Impact of Structure and Defect Modification on Vanadium Oxide For

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Structure and Defect Modification on Vanadium Oxide For Impact of Structure and Defect Modification on Vanadium Oxide for Alkali-ion Battery Electrodes Evan Uchaker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Professor Guozhong Cao, Chair Professor Lucien N. Brush Professor Jihui Yang Program Authorized to Offer Degree: Materials Science and Engineering c Copyright by Evan Uchaker, 2015. All rights reserved. University of Washington Abstract Impact of structure and defect modification on vanadium oxide for alkali-ion battery electrodes Evan Uchaker Chair of the Supervisory Committee: Professor Guozhong Cao Materials Science and Engineering The proliferation of portable electronics and electric vehicles paired with the updating of an antiquated grid system has driven the rapid progression of improved technologies related to energy distribution and storage. However, energy storage materials and devices have come to be viewed as a crux impeding advanced device development. Alkali-ion, namely lithium and sodium, batteries are a robust technology that has seen gains in performance based on materials chemistry over the past several decades. Despite years of intensive research ac- companied with significant progress, the cathode remains a limiting factor towards improved battery performance because of its low capacity and exasperated degradation over long term cycling; the cathode is also one of the most expensive material components of the overall cell. Thus, research concerning new cathode material development and the improvement of already well-established cathode materials should be a top priority. Within this context, vanadium oxide is an ideally suited model material showcasing how structural or chemical alterations can have tremendous impact on device performance. As a means towards improving electrochemical performance, the role of kinetics and thermodynamics were investigated through structural and defect chemistry manipulation in the vanadium oxide system. Structural modification, as a means towards achieving kinetic stabilization, can be utilized to develop electrodes with the chemical stability of microsized iii particles that simultaneously exploit the beneficial properties associated with nanoparticles. Defect modification is a powerful means towards improving material intercalation capabilities by reducing the stress and localized electrostatic contributions which directly alter the mi- gration energy and diffusion barriers the alkali-ion must overcome. Lithium-ion was chosen for structural (kinetic) examination as it is a mature technology that has been extensively investigated; sodium-ion was chosen for defect manipulation because the larger size and dif- ferent transport characteristics of sodium ions influence the thermodynamic (and to a lesser extent the kinetic properties) of sodium-ion batteries, and can lead to unexpected electro- chemical behavior. The findings gained are by no means limited to the originally investigated systems, and should be taken into consideration for an assortment of electrode materials. iv Contents Abstract . iii Acknowledgements . v List of Tables . xi List of Figures . xii 1 Motivation and Context 1 1.1 Energy Demands . 1 1.2 Energy Storage Systems . 2 1.2.1 Mechanical Energy Storage . 3 1.2.2 Electrochemical Energy Storage . 4 1.3 Scope and Objective . 12 2 Alkali-ion Battery 16 2.1 Overview . 16 2.1.1 Li-ion Battery . 19 2.1.2 Na-ion Battery . 20 2.2 Electrode Thermodynamics . 21 2.2.1 Governing Thermodynamic Considerations . 22 2.2.2 Gibbs Phase Rule . 24 2.3 Electrode Kinetics . 25 2.3.1 Arrhenius Relation . 25 vii 2.3.2 Nernst Equation and Tafel Equation on Electrodes . 26 2.3.3 Marcus Theory of Electron Transfer . 27 2.3.4 Fick's Laws . 29 2.3.5 Electrolyte Conductivity . 30 2.3.6 Tortuosity in Porous Electrodes . 30 2.4 Electrode Material Selection . 31 2.4.1 Solid Electrolyte Interphase . 35 2.5 Electrode Material Performance . 36 2.5.1 Performance Metrics . 39 2.5.2 Overview of Vanadium Oxide . 42 3 Nanostructured Electrodes for Rechargeable Battery 50 3.1 Introduction . 51 3.2 Exposure of Specific Surface Facets . 56 3.3 Micro/nano-structured Electrode Materials . 60 3.4 Hollow micro/nano-structures . 62 3.4.1 Mesocrystals . 69 3.4.2 Vanadium Oxide . 71 3.4.3 Titanium Oxide . 72 3.4.4 Lithium Iron Phosphate . 74 3.5 Surface Chemistry and Defects . 76 3.5.1 Surface Modification . 76 3.5.2 Role of Defects . 78 3.6 Limitations of Nanostructured Electrode Materials for Li-ion Batteries . 81 3.7 Remarks . 85 4 Polyol-mediated Solvothermal Synthesis and Electrochemical Performance of Nanostructured V2O5 Hollow Microspheres 87 viii 4.1 Introduction . 88 4.2 Experimental Procedure . 90 4.2.1 Materials and Synthesis . 90 4.2.2 Characterization . 90 4.2.3 Electrochemical Measurements . 91 4.3 Results and Discussion . 91 4.4 Conclusions . 102 5 Enhanced Intercalation Dynamics and Stability of Engineered Micro/nano- structured Electrode Materials: Vanadium Oxide Mesocrystals 104 5.1 Introduction . 105 5.2 Experimental Procedure . 107 5.2.1 Materials and Synthesis . 107 5.2.2 Characterization . 107 5.2.3 Electrochemical Measurements . 108 5.3 Results and Discussion . 108 5.4 Conclusions . 120 6 Amorphous Vanadium Oxide Electrode for Sodium-Ion Battery 121 6.1 Introduction . 122 6.2 Experimental Procedure . 124 6.2.1 Gel Synthesis . 124 6.2.2 Deposition . 125 6.2.3 Characterization . 125 6.2.4 Electrochemical Analysis . 126 6.3 Results and Discussion . 127 6.4 Conclusions . 145 ix 7 Elucidating the Role of Defects in Sodium Vanadium Oxide for use as Sodium Ion Battery Electrode 146 7.1 Introduction . 147 7.2 Experimental Procedure . 150 7.2.1 Material Synthesis . 150 7.2.2 Characterization . 150 7.2.3 Electrochemical Analysis . 151 7.3 Results and Discussion . 152 7.4 Conclusions . 166 8 Conclusions 168 Bibliography 171 x List of Tables 1.1 Range for total system levelized costs of new generation resources, (2012 USD/MWh). 2 2.1 Comparative qualities of lithium, sodium, and potassium for alkali-ion battery application. 18 5.1 Primary facet surfaces and corresponding dangling bond energy upon cleaving (surface relaxation effects not considered). 117 5.2 Computed surface energies (γ) for the un/relaxed low-index surfaces of VO2(B) and their fractional abundance. 118 6.1 Comparison of metallic lithium and sodium. 123 6.2 FTIR peak position data for the as-processed, 180◦C/vac annealed, and ◦ 450 C/air annealed V2O5 samples. 132 6.3 XPS peak fit values for the as-processed, 180◦C/vac annealed, and 450◦C/air annealed V2O5 samples. 134 7.1 Physical properties of NaxV3O8 products with deficient, ideal, and excess sodium stoichiometry. 153 7.2 Rietveld refinement of NaxV3O8 products with deficient, ideal, and excess sodium stoichiometry. 156 7.3 FTIR peak locations of NaxV3O8 products with deficient, ideal, and excess sodium stoichiometry. 157 xi List of Figures 1.1 Application range of different energy storage technologies based on power output and energy stored. 3 1.2 Comparison of the different battery technologies in terms of gravimetric and volumetric energy density. 7 2.1 Abundance (atom fraction) of the chemical elements in Earth's upper conti- nental crust as a function of atomic number. 17 2.2 Schematic illustration of a typical alkali-ion cell and simplified charge processes. 18 2.3 Material cost breakdown for a typical 96 Wh PHEV cell. 20 2.4 Periodic palette available for the design of new electrode materials. 32 2.5 Schematic illustration of the open-circuit energy diagram for a typical alkali- ion electrochemical cell. 34 2.6 Proposed schematic of the SEI layer with the left most edge representing the interface with the electrode surface. 36 2.7 A schematic representation of the different reaction mechanisms observed in electrode materials for alkali-ion batteries. 37 2.8 Voltage versus capacity for LIB electrode materials. 40 2.9 Voltage versus capacity for NIB electrode materials. 40 2.10 The colorful oxidation states of vanadium, increasing from left to right. 43 2.11 Coordination geometries of vanadium species. ..
Recommended publications
  • UNITED STATES PATENT OFFICE PRODUCTION of VANILLIC ACID (SILVER, Oxide PROCESS) Irwin A
    Patented Apr. 15, 1947 2,419,158 UNITED STATES PATENT OFFICE PRODUCTION OF VANILLIC ACID (SILVER, oxIDE PROCESS) Irwin A. Pearl, Appleton, Wis., assignor, by mesne assignments, to Sulphite Products Corporation, - Appleton, Wis., a corporation of Wisconsin No Drawing. Application January 12, 1944, Seria No. 517,985 8 Claims. (C. 260-521) 2 The present invention relates to the production About 300 parts of vanillic acid melting at 210 of vanillic and closely related acids, and to an 211 is obtained. - a improved process for producing acids derived by Ortho vanillin and syringaldehyde react in the oxidation from vanillin, Ortho-vanillin, and same way as the vanillin in Example I, with syringaldehyde. similarly high yields of completely transformed Most aldehydes may be transformed to the material. corresponding acids by common oxidizing agents If the treatment with solid sodium hydroxide or in the Cannizzaro reaction, but vanillin, Ortho warms the solution materially above 50° C., the vanillin, and Syringaldehyde are exceptions and vaniliin reacts as fast as it is added and the have been reported as not amenable to either temperature rises, but full completion of the reaction. Ordinary oxidizing agents either (1) action is assured by slight further heating. I have no action on the compound or (2) act as have secured good results with final temperatures dehydrogenating agents, and yield the dehydro of 75° to 85, but higher temperatures are dicompound or (3) cause complete decomposition. innocuous. The Cannizzaro reaction is conveniently written 5 However, if the materials are admixed at tem as follows: peratures materially below 50° C., it is first neces NaOH sary to warm them, and at about 50° C.
    [Show full text]
  • Anodic Oxygen-Transfer Electrocatalysis at Pure and Modified Lead Dioxide Electrodes in Acidic Media In-Hyeong Yeo Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 Anodic oxygen-transfer electrocatalysis at pure and modified lead dioxide electrodes in acidic media In-Hyeong Yeo Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Yeo, In-Hyeong, "Anodic oxygen-transfer electrocatalysis at pure and modified lead dioxide electrodes in acidic media " (1987). Retrospective Theses and Dissertations. 11664. https://lib.dr.iastate.edu/rtd/11664 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Silver As a Drinking-Water Disinfectant
    Silver as a drinking-water disinfectant Silver as a drinking-water disinfectant Alternative drinking-water disinfectants: silver ISBN 978-92-4-151369-2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders.
    [Show full text]
  • Controlled Growth of Silver Oxide Nanoparticles on the Surface of Citrate Anion Intercalated Layered Double Hydroxide
    nanomaterials Article Controlled Growth of Silver Oxide Nanoparticles on the Surface of Citrate Anion Intercalated Layered Double Hydroxide Do-Gak Jeung 1, Minseop Lee 2, Seung-Min Paek 2,* and Jae-Min Oh 1,* 1 Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea; [email protected] 2 Department of Chemistry, Kyungpook National University, Daegu 41566, Korea; [email protected] * Correspondence: [email protected] (S.-M.P.); [email protected] (J.-M.O.) Abstract: Silver oxide nanoparticles with controlled particle size were successfully obtained utilizing citrate-intercalated layered double hydroxide (LDH) as a substrate and Ag+ as a precursor. The lattice of LDH was partially dissolved during the reaction by Ag+. The released hydroxyl and citrate acted as a reactant in crystal growth and a size controlling capping agent, respectively. X-ray diffraction, X-ray photoelectron spectroscopy, and microscopic measurements clearly showed the development of nano-sized silver oxide particles on the LDH surface. The particle size, homogeneity and purity of silver oxide were influenced by the stoichiometric ratio of Ag/Al. At the lowest silver ratio, the particle size was the smallest, while the chemical purity was the highest. X-ray photoelectron spectroscopy and UV-vis spectroscopy results suggested that the high Ag/Al ratio tended to produce silver oxide with a complex silver environment. The small particle size and homogeneous distribution of silver oxide showed advantages in antibacterial efficacy compared with bulk silver oxide. LDH Citation: Jeung, D.-G.; Lee, M.; Paek, with an appropriate ratio could be utilized as a substrate to grow silver oxide nanoparticles with S.-M.; Oh, J.-M.
    [Show full text]
  • Silver Oxide Battery SIZES: All Sizes EMERGENCY HOTLINE: 800-424-9300 (24 Hr, Chemtrec) EDITION DATE: 08/11/2014
    Spectrum Brands, Inc. Rayovac Division 3001 Deming Way Middleton, WI 53562-1431 Phone: (608) 275-3340 Fax: (608) 275-4577 http://www.rayovac.com SAFETY DATA SHEET The Safety Data Sheet is supplied as a service to you. For other related information, please visit: http://www.rayovac.com 1. IDENTIFICATION PRODUCT NAME: Silver Oxide Battery SIZES: All sizes EMERGENCY HOTLINE: 800-424-9300 (24 hr, Chemtrec) EDITION DATE: 08/11/2014 2. HAZARD IDENTIFICATION We would like to inform our customers that these batteries are exempt articles and are not subject to the 29 CFR 1910.1200 OSHA requirements, Canadian WHMIS requirements or GHS requirements. Emergency Overview OSHA Hazards-not applicable Target Organs-not applicable GHS Classification-not applicable GHS Label Elements, including precautionary Statement-not applicable Pictogram-not applicable Signal words-not applicable Hazard statements-not applicable Precautionary statements-not applicable 3. COMPOSITION/INFORMATION ON INGREDIENTS INGREDIENT NAME CAS # % TLV*/**TWA Silver Oxide 20667-12-3 <0.5 .01 mg/m3 (TWA) Steel 7439-89-6 37-41 --- Zinc 7440-66-6 30-40 5.0 mg/m3 (ZnO as Fume) Potassium Hydroxide 1310-58-3 1-3 Solution Not Listed Graphite 7782-42-5 <0.25 15 mppcf (TWA) Mercury 7439-97-6 <0.9** 1 mg/10 m3 (Ceiling) Manganese Dioxide 1313-13-9 <2.5 C5.0 mg/ m3 (Mn, TWA) Water, paper, plastic, other --- Balance --- *Source: OSHA 29 CFR 1910.1000 Table Z-1, 2 or 3 11-01-2012 ** All Silver Oxide cells contain less than 25 mg/cell of mercury NA = Not Applicable Safety Data Sheet Information (800) 237-7000 Page 1 of 4 4.
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Hazardous Material Inventory Statement
    City of Brooklyn Park FIRE DEPARTMENT 5200 - 85th Avenue North Brooklyn Park MN 55443 Phone: (763)493-8020 Fax: (763) 493-8391 Hazardous Materials Inventory Statement Users Guide A separate inventory statement shall be provided for each building. An amended inventory statement shall be provided within 30 days of the storage of any hazardous materials or plastics that changes or adds a hazard class or which is sufficient in quantity to cause an increase in the quantity which exceeds 5 percent for any hazard class. The hazardous materials inventory statement shall list by hazard class categories. Each grouping shall provide the following information for each hazardous material listed for that group including a total quantity for each group of hazard class. 1. Hazard class. (See attached Hazardous Materials Categories Listing) 2. Common or trade name. 3. Chemical Abstract Service Number (CAS number) found in 29 Code of Federal Regulations (C.F.R.). 4. Whether the material is pure or a mixture, and whether the material is a solid, liquid or gas 5. Maximum aggregate quantity stored at any one time. 6. Maximum aggregate quantity In-Use (Open to atmosphere) at any one time. 7. Maximum aggregate quantity In-Use (Closed to atmosphere) at any one time. 8. Storage conditions related to the storage type, high-pile, encapsulated, non-encapsulated. Attached is a listing of categories that all materials need to be organized to. Definitions of these categories are also attached for your use. At the end of this packet are blank forms for completing this project. For questions regarding Hazardous Materials Inventory Statement contact the Fire Department at 763-493-8020.
    [Show full text]
  • Synthesis of Lead Dioxide Nanoparticles by the Pulsed Current Electrochemical Method
    Int. J. Electrochem. Sci., 4 (2009) 1511 - 1527 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Synthesis of Lead Dioxide Nanoparticles by the Pulsed Current Electrochemical Method Hassan Karami *, Mahboobeh Alipour Nano Research Laboratory, Department of Chemistry, Payame Noor Unirvesity (PNU), Abhar, Iran *E-mail: [email protected] Received: 22 June 2009 / Accepted: 11 November 2009 / Published: 1 December 2009 In this paper, lead dioxide nanoparticles were directly synthesized by pulsed current electrochemical method on the lead substrate in 4.8 M sulfuric acid solution. In order to obatin uniform morphology , narrowest size distribution and best composition of lead dioxide nanoparticles, the effect of experimental variables such as concentration of sulfuric acid, bath temperature, pulse frequency and pulse height (current amount), have been investigated. For conversion of all synthesized species to lead dioxide, each prepared sample was oxidized by low voltage method. The composition, morphology and structure were investigated using Energy Dispersive X-ray Analysis (EDX), scanning electron microscopy (SEM) and X-ray diffraction techniques (XRD). XRD results revealed lead dioxide samples, prepared under optimized experimental conditions, contain only PbO 2 in the range of 24-32 nm. Electrochemical behavior of the prepared electrodes was studied by cyclic voltammetry. The obtained results indicate that pulsed current electrochemical method can be used as a confident and controllable method for direct preparation of the lead dioxide nanoparticles on lead substrate. The lead dioxide synthesized in the optimum conditions showed an excellent discharge capacity (230 mA.h/g) when it was used as the cathode of lead-acid batteries. Keywords: Lead dioxide; Nanoparticles; Pulsed current; Direct oxidation 1.
    [Show full text]
  • Lots of Lead in the Water? Maybe Manganese Is to Blame
    7/30/2019 Lots Of Lead In The Water Maybe Manganese Is To Blame News | July 23, 2019 Lots Of Lead In The Water? Maybe Manganese Is To Blame Researchers have found the naturally occurring mineral can speed up the production of lead dioxide under certain circumstances Manganese is not a particularly toxic mineral. In fact, people need a little in their diets to remain healthy. Research at Washington University in St. Louis has shown however, that in conjunction with certain other chemicals, naturally occurring manganese can lead to big changes in the water in lead pipes. Depending on what disinfectants are used in the water, those changes can have significant — even dangerous — consequences. The results were recently published in Environmental Science and Technology. The research focuses on a unique form of lead, PbO2 or lead dioxide (lead in the plus-4 oxidation state). Lead dioxide has a very low water solubility — it does not easily dissolve in water alone. It is also uncommon in nature, unlike the more familiar PbCO3, the lead carbonate that makes up the scales that tend to form on pipes. “You don’t find PbO2 in the environment because there is no strong oxidizing agent,” said Daniel Giammar, the Walter E. Browne Professor of Environmental Engineering at the McKelvey School of Engineering. “But good disinfectants are often good oxidizing agents.” Chlorine is a great disinfectant, so much so that it’s used commonly in drinking water in America and across the world. It is also good oxidizing agent and promotes the transformation of lead carbonate to lead dioxide.
    [Show full text]
  • Page 1 of 4 Silver Oxide Batteries January 2016
    Page 1 of 4 Silver Oxide Batteries January 2016 PRODUCT SAFETY DATA SHEET PRODUCT NAME: Energizer Battery Type No.: Volts: 1.5 /cell TRADE NAMES: Energizer, Hearwell, Overtime Approximate Weight: CHEMICAL SYSTEM: Silver Oxide-Zinc Designed for Recharge: No Energizer has prepared copyrighted Product Safety Datasheets to provide information on the different Eveready/Energizer battery systems. Batteries are articles as defined under the GHS and exempt from GHS classification criteria (Section 1.3.2.1.1 of the GHS). The information and recommendations set forth herein are made in good faith, for information only, and are believed to be accurate as of the date of preparation. However, ENERGIZER BATTERY MANUFACTURING, INC. MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS INFORMATION AND DISCLAIMS ALL LIABILITY FROM REFERENCE ON IT. SECTION 1 - MANUFACTURER INFORMATION Energizer Battery Manufacturing, Inc. Telephone Number for Information: 25225 Detroit Rd. 800-383-7323 (USA / CANADA) Westlake, OH 44145 Date Prepared: January 2016 SECTION 2 – HAZARDS IDENTIFICATION GHS classification: N/A Signal Word: N/A Hazard Classification: N/A Under normal conditions of use, the battery is hermetically sealed. Ingestion: Swallowing a battery can be harmful. Contents of an open battery can cause serious chemical burns of mouth, esophagus, and gastrointestinal tract. Inhalation: Contents of an open battery can cause respiratory irritation. Skin Contact: Contents of an open battery can cause skin irritation and/or chemical burns. Eye Contact: Contents of an open battery can cause severe irritation and chemical burns. SECTION 3 - INGREDIENTS IMPORTANT NOTE: The battery should not be opened or burned. Exposure to the ingredients contained within or their combustion products could be harmful.
    [Show full text]
  • Printed Textile-Based Ag2o–Zn Battery for Body Conformal Wearable Sensors
    sensors Communication Printed Textile-Based Ag2O–Zn Battery for Body Conformal Wearable Sensors Akash Kota * , Ashish Gogia, Amy T. Neidhard-Doll and Vamsy P. Chodavarapu Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA; [email protected] (A.G.); [email protected] (A.T.N.-D.); [email protected] (V.P.C.) * Correspondence: [email protected] Abstract: Wearable electronics are playing an important role in the health care industry. Wearable sensors are either directly attached to the body surface or embedded into worn garments. Textile- based batteries can help towards development of body conformal wearable sensors. In this letter, we demonstrate a 2D planar textile-based primary Ag2O–Zn battery fabricated using the stencil printing method. A synthetic polyester woven fabric is used as the textile substrate and polyethylene oxide material is used as the separator. The demonstrated battery achieves an areal capacity of 0.6 mAh/cm2 with an active electrode area of 0.5 cm × 1 cm. Keywords: sensor power; textile battery; stencil printing; zinc-silver oxide; battery characteristics 1. Introduction The rapid development of wearable devices is fueled by the interest from the general population for real-time health and wellness monitoring [1,2]. Various human health and Citation: Kota, A.; Gogia, A.; wellness indicators including body temperature, peripheral capillary oxygen saturation Neidhard-Doll, A.T.; Chodavarapu, (SpO2) level, electrocardiogram, calories burned, exercise outcomes, and walking steps V.P. Printed Textile-Based Ag2O–Zn can be monitored non-invasively in real time by wearable devices. Wearable devices also Battery for Body Conformal Wearable play an important role in the development of smart bandages for wound healing applica- Sensors.
    [Show full text]
  • Silver Oxide Battery ILER OIDE BATTERY
    Primary Battery SRSilver Oxide Battery SILVER OXIDE BATTERY Safety Instructions Improper handling of the battery could lead to distortion, leakage*, overheating, or explosion, causing bodily injury or equipment trouble. Especially touch with liquid leaked out of battery could cause injury like a loss of eyesight. Please observe the following instructions to prevent S accidents. (* Leakage is defined as the unintentional escape of a liquid from a battery.) R Warnings — Handling Caution — Handling/Storage í Never swallow. í Never reverse the positive and negative terminals when Always keep the battery out of the reach of infants and young mounting. children to prevent it from being swallowed. If it is swallowed, Improper mounting of the battery may lead to short-circuiting, consult a physician immediately. charging or forced-discharging. This may cause distortion, leakage, overheating, or explosion. í Never allow liquid leaking from the battery to get in your body. The battery contains strong alkaline liquid, which is deleterious í Never short-circuit the battery while installing into equipment. material. If it does come in contact with your eyes, flush them Please be careful when installing the battery not to short-circuit it immediately with plenty of water and consult a physician, because with metal portions of the equipment. the alkaline liquid could cause becoming blind. Likewise, If the liquid gets in your mouth, rinse immediately with plenty of water and í Never weld the terminal or wire to the body of the battery consult a physician. The alkaline liquid could also cause the skin directly. irritation and/or chemical burns. If the liquid adheres to the skin or The heat of welding or soldering may cause distortion, leakage, clothes, immediately flush it with plenty of water.
    [Show full text]