6 X 10.Long New.P65
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Robotics. Sensors and Actuators
Introduction to Computer Vision and Robotics Florian Teich and Tomas Kulvicius* Introduction to Robotics. Sensors and Actuators Large portion of slides are adopted from Florentin Wörgötter, John Hallam and Simon Reich *[email protected] Perception-Action loop Environment Object Eyes Action Perception Arm Brain Perception-Action loop (cont.) Environment Sense Object Cameras Action Perception Robot-arm Computer Act Plan Outline of the course • L1.CV1: Introduction to Computer Vision. Thresholding, Filtering & Connected Coomponents • L2.CV2: Bilateral Filtering, Morphological Operators & Edge Detection • L3.CV3: Corner Detection & Non-Local Filtering • L4.R1: Introduction to Robotics. Sensors and actuators • L5.R2: Movement generation methods • L6.R3: Path planning algorithms • L7.CV4: Line/Circle Detection, Template Matching & Feature Detection • L8.CV5: Segmentation • L9.CV6: Fate Detection, Pedestrian Tracking & Computer Vision in 3D • L10.R4: Robot kinematics and control • L11.R5: Learning algorithms in robotics I: Supervised and unsupervised learning • L12.R6: Learning algorithms in robotics II: Reinforcement learning and genetic algorithms Introduction to Robotics History of robotics • Karel Čapek was one of the most influential Czech writers of the 20th century and a Nobel Prize nominee (1936). • He introduced and made popular the frequently used international word robot, which first appeared in his play R.U.R. (Rossum's Universal Robots) in 1921. 1890-1938 • “Robot” comes from the Czech word “robota”, meaning “forced labor” • Karel named his brother Josef Čapek as the true inventor of the word robot. History of robotics (cont.) • The word "robotics" also comes from science fiction - it first appeared in the short story "Runaround" (1942) by American writer Isaac Asimov. -
Claude Bernard
DOI: 10.1590/0004-282X20130239 HISTORICAL NOTES Claude Bernard: bicentenary of birth and his main contributions to neurology Claude Bernard: bicentenário do nascimento e suas principais contribuições à neurologia Marleide da Mota Gomes1, Eliasz Engelhardt2 ABSTRACT Claude Bernard (1813-1878) followed two main research paths: the chemical and physiological study of digestion and liver function, along with experimental section of nerves and studies on sympathetic nerves. Curare studies were, for example, of longstanding interest. His profound mental creativity and hand skillfulness, besides methodology quality, directed his experiments and findings, mainly at the Collège de France. His broader and epistemological concerns were carried out at the Sorbonne and later at the Muséum national d’Histoire naturelle. His insight gave clues to define the “ milieu intérieur”, later known as “homeostasis”, and grasp the brain complexity. Bernard followed and surpassed his master François Magendie who also fought against dogmas and laid the foundations of experimental medicine, and its main heinous tool – vivisection. Bernard created the methodological bases of experimental medicine, and collected honors as a renowned researcher. Keywords: Claude Bernard, sympathetic nerves, homeosthasis, epistemology, history of neurosciences. RESUMO Em suas pesquisas, Claude Bernard (1813-1878) seguiu dois caminhos principais: o estudo fisiológico e químico da digestão e da função hepática; a seção experimental de nervos e os estudos sobre nervos simpáticos. Estudos sobre curare, por exemplo, foram de interesse duradouro. Suas profundas criatividade mental e habilidade manual, além da qualidade metodológica, conduziram às suas experiências e descobertas, principalmente no Collège de France. Seus interesses sobre temas epistemológicos mais amplos foram conduzidos na Sorbonne e, posteriormente, no Muséum national d’Histoire naturelle. -
For Biological Systems, Maintaining Essential Variables Within Viability Limits Is Not Passive
Second-Order Cybernetics Maintaining Essential Variables Is Not Passive Matthew Egbert « 8 » Proponents of the enactive ap- sible failure to do so will necessarily result “ the survival standard itself is inadequate for proach agree that the homeostat’s double in the homeostat’s death” (§10). However, at the evaluation of life. If mere assurance of per- feedback architecture made an important the level of its physical body, an organism is manence were the point that mattered, life should contribution, but at the same time they always far-from-equilibrium with respect to not have started out in the first place. It is essen- struggle to overcome its limitations (Ike- its environment. Falling into an equilibrium tially precarious and corruptible being, an ad- gami & Suzuki 2008). Franchi briefly refers is the same as dying, because the organism venture in mortality, and in no possible form as to evolutionary robotics models inspired by would lose its ability to do the work of self- assured of enduring as an inorganic body can be. this ultrastability mechanism, but he does producing its own material identity, i.e., the Not duration as such, but ‘duration of what?’ is the not mention that further progress has been very process that ensures that the double question.” (Jonas 2001: 106) difficult. Ezequiel Di Paolo (2003) showed feedback loop between behavior and inter- that implementing Ashby’s mechanism is a nal homeostasis is intrinsically connected Tom Froese graduated with a D.Phil. in cognitive science significant step toward more organism-like within a whole. Only non-living matter can from the Univ. -
1 Jeffrey Gu, Nicolas Wilmer Professor Evan Donahue ISS390S 12/7/18 the Evolution of the Roomba and the AI Field Recently, the C
1 Jeffrey Gu, Nicolas Wilmer Professor Evan Donahue ISS390S 12/7/18 The Evolution of the Roomba and the AI Field Recently, the consumer marketplace has been flooded with a number of intelligent technologies, including many that integrate virtual assistants such as Amazon’s Alexa and Apple’s Siri. Even household appliances like Samsung’s newest refrigerators integrate “smart” technologies. For many in the tech world, artificial intelligence (AI) has long represented the future of cybernetics and technology. For many years, however, AI technologies were not marketed to the average consumer. Rather, most AI companies were focused on corporate, military and governmental applications. Thus, there seemed to be a marked difference in expectations for AI between ordinary people and those involved in the AI field. When asked about the potential of AI, many people would passionately discuss its future applications in education and healthcare.1 However, Mitch Waldrop during a panel discussion featuring several prominent figures in the AI field noted that these applications “seem to be in roughly the inverse priority to what AI people give these subjects.”2 This disconnect began to disappear in 2002, when iRobot, a company founded in 1990 by three former MIT AI Lab scientists, released the Roomba, a robot that autonomously roams and cleans the floors of your house. The commercial success of the Roomba and its business model brought the AI conversation to households around the world. 1 McDermott, Drew, M. Mitchell Waldrop, B. Chandrasekaran, John McDermott, and Roger Schank. 1985. “The Dark Ages of AI: A Panel Discussion at AAAI-84.” AI Magazine 6 (3): 122–122. -
D4d78cb0277361f5ccf9036396b
critical terms for media studies CRITICAL TERMS FOR MEDIA STUDIES Edited by w.j.t. mitchell and mark b.n. hansen the university of chicago press Chicago and London The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2010 by The University of Chicago All rights reserved. Published 2010 Printed in the United States of America 18 17 16 15 14 13 12 11 10 1 2 3 4 5 isbn- 13: 978- 0- 226- 53254- 7 (cloth) isbn- 10: 0- 226- 53254- 2 (cloth) isbn- 13: 978- 0- 226- 53255- 4 (paper) isbn- 10: 0- 226- 53255- 0 (paper) Library of Congress Cataloging-in-Publication Data Critical terms for media studies / edited by W. J. T. Mitchell and Mark Hansen. p. cm. Includes index. isbn-13: 978-0-226-53254-7 (cloth : alk. paper) isbn-10: 0-226-53254-2 (cloth : alk. paper) isbn-13: 978-0-226-53255-4 (pbk. : alk. paper) isbn-10: 0-226-53255-0 (pbk. : alk. paper) 1. Literature and technology. 2. Art and technology. 3. Technology— Philosophy. 4. Digital media. 5. Mass media. 6. Image (Philosophy). I. Mitchell, W. J. T. (William John Th omas), 1942– II. Hansen, Mark B. N. (Mark Boris Nicola), 1965– pn56.t37c75 2010 302.23—dc22 2009030841 The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ansi z39.48- 1992. Contents Introduction * W. J. T. Mitchell and Mark B. N. Hansen vii aesthetics Art * Johanna Drucker 3 Body * Bernadette Wegenstein 19 Image * W. -
Developmental Reasoning and Planning with Robot Through Enactive Interaction with Human Maxime Petit
Developmental reasoning and planning with robot through enactive interaction with human Maxime Petit To cite this version: Maxime Petit. Developmental reasoning and planning with robot through enactive interaction with human. Automatic. Université Claude Bernard - Lyon I, 2014. English. NNT : 2014LYO10037. tel-01015288 HAL Id: tel-01015288 https://tel.archives-ouvertes.fr/tel-01015288 Submitted on 26 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N˚d’ordre 37 - 2014 Année 2013 THESE DE L’UNIVERSITE DE LYON présentée devant L’UNIVERSITE CLAUDE BERNARD LYON 1 Ecole Doctorale Neurosciences et Cognition pour l’obtention du Diplôme de Thèse (arrété du 7 août 2006) Discipline : SCIENCES COGNITIVES Option : INFORMATIQUE présentée et soutenue publiquement le 6 Mars 2014 par Maxime Raisonnement et Planification Développementale d’un Robot via une Interaction Enactive avec un Humain Developmental Reasoning and Planning with Robot through Enactive Interaction with Human dirigée par Peter F. Dominey devant le jury composé de : Pr. Rémi Gervais Président du jury Pr. Giorgio Metta Rapporteur Pr. Philippe Gaussier Rapporteur Pr. Chrystopher Nehaniv Examinateur Dr. Jean-Christophe Baillie Examinateur Dr. Peter Ford Dominey Directeur de thèse 2 Stem-Cell and Brain Research Insti- École doctorale Neurosciences et Cog- tute, INSERM U846 nition (ED 476 - NSCo) 18, avenue Doyen Lepine UCBL - Lyon 1 - Campus de Gerland 6975 Bron Cedex 50, avenue Tony Garnier 69366 Lyon Cedex 07 Pour mon père. -
The Cybernetic Brain
THE CYBERNETIC BRAIN THE CYBERNETIC BRAIN SKETCHES OF ANOTHER FUTURE Andrew Pickering THE UNIVERSITY OF CHICAGO PRESS CHICAGO AND LONDON ANDREW PICKERING IS PROFESSOR OF SOCIOLOGY AND PHILOSOPHY AT THE UNIVERSITY OF EXETER. HIS BOOKS INCLUDE CONSTRUCTING QUARKS: A SO- CIOLOGICAL HISTORY OF PARTICLE PHYSICS, THE MANGLE OF PRACTICE: TIME, AGENCY, AND SCIENCE, AND SCIENCE AS PRACTICE AND CULTURE, A L L PUBLISHED BY THE UNIVERSITY OF CHICAGO PRESS, AND THE MANGLE IN PRAC- TICE: SCIENCE, SOCIETY, AND BECOMING (COEDITED WITH KEITH GUZIK). THE UNIVERSITY OF CHICAGO PRESS, CHICAGO 60637 THE UNIVERSITY OF CHICAGO PRESS, LTD., LONDON © 2010 BY THE UNIVERSITY OF CHICAGO ALL RIGHTS RESERVED. PUBLISHED 2010 PRINTED IN THE UNITED STATES OF AMERICA 19 18 17 16 15 14 13 12 11 10 1 2 3 4 5 ISBN-13: 978-0-226-66789-8 (CLOTH) ISBN-10: 0-226-66789-8 (CLOTH) Library of Congress Cataloging-in-Publication Data Pickering, Andrew. The cybernetic brain : sketches of another future / Andrew Pickering. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-66789-8 (cloth : alk. paper) ISBN-10: 0-226-66789-8 (cloth : alk. paper) 1. Cybernetics. 2. Cybernetics—History. 3. Brain. 4. Self-organizing systems. I. Title. Q310.P53 2010 003’.5—dc22 2009023367 a THE PAPER USED IN THIS PUBLICATION MEETS THE MINIMUM REQUIREMENTS OF THE AMERICAN NATIONAL STANDARD FOR INFORMATION SCIENCES—PERMA- NENCE OF PAPER FOR PRINTED LIBRARY MATERIALS, ANSI Z39.48-1992. DEDICATION For Jane F. CONTENTS Acknowledgments / ix 1. The Adaptive Brain / 1 2. Ontological Theater / 17 PART 1: PSYCHIATRY TO CYBERNETICS 3. -
Boden Grey Walter's
Grey Walter’s Anticipatory Tortoises Margaret Boden Grey Walter and the Ratio Club The British physiologist William Grey Walter (1910–1977) was an early member of the interdisciplinary Ratio Club. This was a small dining club that met several times a year from 1949 to 1955, with a nostalgic final meeting in 1958, at London’s National Hospital for Neurological Diseases. The founder-secretary was the neurosurgeon John Bates, who had worked (alongside the psychologist Kenneth Craik) on servomechanisms for gun turrets during the war. The club was a pioneering source of ideas in what Norbert Wiener had recently dubbed ‘cybernetics’.1 Indeed, Bates’ archive shows that the letter inviting membership spoke of ‘people who had Wiener’s ideas before Wiener’s book appeared’.2 In fact, its founders had considered calling it the Craik Club, in memory of Craik’s work—not least, his stress on ‘synthetic’ models of psychological theories.3 In short, the club was the nucleus of a thriving British tradition of cybernetics, started independently of the transatlantic version. The Ratio members—about twenty at any given time—were a very carefully chosen group. Several of them had been involved in wartime signals research or intelligence work at Bletchley Park, where Alan Turing had used primitive computers to decipher the Nazis’ Enigma code.4 They were drawn from a wide range of disciplines: clinical psychiatry and neurology, physiology, neuroanatomy, mathematics/statistics, physics, astrophysics, and the new areas of control engineering and computer science.5 The aim was to discuss novel ideas: their own, and those of guests—such as Warren McCulloch. -
Kunst Und Kybernetik“
DIPLOMARBEIT Titel der Diplomarbeit „Kunst und Kybernetik“ Verfasserin Felicia Hönig angestrebter akademischer Grad Magistra der Philosophie (Mag. phil.) Wien, im September 2008 Studienkennzahl lt. Studienblatt A296 Studienrichtung lt. Studienblatt Philosophie Betreuer: Ao. Univ. –Prof. Dr. Herbert Hrachovec Inhalt Vorwort .......................................................................................5 1. Einleitung................................................................................7 2. Kybernetik, der Anfang.........................................................11 2.1. Der Begriff .................................................................................12 2.2. Norbert Wiener ..........................................................................14 2.3. Die Bausteine des Theorie-Werdens, drei Publikationen aus den 1940er Jahren...........................................................................15 2.3.1. Norbert Wiener, Arturo Rosenblueth, and Julian Bigelow , 1943, „Behavior, Purpose and Teleology“, Philosophy of Science 10: 18-24. ........................................................................................................ 15 2.3.2. Warren McCulloch, Walter Pitts: „A Logical Calculus of the Ideas Immanent in Nervous Activity“. In: Bulletin of Mathematical Biophysics 5 (1943) 115-133........................................................... 18 2.3.3. C. E. Shannon, „A mathematical theory of communication“, Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October, -
The Biological Turn in Computation, Communication, and Control
Vital Networks: The Biological Turn in Computation, Communication, and Control By Sandra Robinson A thesis submitted to the Graduate Program in Sociology in conformity with the requirements for the Degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada January 2014 Copyright © Sandra Robinson, 2014 Abstract Networks, such as the Internet, are comprised of dense information flows with expansive, multi-directional reach that continuously change—and this changeability is what keeps the network active, relative, and vital. I call the form of network exhibiting those dynamic features the vital network. This form of network is not simply the outcome of connectivity and communication between diverse affiliative objects and actors such as cell phones and humans that together convey a sense or feeling of ‘aliveness;’ it is the outcome of deliberate software programming goals for communication systems inspired by nonhuman, self-organizing biological life. The biological turn in computation produces an organizing logic for the vital network that self-propagates connections and disconnections, services, collectives, and structures proximal to forms that feel vital and dynamic. The vital network can do things, it has capacities to act, and different material consequences emerge out of the organization and coordination of communication with particular implications for human privacy, autonomy, and network transparency. In this dissertation, I examine the biological turn in computing as a crucial feature within a development program for the design of digital network control systems that rely on self-regulation and autonomous communication processes intentionally constructed to be non-transparent—to be unseen. I explore nonhuman models of control as a response to this requirement considered through three objects: microbe, simulation, and control, each understood in process terms that disclose what these things do and how they act. -
Claude Bernard JMS Pearce MD, FRCP Emeritus Consultant Neurologist, Department of Neurology, Hull Royal Infirmary, UK
SPECIAL FEATURE – HISTORY OF NEUROLOGY Claude Bernard JMS Pearce MD, FRCP Emeritus Consultant Neurologist, Department of Neurology, Hull Royal Infirmary, UK. “Mais la méthode expérimentale a pour objet de transformer Correspondence to: cette conception a priori fondée sur une intuition..., en une J.M.S. Pearce, 304 Beverley Road Anlaby, East Yorks, HU10 7BG, UK. Email: [email protected] interprétation a posteriori établie sur l’étude expérimentale des phénomènes...” Claude Bernard: Introduction à l’étude de la Conflict of Interest statement: None declared. médecine expérimentale. Date first submitted: 10/7/17 [“But the experimental method aims at transforming this Acceptance date: 11/07/17 a priori conception based on a vague intuition...into an a To cite: Pearce JMS, ACNR 2017;17(2);14-15 posteriori interpretation established on the experimental study of phenomena...”] he name Claude Bernard (1813-1878) lodgings with Charles Lasègue. He studied ings of the liver and showed that not only did it is known across the world to medical under François Magendie (1783-1855) in the secrete bile but was, like the pancreas, an ‘organ T students for the Claude Bernard-Horner’s Hotel Dieu. Magendie, impressed by Bernard’s of internal secretions’ (enzymes) that converted syndrome; but more important are his ground- dissecting skills appointed him in 1841 as labora- glycogen into glucose (glycogenolysis), and breaking works in physiology, particularly tory assistant. could store glucose in the form of glycogen homeostasis. Peter Wise provides an excellent, An ‘arranged marriage’ with the prosperous (glycogenesis).5 detailed account of his life and bibliography.1 Marie Françoise Martin was engineered in 1845 To see whether the release of glucose from Claude Bernard was one of the epoch- by his mentors, Pierre Rayer and Théophile- liver glycogen depended on a neural stimulus making giants of experimental medicine, Jules Pelouze to allow their protégé to develop via the vagus, in a classical experiment in who dominated the nineteenth century. -
The First Biologically Inspired Robots Owen Holland
Robotica (2003) volume 21, pp. 351–363. © 2003 Cambridge University Press DOI: 10.1017/S0263574703004971 Printed in the United Kingdom The first biologically inspired robots Owen Holland Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (UK). E-mail: [email protected] (Received in Final Form: June 15, 2002) SUMMARY Star. After attending Westminster School, he studied Thie first biologically inspired robots, the famous electro- physiology at Cambridge, and began his research career in mechanical tortoises, were designed and built in 1949 by W. neurophysiology with a dissertation on ‘Conduction in Grey Walter. This paper reviews their origins in Walter’s Nerve and Muscle’. In 1935 he became interested in the new theories of the brain and the nature of life, and uses area of electroencephalography, and quickly showed a talent contemporary unpublished notes and photographs to assess for developing new electronic equipment, which he used to their significance then and now. make a series of fundamental technical and clinical discoveries. In 1939 he was appointed Director of Physiol- ogy at the newly founded Burden Neurological Institute KEYWORDS: First biological robots; Robot tortoises. (BNI) in Bristol; he remained there for the rest of his career. His war work involved him in a variety of activities, including the development of radar, and the use of humans INTRODUCTION in control loops. After the war he recruited a brilliant group Most articles and books on the history of robotics make only 1,2,3 of ex-radar engineers to work with him at the BNI; their a passing reference to Grey Walter’s robot tortoises, technical expertise, combined with Grey Walter’s vision and regarding them as quaint period curiosities quite unrelated creativity, made a major contribution to the development of to our intellectually and technically sophisticated modern electroencephalography over the next twenty years.