en las rocas de las Unidades nI y IV. Las rocas volcánicas del complejo La­ , guna del Maule son típicamente calcoalcalinas, presentando contenidos relativamente altos de Al, °3 CaO y K,O, bajos de TiO, y razones Mg/(Mg + 1: Fe) también relativamente bajas. En promedio, las rocas basálticas de las Unidades I y n presentan contenidos de TRL iguales a 50 veces el contenido condrítico promedio y conteni­ dos de TRP iguales a 8 veces el promedio condrítico. En las riolitas de la Unidad III las TRL superan en 90 veces al contenido condrítico promedio, en tanto las TRP lo superan s610 en 10 veces. Las dacitas de la Unidad IV tienen TRL - 60 x condritos y TRP - 8 x condritos. Anomalías negativas de Eu (Eu/Eu· - 0,7) se observan ~610 en las rocas de la Unidad In. Se sugieren dos líneas genético-evolutivas para explicar el origen de las rocas volcánicas de este complejo. Una daría cuenta de las rocas de las Unidades I y n y la otra de las Unidades III y IV. En ambos modelos, los magmas primarios se originarían por fusi6n parcial de una porci6n del manto supe­ rior, pero el granate estaría involucrado, como fase residual, en la génesis de los magmas asociados con las Unida­ des I y n. Los magmas primarios relacionados con las Unidades In y IV se habrían generado a profundidades donde el granate no sería una fase estable. Los magmas asociados con las Unidades I y II habrían sufrido un proceso de fraccionamiento dominado por olivino y c1inopiroxeno; los relacionados con las Unidades III y IV habrían experimentado, además, un fraccionamiento de plagioc1asa, anfíbola y otras fases menores. ABSTRACT The Laguna del Maule volcanic complex is one of the rare Andean volcanic centers whose rocks range in composition from basalts to rhyolites. This complex consists of four units. Units I and 11 are dominllted by ba­ saltic rocks and specimens with SiO, > 58 wt% are absent. Unit In is predominandy rhyolitic and Unit IV, con­ sisting of a volcanic neck and a series of small dikes, is mainly dacitic. Plagioc1ase is the most abundant pheno­ cryst, followed by olivine and c1inopyroxene in rocks from Units I and 11, and by amphibole and biotite in rocks from Units III and IV. The Laguna del Maule rocks are typically calc-alkaline with relatively high contents of , 1: Al, °3 CaO and K,O, low TiO, and low MgI(Mg + Fe) ratios. On the average, the basaltic rocks from Units l and 1I have LREE abundances equal to 50 x chondrites and HREE abundances equal to 8 x chondrites. Rhyoli­ tes from Unit In have LREE contents equal to 90 x chondrites and HREE contents equal to 10 x chondrites. Dacites from Unit IV have LREE abundances about 60 x chondrites and HREE abundances about 8 x chondri­ tes. Negative Eu-anomalies (Eu/Eu· - 0.7) are observed only in Unit III rocks. Two lines of magma generation and evolution are suggested to explain the origin of the Laguna del Maule volcanic rocks. One would account for the rocks of Units I and n and the other would explain the rocks of Units III and IV. In both lines, primary magmas would have been generated by partíal melting of a portio n of the upper mande, but garnet would have been involved, as a residual phase, in the generation of magmas related to Units I and n. Primary magmas re1ated to Units 111 and IV would have been originated at depths where garnet is not a stable phase. Magmas associated with Units I and n would have suffered a fractionation process dominated by olivine and c1inopyroxene; those associated with Units III and IV would have undergone fractionation of plagioclase, amphibole and other minor phases in addition to olivine and clinopyroxene. Revista Geológica de Chile No. 19-20, p. 3-24, 11 figs. 3 tablas, 1983. 4 GEOQUIMICA LAGUNA DEL MAULE INTRODUCCION El borde occidental de Sudamérica ha sido con­ Sur: el vo1canismo miocénico, que aflora a lo largo siderado como representativo de un margen conti­ de la Depresión Longitudinal (33°-42°S) y de la nental activo y como un modelo ideal para estu­ Cordillera Principal (33°-38°S); y el volcanismo diar la relación vo1canismo-subducción en zonas de plio-cuaternario, que está restringido a la Cordille­ convergencia de placas. ra Principal, manifestándose al sur de la latitud Sin embargo, la mayoría de los estudios geo­ 33°S (Vergara y Munizaga, 1974; Moreno, 1976; químicos de rocas volcánicas andinas se han reali­ López y Frey, 1976; L6pez et al., 1976, 1977; zado en los Andes Centrales (16°S-28°S) y han Stern et al., 1976;Muñoz y Niemeyer, en prep.). A formado la base para definir al volcanismo tipo modo de simplificaci6n, esta última unidad ha sido margen continental, en oposición al volcanismo ti­ subdividida en una cadena "occidental" y una "o­ po arco de islas. Los escasos datos geoquímicos riental" (Moreno, 1976; L6pez et al., 1977). Am­ disponibles para los Andes del Sur (33°S-56°S; bas cadenas están separadas por unos 50 km, no López et al., 1976, 1977, 1981; Moreno, 1976; existiendo, entre ellas, una depresi6n longitudinal; Klerkx et al., 1977; Stern et al., 1976; Deruelle, más bien, en varios lugares, están conectadas por 1982; Stern, 1982), sugieren una gran similitud en­ cadenas volcánicas transversales (ejemplo: Cadena tre el volcanismo de esta región andina, particu­ Villarrica - Quetrupillán - Lanín). larmente el del sector 37°-42°S, y el de los arcos En un trabajo previo (L6pez et al., 1981) se a­ de islas circumpacíficos. nalizaron las características geoquímicas del volcán Con el objeto de lograr una mejor caracteriza­ Antuco, ubicado en la cadena "occidental", a la la­ ción geoquímica del vo1canismo cenozoico de los titud 37°20'S. En este trabajo discutiremos, en Andes del Sur, y poder compararlo con el de otras forma preliminar, algunas características geoquími• regiones circumpadficas, hemos iniciado estudios cas del complejo volcánico Laguna del Maule, loca­ más detallados en centros volcánicos específicos. lizado en la cadena "oriental", a la latitud 36°'00'S Además, considerando que estudios geofísicos y unos 170 km al noreste del Antuco. A diferencia (Stauder, 1973; Carr et al., 1974; Swift y Carr, de las rocas de este último volcán, que son bastan­ 1975; Barazangi e Isacks, 1976; Hanus y Vanek, te homogéneas, composicionalmente, variando de 1976, 1978; Sacks, 1977; Jordan et al., 1983) su­ basaltos a andesitas basálticas, las rocas del com­ gieren una variación del ángulo de subducción con plejo Laguna del Maule presentan un rango com­ la latitud, a lo largo de los Andes del Sur, nos he­ posicional que se extiende de basaltos a riolitas mos propuesto evaluar, también, la influencia de (Munizaga, 1978). Esto hace que un estudio geo­ este parámetro sobre las características geoquími• químico de esta secuencia nos de una visión más cas de las rocas volcánicas. amplia en cuanto a la petrogénesis de las rocas Dos unidades mayores se han distinguido en el ca1coalcalinas andinas. volcanismo cenozoico superior de los Andes del MARCO GEOLOGICO El complejo Laguna del Maule es un área volcá­ La Unidad 1 está representada por un conjunto de 2 nica, relativamente pequeña ( ..... 300 km ), que ro­ catorce flujos de lava de carácter basáltico, que re­ dea a la laguna del Maule (Fig. 1). Su geología fue llenan la vertiente superior del valle del río Maule estudiada en forma preliminar por González y Ver­ (Fig. 1). Tiene una edad de 0,20 - 0,24 Ma (mues­ gara (1962) y luego, con más detalle, por Munizaga tras 57 y 58 de Drake, 1976) y su volumen total (1978). Drake (1976) dató, por el método K/Ar, es de unos 5 km3 (Munizaga, 1978). Los seis flujos rocas de este complejo volcánico, comprobando inferiores tienen una potencia de 10-15 m y los para todas ellas una edad inferior a 0,3 Ma. ocho superiores fluctúan entre 1 y 3 m. El o los Cuatro unidades de rocas volcánicas han sido conductos de emisión de estas lavas están cubier­ distinguidas en el complejo Laguna del Maule: tos, aparentemente, por una lava más joven, perte- L. López y F. Munizaga 5 v<----CH ILE +---­ ...... --~ARGENTINA-- del Maule v v vv:~ v MAPA DE UBICACION vvvE~ v v v v v v v v v v vv~~ VVVVv v CERRO BARR ANCAS v v vvvvvvv v v vvvvvvv/vvvvvv v VOLeAN LlMITROFE v ~ v V v v v ...... vvvvv~vvvv ~ '"J vvvv vvvvv ~~~r~~~~~~~~~~~~f~V v v V v v v 'ti V V r VyVVVyVV VVVV v/ vvvv v SIMBOLOGIA LEYENDA o 4 5 km o z CENIZAS y LAPILU FALLA NORMAL UJ O u o 9 UNIDAD II a: o W UNIDAD Iv FALLA NORMAL INFERIDA <t I z V V -- o: o v -- w Z LI MITE APROXIMADO CHI LE -ARGENTINA ..
Recommended publications
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Tracing a Major Crustal Domain Boundary Based on the Geochemistry of Minor Volcanic Centres in Southern Peru
    7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), Extended Abstracts: 298-301 Tracing a major crustal domain boundary based on the geochemistry of minor volcanic centres in southern Peru Mirian Mamani1, Gerhard Wörner2, & Jean-Claude Thouret3 1 Georg-August University, Goldschmidstr. 1, 37077 Göttingen, Germany ([email protected], [email protected]) 2 Université Blaise Pascal, Clermont Ferrand, France ([email protected]) KEYWORDS : minor volcanic centres, crust, tectonic erosion, Central Andes, isotopes Introduction Geochemical studies of Tertiary to Recent magmatism in the Central Volcanic Zone have mainly focused on large stratovolcanoes. This is because mafic minor volcanic centres and related flows that formed during a single eruption are relatively rare and occur in locally clusters (e.g. Andagua/Humbo fields in S. Peru, Delacour et al., 2007; Negrillar field in N. Chile, Deruelle 1982) or in the back arc region (Davidson and de Silva, 1992). These studies showed that the "monogenetic" lavas are high-K calc-alkaline and their major, trace, and rare elements, as well as Sr-, Nd- and Pb- isotopes data display a range comparable to those of the Central Volcanic Zone composite volcanoes (Delacour et al., 2007). It has been argued that the eruptive products of these minor centers bypass the large magma chamber systems below Andean stratovolcanoes and thus may represent magmas that were derived from a deeper level in the crust (Davidson and de Silva, 1992; Ruprecht and Wörner, 2007). This study represents a continuation of our work to understand the regional variation in erupted magma composition in the Central Andes (Mamani et al., 2008; Wörner et al., 1992).
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • Hoyas Hidrográficas De Chile: Segunda Región
    HOYAS HIDROGRÁFICAS DE CHILE: SEGUNDA REGIÓN REALIZADO POR: HANS NIEMEYER F. HOVA DEL RlO LOA La hoya hidrográfica del río Loa~ con una superf! cie tota~'de 33 570 km2 , se desarrolla en el tercio norte de la IIa R~ gión de Chile, entre latitudes extremas 20Q52' y 22Q57' L.S. ylongit~ des 68QOO' y 7oQ02' L.o. El río Loa nace en la falda norte del Vn. Mi­ ño~ en los Ojos del Hiño, casi en los límites entre la la y IIa Regio­ nes de Chile, en 21Q15' L.S. y 70Q L.O~ Su longitud total se acerca a 440 km. A pesar de su extensa hoya, los recursos h!dricos provienen de la cuenca alta que comprende alrededor del 20% de la su~ perficie total. Con curso aproximadamente norte-sur~ el Loa reco­ rre casi 150 km en un profundo cañón de altura variable, desde su nací miento hasta el oasis de Chiu ~hiu, pueblo que se levanta en su margen izquierda. En este trayecto recibe sus dos tributarios más importantes que le caen del este: el río San Pedro o Inacaliri y el río Salado. En Chiu Chiu dobla su curso sensiblemente hacia el oeste para alcanzar en un recorrido de 115 km el punto denominado Chacance. En él se le reúne por la derecha el río San Salvador. En Chacance,el Loa toma franca di= recci6n sur-norte hasta fertilizar el oasis de Quillagua, despu~s de una trayectoria de 80 km. A partir de Quillagua el Loa describe un gran arco y luego desemboca en el Pacífico~ en Caleta Huel~n, despu~8 de trasponer el macizo costero en un tajo profundo~ de más de 500 m de al­ tura.
    [Show full text]
  • Dirección De Preparación Cepig
    DIRECCIÓN DE PREPARACIÓN CEPIG INFORME DE POBLACIÓN EXPUESTA ANTE CAÍDA DE CENIZAS Y GASES, PRODUCTO DE LA ACTIVIDAD DEL VOLCÁN UBINAS PARA ADOPTAR MEDIDAS DE PREPARACIÓN Fuente: La República ABRIL, 2015 1 INSTITUTO NACIONAL DE DEFENSA CIVIL (INDECI) CEPIG Informe de población expuesta ante caída de cenizas y gases, producto de la actividad del volcán Ubinas para adoptar medidas de preparación. Instituto Nacional de Defensa Civil. Lima: INDECI. Dirección de Preparación, 2015. Calle Dr. Ricardo Angulo Ramírez Nº 694 Urb. Corpac, San Isidro Lima-Perú, San Isidro, Lima Perú. Teléfono: (511) 2243600 Sitio web: www.indeci.gob.pe Gral. E.P (r) Oscar Iparraguirre Basauri Director de Preparación del INDECI Ing. Juber Ruiz Pahuacho Coordinador del CEPIG - INDECI Equipo Técnico CEPIG: Lic. Silvia Passuni Pineda Lic. Beneff Zuñiga Cruz Colaboradores: Pierre Ancajima Estudiante de Ing. Geológica 2 I. JUSTIFICACIÓN En el territorio nacional existen alrededor de 400 volcanes, la mayoría de ellos no presentan actividad. Los volcanes activos se encuentran hacia el sur del país en las regiones de Arequipa, Moquegua y Tacna, en parte de la zona volcánica de los Andes (ZVA), estos son: Coropuna, Valle de Andagua, Hualca Hualca, Sabancaya, Ampato, Misti en la Región Arequipa; Ubinas, Ticsani y Huaynaputina en la región Moquegua, y el Yucamani y Casiri en la región Tacna. El Volcán Ubinas es considerado el volcán más activo que tiene el Perú. Desde el año 1550, se han registrado 24 erupciones aprox. (Rivera, 2010). Estos eventos se presentan como emisiones intensas de gases y ceniza precedidos, en algunas oportunidades, de fuertes explosiones. Los registros históricos señalan que el Volcán Ubinas ha presentado un Índice máximo de Explosividad Volcánica (IEV) (Newhall & Self, 1982) de 3, considerado como moderado a grande.
    [Show full text]
  • Glacier Evolution in the South West Slope of Nevado Coropuna
    Glacier evolution in the South West slope of Nevado Coropuna (Cordillera Ampato, Perú) Néstor Campos Oset Master Project Master en Tecnologías de la Información Geográfica (TIG) Universidad Complutense de Madrid Director: Prof. David Palacios (UCM) Departamento de Análisis Geográfico Regional y Geografía Física Grupo de Investigación en Geografía Física de Alta Montaña (GFAM) ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank Dr. David Palacios for his help and guidance during the realization of this master thesis. I would also like to thank Dr. José Úbeda for his assistance and support. Thanks to GFAM-GEM for providing materials used for the analysis. And last but not least, a special thanks to my family, for their encouragement during this project and their unwavering support in all that I do. 2 TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 4 1.1 Geographic settings ................................................................................................ 4 1.2 Geologic settings .................................................................................................... 6 1.3 Climatic setting....................................................................................................... 8 1.4 Glacier hazards ..................................................................................................... 10 1.5 Glacier evolution .................................................................................................
    [Show full text]
  • GEOLOGY AS a WAY of TURISM PROMOTION.Pdf
    ENERGY AND MINES SECTOR TheSPECIAL of the Month GEOLOGICAL, MINING AND METALLURGICAL INSTITUTE Since 2006, the Geological, Mining and Metallurgical Institute - INGEMMET has the "Heritage and Geotourism" project. It promotes the conservation and enhancement of different areas across the country with a high geological value. 1 TOURIST ATTRACTIONS PROMOTED Paracas National Reserve BY INGEMMET It is located 250 kilometers south of Lima, Ica Marcahuasi Region. It is one of the few places where you can see remains of an ancient mountain It is a volcanic plateau located in the town of range with rocks over 400 million years old in eotourism makes reference to a type of G San Pedro de Casta, at 3 185 meters above strata and with plant remains, rocks with sustainable tourism. It aims to highlight the sea level on the left bank of the Santa Eulalia fossils from marine environments. There are geological diversity (geodiversity) and then river basin, and 80 kilometers east of Lima. 25 geosites inventoried by INGEMMET. the geological heritage (geoheritage) of a The geoforms of the Marcahuasi rock forest The geological information in the guide certain territory. Also, to promote the are the result of the effects of rain, snow, ice, elaborated by INGEMMET served as a script conservation of its resources heat and wind. They all molded diverse forms for the current Interpretation Center in the (geoconservation) and education in earth GEOLOGICAL in the volcanic deposits. In this way, it allows reserve, as well as for the signage of some sciences (geoeducation) which develops the visitor to imagine the strangest and most geosites such as La Catedral, Playa La Mina, awareness among the people.
    [Show full text]
  • Origin of Andradite in the Quaternary Volcanic Andahua Group, Central Volcanic Zone, Peruvian Andes
    Mineralogy and Petrology (2021) 115:257–269 https://doi.org/10.1007/s00710-021-00744-0 ORIGINAL PAPER Origin of andradite in the Quaternary volcanic Andahua Group, Central Volcanic Zone, Peruvian Andes Andrzej Gałaś1 & Jarosław Majka2,3 & Adam Włodek2 Received: 21 March 2020 /Accepted: 17 February 2021 / Published online: 13 March 2021 # The Author(s) 2021 Abstract Euhedral andradite crystals were found in trachyandesitic (latitic) lavas of the volcanic Andahua Group (AG) in the Central Andes. The AG comprises around 150 volcanic centers, most of wich are monogenetic. The studied andradite is complexly zoned (enriched in Ca and Al in its core and mantle, and in Fe in this compositionally homogenous rim). The core-mantle regions contain inclusions of anhydrite, halite, S- and Cl-bearing silicate glass, quartz, anorthite, wollastonite magnetite and clinopyroxene. The chemical compositions of the garnet and its inclusions suggest their contact metamorphic to pyrometamorphic origin. The observed zoning pattern and changes in the type and abundance of inclusions are indicative of an abrupt change in temperature and subsequent devolatilization of sulfates and halides during the garnet growth. This process is interpreted to have taken place entirely within a captured xenolith of evaporite-bearing wall rock in the host trachyandesitic magma. The devolitilization of sediments, especially sulfur-bearing phases, may have resulted in occasional but voluminous emissions of gases and may be regarded as a potential hazard associated with the AG volcanism. Keywords Andradite . Contact metamorphism . Contamination . Volcanoes . Andahua Group . Andes Introduction conditions and the tectonic environments in which they were formed (e.g., Spear 1993; Baxter et al.
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • South America ­ Accessscience from Mcgraw­Hill Education
    7/27/2015 South America ­ AccessScience from McGraw­Hill Education South America Article by: Salazar, Deborah A. Department of Geography, Oklahoma State University, Stillwater, Oklahoma. White, C. Langdon Formerly, Stanford University, Palo Alto, California. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097­8542.638200 (http://dx.doi.org/10.1036/1097­8542.638200) Content Regional characteristics Physiographic features Biotic features Deforestation and environmental contamination Bibliography Additional Readings The southernmost of the New World or Western Hemisphere continents, with three­fourths of it lying within the tropics. South America is approximately 4500 mi (7200 km) long and at its greatest width 3000 mi (4800 km). Its area is estimated to be about 7,000,000 mi2 (18,000,000 km2). South America has many unique physical features, such as the Earth's longest north­south mountain range (the Andes), highest waterfall (Angel Falls), highest navigable freshwater lake (Lake Titicaca), and largest expanse of tropical rainforest (Amazonia). The western side of the continent has a deep subduction trench offshore, whereas the eastern continental shelf is more gently sloping and relatively shallow. See also: Continent (/content/continent/158900) Regional characteristics South America has three distinct regions: the relatively young Andes Mountains located parallel to the western coastline, the older Guiana and Brazilian Highlands located near the eastern margins of the continent, and an extensive lowland plains, which occupies the central portion of the continent. The regions have distinct physiographic and biotic features. The Andes represent the highest and longest north­south mountain system on Earth. Altitudes often exceed 20,000 ft (6000 m) and perpetual snow tops many of the peaks, even along the Equator (Fig.
    [Show full text]
  • Prospecting Glacial Ages and Paleoclimatic Reconstructions Northeastward of Nevado Coropuna (16◦ S, 73◦ W, 6377 M), Arid Tropical Andes
    geosciences Article Prospecting Glacial Ages and Paleoclimatic Reconstructions Northeastward of Nevado Coropuna (16◦ S, 73◦ W, 6377 m), Arid Tropical Andes Jose Úbeda 1,2,3,* ID , Martí Bonshoms 2, Joshua Iparraguirre 1, Lucía Sáez 3, Ramón de la Fuente 3, Lila Janssen 3, Ronald Concha 1, Pool Vásquez 1 and Pablo Masías 1 1 Instituto Geológico Minero y Metalúrgico, Av. Canadá 1470, San Borja 15034, Peru; [email protected] (J.I.); [email protected] (R.C.); [email protected] (P.V.); [email protected] (P.M.) 2 Grupo de Investigación en Geografía Física de Alta Montaña, Departamento de Geografía, Universidad Complutense de Madrid, 28040 Madrid, Spain; [email protected] 3 Guías de Espeleología y Montaña (Speleology and Mountain Guides), Casilla del Mortero, Torremocha de Jarama, 28189 Madrid, Spain; [email protected] (L.S.); [email protected] (R.d.l.F.); [email protected] (L.J.) * Correspondence: [email protected]; Tel.: +34-656408790 Received: 19 July 2018; Accepted: 15 August 2018; Published: 20 August 2018 Abstract: This work investigates the timing, paleoclimatic framework and inter-hemispheric teleconnections inferred from the glaciers last maximum extension and the deglaciation onset in the Arid Tropical Andes. A study area was selected to the northeastward of the Nevado Coropuna, the volcano currently covered by the largest tropical glacier on Earth. The current glacier extent, the moraines deposited in the past and paleoglaciers at their maximum extension have been mapped. The present and past Equilibrium Line Altitudes (ELA and paleoELA) have been reconstructed and the chlorine-36 ages have been calculated, for preliminary absolute dating of glacial and volcanic processes.
    [Show full text]