The Biological Turn in Computation, Communication, and Control

Total Page:16

File Type:pdf, Size:1020Kb

The Biological Turn in Computation, Communication, and Control Vital Networks: The Biological Turn in Computation, Communication, and Control By Sandra Robinson A thesis submitted to the Graduate Program in Sociology in conformity with the requirements for the Degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada January 2014 Copyright © Sandra Robinson, 2014 Abstract Networks, such as the Internet, are comprised of dense information flows with expansive, multi-directional reach that continuously change—and this changeability is what keeps the network active, relative, and vital. I call the form of network exhibiting those dynamic features the vital network. This form of network is not simply the outcome of connectivity and communication between diverse affiliative objects and actors such as cell phones and humans that together convey a sense or feeling of ‘aliveness;’ it is the outcome of deliberate software programming goals for communication systems inspired by nonhuman, self-organizing biological life. The biological turn in computation produces an organizing logic for the vital network that self-propagates connections and disconnections, services, collectives, and structures proximal to forms that feel vital and dynamic. The vital network can do things, it has capacities to act, and different material consequences emerge out of the organization and coordination of communication with particular implications for human privacy, autonomy, and network transparency. In this dissertation, I examine the biological turn in computing as a crucial feature within a development program for the design of digital network control systems that rely on self-regulation and autonomous communication processes intentionally constructed to be non-transparent—to be unseen. I explore nonhuman models of control as a response to this requirement considered through three objects: microbe, simulation, and control, each understood in process terms that disclose what these things do and how they act. It is appropriate to the concerns of this dissertation to think of these as object-processes ii occurring within three moments or transverse becomings: first, in terms of Gilles Deleuze’s notion of differentiation from the one to the many; secondly, from organism to simulation through the use of models to describe microbial processes in informatic terms; and finally, from description to control through the progression in computing from an emphasis on structure and descriptive procedures, to processes of control. Given that so much of contemporary life is structured by communication technology, my study points to the need for an ethics of control to imagine how much and how deep control should go when considering the organization appropriate to our shared, technically enabled, sphere of communication. iii Acknowledgements I would like to thank my dissertation committee of Rob Beamish, Christine Overall, my external examiner, Claire Colebrook, and Allison Goebel who graciously stepped in to serve on my committee at the last moment. Each of you challenged me in ways that were thoughtful and constructive, and I enjoyed the opportunity to engage with each of you at my defense. I owe a particular debt of gratitude to my supervisor Myra Hird for her intellectual attention to my work and for supporting me across this long project—thank you, Myra, for your support and your many contributions along this intellectual journey. I would also like to thank Sheryl Hamilton who provided particular expertise, intellectual engagement, and inspiration as an additional committee member from outside the Queen’s community. I am also very grateful for the support of the Social Sciences and Humanities Research Council and the Department of Sociology at Queen’s University. Toward the end of this project, I also had the support of colleagues at Carleton University, in the Communication Studies Program within the School of Journalism and Communication, who encouraged me at every turn. And finally, I would like to thank my many friends and family including Pam, Sacha, Heather, Roger, Karyn, Bruce, David, and especially my parents for their unparalleled support and love. Without you I would not have made it through my annus horribilis and arrived here, which is, afterall, really another beginning. iv Table of Contents Abstract .............................................................................................................................. ii Acknowledgements ........................................................................................................... iv Table of Contents ............................................................................................................... v List of Tables .................................................................................................................... viii List of Figures ..................................................................................................................... ix Chapter One: Introduction ................................................................................................. 1 Chapter Two: The Literature Review: Outlines, Edges, and Spaces ................................. 15 Introduction .......................................................................................................... 15 Control .................................................................................................................. 17 Networks .............................................................................................................................. 17 Cybernetics .......................................................................................................................... 22 From Cybernetics to the Artificial Sciences .......................................................... 28 Self-organization ................................................................................................... 32 The Self-organizing Organism ..................................................................................... 34 Ants ....................................................................................................................................... 34 Microbes .............................................................................................................................. 38 Life-Like and Like Life ............................................................................................ 42 Autonomy ............................................................................................................. 47 Autonomy in Biological Systems: Autopoesis ................................................................ 49 Systems and Second-order Cybernetics ........................................................................... 52 Autonomy in Digital Systems ................................................................................................ 54 Posthumanism ...................................................................................................... 59 Conclusion ............................................................................................................ 67 Chapter Three Theory and Methodology ......................................................................... 69 Introduction .......................................................................................................... 69 Theorizing the Vital Network ................................................................................ 72 Vitalism ................................................................................................................................. 72 Communication ................................................................................................................. 76 Assemblages: A Space of Possibility ......................................................................... 81 Models and Simulations ............................................................................................... 85 Methodology ........................................................................................................ 90 The Research Process ..................................................................................................... 92 v Chapter Summary ............................................................................................... 107 Chapter Four From a Philosophy of Objects to a Philosophy of Process ........................ 113 Introduction ........................................................................................................ 113 Thinking With Matter ......................................................................................... 115 Thinking With Bergson ........................................................................................ 120 Thinking With Deleuze ........................................................................................ 125 Univocity ............................................................................................................................ 134 Synthesis ............................................................................................................................. 136 Conclusion .......................................................................................................... 137 Chapter Five Vital Communication ................................................................................. 140 Introduction .......................................................................................................
Recommended publications
  • Introduction to Robotics. Sensors and Actuators
    Introduction to Computer Vision and Robotics Florian Teich and Tomas Kulvicius* Introduction to Robotics. Sensors and Actuators Large portion of slides are adopted from Florentin Wörgötter, John Hallam and Simon Reich *[email protected] Perception-Action loop Environment Object Eyes Action Perception Arm Brain Perception-Action loop (cont.) Environment Sense Object Cameras Action Perception Robot-arm Computer Act Plan Outline of the course • L1.CV1: Introduction to Computer Vision. Thresholding, Filtering & Connected Coomponents • L2.CV2: Bilateral Filtering, Morphological Operators & Edge Detection • L3.CV3: Corner Detection & Non-Local Filtering • L4.R1: Introduction to Robotics. Sensors and actuators • L5.R2: Movement generation methods • L6.R3: Path planning algorithms • L7.CV4: Line/Circle Detection, Template Matching & Feature Detection • L8.CV5: Segmentation • L9.CV6: Fate Detection, Pedestrian Tracking & Computer Vision in 3D • L10.R4: Robot kinematics and control • L11.R5: Learning algorithms in robotics I: Supervised and unsupervised learning • L12.R6: Learning algorithms in robotics II: Reinforcement learning and genetic algorithms Introduction to Robotics History of robotics • Karel Čapek was one of the most influential Czech writers of the 20th century and a Nobel Prize nominee (1936). • He introduced and made popular the frequently used international word robot, which first appeared in his play R.U.R. (Rossum's Universal Robots) in 1921. 1890-1938 • “Robot” comes from the Czech word “robota”, meaning “forced labor” • Karel named his brother Josef Čapek as the true inventor of the word robot. History of robotics (cont.) • The word "robotics" also comes from science fiction - it first appeared in the short story "Runaround" (1942) by American writer Isaac Asimov.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,513,329 B2 Lake Et Al
    USOO8513329B2 (12) United States Patent (10) Patent No.: US 8,513,329 B2 Lake et al. (45) Date of Patent: Aug. 20, 2013 (54) CHEMICAL ADDITIVES TO MAKE 6,296,889 B1 10/2001 Ott et al. POLYMERIC MATERALS 6,635,692 B1 10/2003 Christie et al. 7,037,983 B2 5/2006 Huang et al. BODEGRADABLE 7,053,130 B2 5/2006 Nagarajan 7,067,596 B2 6/2006 Bastioli et al. (75) Inventors: John Allen Lake, Cedar Crest, NM 7,265,160 B2 * 9/2007 Oka et al. ..................... 521 50.5 (US); Samuel David Adams, 7,368,503 B2 5/2008 Hale Albuquerque, NM (US) 7,369,503 B2 * 5/2008 Takahashi et al. ............ 370,236 s 7,560,266 B2 7/2009 Bramucci et al. 7,812,066 B2 10/2010 Takenaka et al. (73) Assignee: Bio-Tec Environmental, LLC, 7.816,424 B2 10/2010 Takahashi et al. Albuquerque, NM (US) 8.222,316 B2 7/2012 Lake et al. 2003. O157214 A1 8/2003 Bonsignore et al. (*) Notice: Subject to any disclaimer, the term of this 2004.0068059 Al 42004 Katayama et al. patent is extended or adjusted under 35 3.SSA A. 2. MEC. et ca.ea U.S.C. 154(b) by 158 days. 2005. O1541 14 A1 7, 2005 Hale 2005/O181157 A1 8, 2005 Otome (21) Appl. No.: 12/113,844 2005/0181158 A1 8/2005 Otome et al. 2005/0208095 A1 9, 2005 Hunter et al. (22) Filed: May 1, 2008 2007, OO 10632 A1 1/2007 Kaplanet al.
    [Show full text]
  • For Biological Systems, Maintaining Essential Variables Within Viability Limits Is Not Passive
    Second-Order Cybernetics Maintaining Essential Variables Is Not Passive Matthew Egbert « 8 » Proponents of the enactive ap- sible failure to do so will necessarily result “ the survival standard itself is inadequate for proach agree that the homeostat’s double in the homeostat’s death” (§10). However, at the evaluation of life. If mere assurance of per- feedback architecture made an important the level of its physical body, an organism is manence were the point that mattered, life should contribution, but at the same time they always far-from-equilibrium with respect to not have started out in the first place. It is essen- struggle to overcome its limitations (Ike- its environment. Falling into an equilibrium tially precarious and corruptible being, an ad- gami & Suzuki 2008). Franchi briefly refers is the same as dying, because the organism venture in mortality, and in no possible form as to evolutionary robotics models inspired by would lose its ability to do the work of self- assured of enduring as an inorganic body can be. this ultrastability mechanism, but he does producing its own material identity, i.e., the Not duration as such, but ‘duration of what?’ is the not mention that further progress has been very process that ensures that the double question.” (Jonas 2001: 106) difficult. Ezequiel Di Paolo (2003) showed feedback loop between behavior and inter- that implementing Ashby’s mechanism is a nal homeostasis is intrinsically connected Tom Froese graduated with a D.Phil. in cognitive science significant step toward more organism-like within a whole. Only non-living matter can from the Univ.
    [Show full text]
  • 1 Jeffrey Gu, Nicolas Wilmer Professor Evan Donahue ISS390S 12/7/18 the Evolution of the Roomba and the AI Field Recently, the C
    1 Jeffrey Gu, Nicolas Wilmer Professor Evan Donahue ISS390S 12/7/18 The Evolution of the Roomba and the AI Field Recently, the consumer marketplace has been flooded with a number of intelligent technologies, including many that integrate virtual assistants such as Amazon’s Alexa and Apple’s Siri. Even household appliances like Samsung’s newest refrigerators integrate “smart” technologies. For many in the tech world, artificial intelligence (AI) has long represented the future of cybernetics and technology. For many years, however, AI technologies were not marketed to the average consumer. Rather, most AI companies were focused on corporate, military and governmental applications. Thus, there seemed to be a marked difference in expectations for AI between ordinary people and those involved in the AI field. When asked about the potential of AI, many people would passionately discuss its future applications in education and healthcare.1 However, Mitch Waldrop during a panel discussion featuring several prominent figures in the AI field noted that these applications “seem to be in roughly the inverse priority to what AI people give these subjects.”2 This disconnect began to disappear in 2002, when iRobot, a company founded in 1990 by three former MIT AI Lab scientists, released the Roomba, a robot that autonomously roams and cleans the floors of your house. The commercial success of the Roomba and its business model brought the AI conversation to households around the world. 1 McDermott, Drew, M. Mitchell Waldrop, B. Chandrasekaran, John McDermott, and Roger Schank. 1985. “The Dark Ages of AI: A Panel Discussion at AAAI-84.” AI Magazine 6 (3): 122–122.
    [Show full text]
  • Forms of Intelligence. Concept Cards for Co-Species Care
    forms of intelligence. concept cards for co-species care. by kaajal modi 2 forms of intelligence. concept cards for co-species care. 3 contents. the cards. 4 card footnotes. 7 cross-species collaborators. 34 the team. 39 symbols & symbioses. 41 Forms of Intelligence is an ongoing project led by Knowle references. 47 West Media Centre exploring how expanded understandings of ‘intelligence’ can inspire the design and creation of new technologies and systems for the benefit of all. Commissioned by Knowle West Media Centre and Digital Cultures Research Centre © September 2020 4 forms of intelligence. concept cards for co-species care. 5 who are they for? the The cards are designed to act as conversation starters and inspirational prompts. for anyone involved in a making process. How often do you challenge yourself to stop and think cards. differently, to see from a different perspective, or think deeply about who or what is being impacted by your decisions? The cards are draw on different forms of animal, plant and microbial intelligence that often get overlooked in human- what are they? led projects and processes. They also invite you to reflect on The cards and this booklet were commissioned by Knowle the humans who are connected to these organisms, whether West Media Centre as part of the Forms of Intelligence directly, by working with them, or indirectly, by sharing land project, and were made by artist and researcher Kaajal Modi. and resources with them. The cards have been made in response to and are inspired by If you are looking for inspiration and ready to open your a series of collaborative workshops between eight people from mind to think more expansively about all living beings, then Knowle West, Bristol, Kent, and Colombia with expertise in these cards are for you.
    [Show full text]
  • Genome-Inspired Chemical Exploration of Marine Fungus Aspergillus Fumigatus MF071
    marine drugs Article Genome-Inspired Chemical Exploration of Marine Fungus Aspergillus fumigatus MF071 Jianying Han 1,2 , Miaomiao Liu 1 , Ian D. Jenkins 1, Xueting Liu 3, Lixin Zhang 2,3, Ronald J. Quinn 1,* and Yunjiang Feng 1,* 1 Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; jianying.han@griffithuni.edu.au (J.H.); miaomiao.liu@griffith.edu.au (M.L.); i.jenkins@griffith.edu.au (I.D.J.) 2 Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 3 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; [email protected] * Correspondence: r.quinn@griffith.edu.au (R.J.Q.); y.feng@griffith.edu.au (Y.F.); Tel.: +61-7-3735-6006 (R.J.Q.); +61-7-3735-8367 (Y.F.) Received: 8 June 2020; Accepted: 2 July 2020; Published: 6 July 2020 Abstract: The marine-derived fungus Aspergillus fumigatus MF071, isolated from sediment collected from the Bohai Sea, China, yielded two new compounds 19S,20-epoxy-18-oxotryprostatin A (1) and 20-hydroxy-18-oxotryprostatin A (2), in addition to 28 known compounds (3–30). The chemical structures were established on the basis of 1D, 2D NMR and HRESIMS spectroscopic data. This is the first report on NMR data of monomethylsulochrin-4-sulphate (4) and pseurotin H (10) as naturally occurring compounds. Compounds 15, 16, 20, 23, and 30 displayed weak antibacterial activity (minimum inhibitory concentration: 100 µg/mL). Compounds 18 and 19 exhibited strong activity against S.
    [Show full text]
  • Macromolecular Networks and Intelligence in Microorganisms
    HYPOTHESIS AND THEORY ARTICLE published: 22 July 2014 doi: 10.3389/fmicb.2014.00379 Macromolecular networks and intelligence in microorganisms Hans V. Westerhoff 1,2,3 †, Aaron N. Brooks 4,5 †, Evangelos Simeonidis 4,6 †, Rodolfo García-Contreras 7†, Fei He 8 , Fred C. Boogerd 1, Victoria J. Jackson 9 , Valeri Goncharuk 10,11,12 and Alexey Kolodkin 4,6 * 1 Department of Molecular Cell Physiology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands 2 Manchester Centre for Integrative Systems Biology, The University of Manchester, Manchester, UK 3 Synthetic Systems Biology, University of Amsterdam, Amsterdam, Netherlands 4 Institute for Systems Biology, Seattle, WA, USA 5 Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA 6 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg 7 Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico 8 Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK 9 School of Computer Science, The University of Manchester, Manchester, UK 10 Netherlands Institute for Neuroscience, Amsterdam, Netherlands 11 Russian Cardiology Research Center, Moscow, Russia 12 Department of Medicine, Center for Alzheimer and Neurodegenerative Research, University of Alberta, Edmonton, AB, Canada Edited by: Living organisms persist by virtue of complex interactions among many components Kevin Bradley Clark, Veterans Affairs organized into dynamic, environment-responsive networks that span multiple scales and Greater Los Angeles Healthcare System, USA dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate Reviewed by: Francisca Fernández-Piñas, and interpret this information, and then activate a response.
    [Show full text]
  • AI-To-Microbe Architecture: Simulation, Intelligence, Consciousness
    Dennis Dollens Universitat Internacional de Catalunya, Barcelona. ESARQ [email protected] AI-to-Microbe Architecture: Simulation, Intelligence, Consciousness Abstract Keywords This paper probes questions of how big machines— Metabolic Architecture, Artificial Intelligence (AI), buildings—can function as hybrid metabolic/AI ALife, Alan Turing, Ludwig Wittgenstein, Computational organisms. Focusing on AI, artificial life (ALife), and Simulation. microbial intelligence I look through the lens of Ludwig Wittgenstein’s Tractatus and Alan Turing’s algorithmic 1. Propositions Toward Metabolic plant simulations to source modernist theory for Architectures biointelligent architectures. I’m using scant records and testimony interpreted through each thinker’s writings, Research strategies to regulate exploratory sets of architecture, and/or simulations. This text is then a generative design actions are called upon here for device for considering ways-of-being within, and ways- reasoning the inclusion of AI, synthetic life, and bio- of-thinking about, theory/practice for the fusion of algorithmic generation into the production of metabolic architectures. These exploratory tactics underwrite biological-to-biosynthetic intelligences (microbes, plants, animals, AI, machines.) Resulting theory thereafter hypothesizing biointelligent buildings as parts of nature. supports the development of bioremedial environmental Therefore, to link theory and observation I evolve cleanup addressing climate change. My proposition then strategies for the investigation of matter and forces deploys biomimetic and laboratory data to nurture starting with symbolic languages to sort types of metabolically driven intelligences partnered with AI intelligence. in the production of architectures. That ontological pathway stems from machine learning, bio-surveillance, Specifically, concepts-terms such as “atomic facts,” and digital simulation at object, agent, and urban scales.
    [Show full text]
  • The Cybernetic Brain
    THE CYBERNETIC BRAIN THE CYBERNETIC BRAIN SKETCHES OF ANOTHER FUTURE Andrew Pickering THE UNIVERSITY OF CHICAGO PRESS CHICAGO AND LONDON ANDREW PICKERING IS PROFESSOR OF SOCIOLOGY AND PHILOSOPHY AT THE UNIVERSITY OF EXETER. HIS BOOKS INCLUDE CONSTRUCTING QUARKS: A SO- CIOLOGICAL HISTORY OF PARTICLE PHYSICS, THE MANGLE OF PRACTICE: TIME, AGENCY, AND SCIENCE, AND SCIENCE AS PRACTICE AND CULTURE, A L L PUBLISHED BY THE UNIVERSITY OF CHICAGO PRESS, AND THE MANGLE IN PRAC- TICE: SCIENCE, SOCIETY, AND BECOMING (COEDITED WITH KEITH GUZIK). THE UNIVERSITY OF CHICAGO PRESS, CHICAGO 60637 THE UNIVERSITY OF CHICAGO PRESS, LTD., LONDON © 2010 BY THE UNIVERSITY OF CHICAGO ALL RIGHTS RESERVED. PUBLISHED 2010 PRINTED IN THE UNITED STATES OF AMERICA 19 18 17 16 15 14 13 12 11 10 1 2 3 4 5 ISBN-13: 978-0-226-66789-8 (CLOTH) ISBN-10: 0-226-66789-8 (CLOTH) Library of Congress Cataloging-in-Publication Data Pickering, Andrew. The cybernetic brain : sketches of another future / Andrew Pickering. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-66789-8 (cloth : alk. paper) ISBN-10: 0-226-66789-8 (cloth : alk. paper) 1. Cybernetics. 2. Cybernetics—History. 3. Brain. 4. Self-organizing systems. I. Title. Q310.P53 2010 003’.5—dc22 2009023367 a THE PAPER USED IN THIS PUBLICATION MEETS THE MINIMUM REQUIREMENTS OF THE AMERICAN NATIONAL STANDARD FOR INFORMATION SCIENCES—PERMA- NENCE OF PAPER FOR PRINTED LIBRARY MATERIALS, ANSI Z39.48-1992. DEDICATION For Jane F. CONTENTS Acknowledgments / ix 1. The Adaptive Brain / 1 2. Ontological Theater / 17 PART 1: PSYCHIATRY TO CYBERNETICS 3.
    [Show full text]
  • Boden Grey Walter's
    Grey Walter’s Anticipatory Tortoises Margaret Boden Grey Walter and the Ratio Club The British physiologist William Grey Walter (1910–1977) was an early member of the interdisciplinary Ratio Club. This was a small dining club that met several times a year from 1949 to 1955, with a nostalgic final meeting in 1958, at London’s National Hospital for Neurological Diseases. The founder-secretary was the neurosurgeon John Bates, who had worked (alongside the psychologist Kenneth Craik) on servomechanisms for gun turrets during the war. The club was a pioneering source of ideas in what Norbert Wiener had recently dubbed ‘cybernetics’.1 Indeed, Bates’ archive shows that the letter inviting membership spoke of ‘people who had Wiener’s ideas before Wiener’s book appeared’.2 In fact, its founders had considered calling it the Craik Club, in memory of Craik’s work—not least, his stress on ‘synthetic’ models of psychological theories.3 In short, the club was the nucleus of a thriving British tradition of cybernetics, started independently of the transatlantic version. The Ratio members—about twenty at any given time—were a very carefully chosen group. Several of them had been involved in wartime signals research or intelligence work at Bletchley Park, where Alan Turing had used primitive computers to decipher the Nazis’ Enigma code.4 They were drawn from a wide range of disciplines: clinical psychiatry and neurology, physiology, neuroanatomy, mathematics/statistics, physics, astrophysics, and the new areas of control engineering and computer science.5 The aim was to discuss novel ideas: their own, and those of guests—such as Warren McCulloch.
    [Show full text]
  • Kunst Und Kybernetik“
    DIPLOMARBEIT Titel der Diplomarbeit „Kunst und Kybernetik“ Verfasserin Felicia Hönig angestrebter akademischer Grad Magistra der Philosophie (Mag. phil.) Wien, im September 2008 Studienkennzahl lt. Studienblatt A296 Studienrichtung lt. Studienblatt Philosophie Betreuer: Ao. Univ. –Prof. Dr. Herbert Hrachovec Inhalt Vorwort .......................................................................................5 1. Einleitung................................................................................7 2. Kybernetik, der Anfang.........................................................11 2.1. Der Begriff .................................................................................12 2.2. Norbert Wiener ..........................................................................14 2.3. Die Bausteine des Theorie-Werdens, drei Publikationen aus den 1940er Jahren...........................................................................15 2.3.1. Norbert Wiener, Arturo Rosenblueth, and Julian Bigelow , 1943, „Behavior, Purpose and Teleology“, Philosophy of Science 10: 18-24. ........................................................................................................ 15 2.3.2. Warren McCulloch, Walter Pitts: „A Logical Calculus of the Ideas Immanent in Nervous Activity“. In: Bulletin of Mathematical Biophysics 5 (1943) 115-133........................................................... 18 2.3.3. C. E. Shannon, „A mathematical theory of communication“, Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October,
    [Show full text]
  • The First Biologically Inspired Robots Owen Holland
    Robotica (2003) volume 21, pp. 351–363. © 2003 Cambridge University Press DOI: 10.1017/S0263574703004971 Printed in the United Kingdom The first biologically inspired robots Owen Holland Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (UK). E-mail: [email protected] (Received in Final Form: June 15, 2002) SUMMARY Star. After attending Westminster School, he studied Thie first biologically inspired robots, the famous electro- physiology at Cambridge, and began his research career in mechanical tortoises, were designed and built in 1949 by W. neurophysiology with a dissertation on ‘Conduction in Grey Walter. This paper reviews their origins in Walter’s Nerve and Muscle’. In 1935 he became interested in the new theories of the brain and the nature of life, and uses area of electroencephalography, and quickly showed a talent contemporary unpublished notes and photographs to assess for developing new electronic equipment, which he used to their significance then and now. make a series of fundamental technical and clinical discoveries. In 1939 he was appointed Director of Physiol- ogy at the newly founded Burden Neurological Institute KEYWORDS: First biological robots; Robot tortoises. (BNI) in Bristol; he remained there for the rest of his career. His war work involved him in a variety of activities, including the development of radar, and the use of humans INTRODUCTION in control loops. After the war he recruited a brilliant group Most articles and books on the history of robotics make only 1,2,3 of ex-radar engineers to work with him at the BNI; their a passing reference to Grey Walter’s robot tortoises, technical expertise, combined with Grey Walter’s vision and regarding them as quaint period curiosities quite unrelated creativity, made a major contribution to the development of to our intellectually and technically sophisticated modern electroencephalography over the next twenty years.
    [Show full text]