Scaffolds and Crop Development R U I T U N a July 31, 2000 VOLUME 9, No

Total Page:16

File Type:pdf, Size:1020Kb

Scaffolds and Crop Development R U I T U N a July 31, 2000 VOLUME 9, No Update on Pest Management scaffolds and Crop Development R U I T u N A July 31, 2000 VOLUME 9, No. 20 Geneva, NY PLEASE DON'T They are also very expensive. EAT THESE DAISIES This regular annual article used (Dave Kain & to state that the four most common Art Agnello, botanicals available for use in fruit Entomology, crops today were rotenone, pyre- Geneva) thrin, sabadilla and ryania. Unfortu­ nately, for those who found them use­ ❖ ❖ Naturally occuring pesticides ful, sabadilla and ryania are no longer on that are derived from plants or plant parts are the list due to voluntary cancellation of their commonly referred to as “botanicals”. Botani- registrations. To round out the article, we’ll sub­ cals have been around for quite a while. Along stitute information on a few, newer, natural ma­ with arsenicals and other inorganic pesticides, terials that, while not technically botanicals, kind they were pretty commonly used before the of fit the category. Information on these products advent of the synthetic, organic pesticides ren­ appears in the 2000 Tree-Fruit Recommenda­ dered them “obsolete”. From time to time they’re tions (pp. 24-26). re-examined for various reasons and may be familiar. Botanicals are of interest to those ROTENONE Rotenone is derived from the root concerned with pest management for a variety of of various plants of the Derris or Lonchocarpus reasons. They are generally less toxic to the species from Southeast Asia, Central and South applicator than many synthetic pesticides. They America. It is available as at least 118 formu­ may be acceptable in the organic market where lated products from a large number of manufac­ synthetic pesticides are not. Because, in general, turers. It is synergized by the addition of pipero- they break down quickly, they may also be of use nyl butoxide (PBO), which is another botanical near harvest, when control is needed but other materials may not be applied because of PHI continued... restrictions. Rapid degradation also means they are less likely to become environmental prob­ lems. Botanicals, however, are not without IN THIS ISSUE- concerns. They are usually broad spectrum poisons that can be hard on beneficial insects. GENERAL And, unlike “biological” pesticides like B.t.’s, ♦♦♦ Botanical insecticides insect growth regulators and pheromones, they INSECTS are somewhat acutely toxic to humans and other Dock sawfly mammals. The fact that they break down rapidly in the environment, while an advantage in some PEST FOCUS respects, also means that sprays need to be: INSECT TRAP CATCHES • timed precisely to coincide with pest events, • applied at lower thresholds and, possibly, UPCOMING PEST EVENTS • applied more often. 1 scaffolds No. 20 July 31, 2000 material. Rotenone is expensive compared with up to and including the day of harvest. synthetic insecticides, but is moderately priced for a botanical. It is the most commonly mentioned of Pyrethrin is relatively non-toxic to humans the botanicals in pre-synthetic literature and is at and other mammals, although the dust produces least somewhat effective against a large number of allergy attacks in people who are allergic to insect pests. These include: pear psylla, strawberry ragweed pollen. The acute oral LD50 is 1200- leafroller, European com borer, European apple 1500 mg/kg. It is toxic to fish, but “relatively” sawfly, cherry fruit fly, apple maggot, cranberry non-toxic to honey bees. fruitworm, raspberry fruitworm, pea aphid (which is similar to rosy apple aphid), European red mite AZADIRACHTIN (Neem) Azadirachtin is de­ and two-spotted spider mite, codling moth, plum rived from the seeds of the neem tree, Azadirachta curculio, Japanese beetle and tarnished plant bug. indica, which is widely distributed throughout Unfortunately, it is also toxic to ladybird beetles and Asia and Africa. The observation that the desert predatory mites. But, it is non-toxic to syrphid flies locust did not eat the leaves of the neem tree, and that feed on aphids, and to honeybees. Rotenone is another, closely related species, led to the isola­ rapidly degraded by sunlight, lasting a week or less. tion and identification of azadirachtin in 1967. Since then, azadirachtin has been shown to have Of the botanicals mentioned here, rotenone is repellent, antifeedent, and/or growth regulating the most toxic to humans and other mammals. The insecticidal activity against a large number of acute oral LD50is from 60-1500 mg/kg. In small insect species and some mites. It has also been doses it may be irritating or numbing to mucous reported to act as a repellent to nematodes. membranes. It is highly toxic to fish, having been Neem extracts have also been used in medicines, commonly used as a fish poison. It is also toxic to soap, toothpaste and cosmetics. birds and pigs. The most common commercial formulations PYTRETHRIN (Pyrethrum) This compound is of neem available for N.Y. tree fruit is Neemix produced in the flowers of Chrysanthemum (W. R. Grace & Co.), which lists leafminers, cinerariaefolium and is the forerunner of the syn­ continued... thetic pyrethroid insecticides. There are not nearly as many commercially available formulations of scaffolds this chemical as there are for rotenone, but it is is published weekly from March to September by Cornell available as an emulsifiable concentrate, in combi­ University— NYS Agricultural Experiment Station (Geneva) nation with rotenone, or alone as a wettable powder, and Ithaca— with the assistance of Cornell Cooperative Exten­ from at least a couple of sources. Pyrethrin is the sion. New York field reports welcomed. Send submissions by 3 pm Monday to: least expensive of these four materials. Depending on the rate used, it may be less expensive than many scaffolds FRUIT JOURNAL synthetic insecticides. It is also synergized by PBO. Dept, of Entomology NYSAES, Barton Laboratory Pyrethrin is labelled against a large number of pests. Geneva, NY 14456-0462 An addendum to the label for one formulation of Phone: 315-787-2341 FAX: 315-787-2326 pyrethrin showed it to be moderately to highly E-mail: [email protected] ornell.edu effective (61-100% control) against the following Editors: A. Agnello, D. Kain pests of fruit: grape leafhopper, potato leafhopper, leaf curl plum aphid, blueberry flea beetle, blue­ This newsletter available on CENET at: news:// newsstand.cce.cornell.edu/cce.ag.tree-fruit berry thrips and blueberry sawfly. It is also effec­ and on the World Wide Web at: tive against cranberry fruitworm. It is quickly http://www.nysaes.cornell.edu/ent/scaffolds/ broken down in the environment and may be used 2 scaffolds No. 20 July 31, 2000 mealybugs, aphids, fruit flies, caterpillars andpsylla, aphids, leafminers and mite populations — were and Align (AgriDyne), which includes some minor unaffected by the garlic sprays. The fruit pests — leafrollers on the label. Azadirachtin has shown plum curculio, tarnished plant bug, obliquebanded good activity against spotted tentiform leafminer in leafroller and internal lepidopterans — were also tests in past years, but the formulation that was not affected by the biweekly sprays. However, the available at that time was somewhat phytotoxic. In garlic did not have any effect on the population Dick Straub’s insecticide trials in 1992 with another density of the predators T. pyri or Aphidoletes azadirachtin product called Margosan-O, the insec­ aphidimyza. ticide showed good activity against STLM and leaf- hopper. Margosan-O is no longer available for fruit Although not technically botanical insecticides, the crops. In laboratory tests by Jan Nyrop’s lab, toxic­ following materials are unique, natural products that ity to the predatory mite Amblyseius fallacis was kind of fit the category: very low. Field trials against OBLR by Harvey Reissig last year were not encouraging. ABAMECTIN (Agri-Mek) is a natural fermentation product containing a macrocyclic glycoside, used Azadirachtin is relatively short-lived and mam­ on apples and pears as as an acaricide/insecticide. malian toxicity is low (rat oral LD50 >10,000). It When used as currently recommended, it controls can be used up to and including the day of harvest Europeand red mite and pear psylla, and aids in the and reentry is permitted without protective clothing control of spotted tentiform leafminer. Abamectin is after the spray has dried. It is toxic to fish and aquatic toxic to bees and predator mites on contact, but the invertebrates. foliar residue dissipates quickly, making it essen­ tially non-toxic to these species after a few hours PIPERONYL BUTOXIDE (PBO) PBO is a syner­ (low bee-poisoning hazard). gist (in this case, a material that when added to a pesticide increases the activity of its active ingredi­ INSECTICIDAL SOAPS (M-Pede) are concentrates ent) of both rotenone and pyrethrin. It is also a made from biodegradable fatty acids and are contact botanical product, being derived from Brazilian insecticides that can be effective against such soft- sassafras. Acutely, it is very safe, having an acute bodied arthropods as aphidds, mealybugs, and psyl- oral LD50 of greater than 7,500 mg/kg, but it may be lids. They can provide suppression of pear psylla chronically toxic in high doses. when used in a seasonal spray program, but the residual period is short. Uniform drying conditions GARLIC (Guardian) A 10% formulation of garlic is are required to prevent droplet residues on the fruit registered on apples and a number of apple pests are surface. They have a low bee-poisoning hazard. on the label. In 1995, Guardian (supplied by THUMBS-UP Sales Co., Chesterland, OH) was SPINOSAD (SpinTor) is a mixture of spinosyn A applied in six sprays at two-week intervals, starting and spinosyn D molecules, anaturally derived group at petal fall, and compared with a 3-spray Imidan of toxicants from a species of Actinomyces bacteria program.
Recommended publications
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Revista Chilena De Entomología
    Rev. Chilena Ent. 1990, 18: 5-7 AMETASTEGIA GLABRATA (FALLEN) ESPECIE FITÓFAGA INTRODUCIDA A CHILE (HYMENOPTERA: TENTHREDINIDAE) Roberto Carrillo Ll.\ Nelly Mundaca B.' y Ernesto Cisternas A.^ RESUMEN Se señala la presencia en Chile del tentredínido Ametastegia glabrata (Fallen), especie holártica de hábitos polífagos, que se alimenta de diversas plantas cultivadas y malezas. Este insecto ha sido encontrado en diversas localidades de la X Región. Se entregan algunos antecedentes de su biología y de sus plantas hospederas. ABSTRACT The presence in Chile of the holoartic sawfly Ametastegia glabrata (Fallen) is reported. It is a polypha- gous insect, that feed on different cultivated plants and weeds. The insect has been reported in different localities of the X'^ Región. Aspects of its biology and hosts are reported. INTRODUCCIÓN de crianza (± 19°C). En el mes de junio se obtuvo un adulto en Remehue, y a partir de En el otoño de 1987, en la comuna de La fines de octubre, en la Universidad Austral de Unión, en el lugar denominado Choroico, se Chile. Los adultos fueron enviados al Dr. Da- observó en una plantación de frambuesa de vid Smith, del U.S. National Museum, quien primer año, cv. Heritage, algunas cañas caídas identificó la especie como A. glabrata Fallen. sobre el suelo y otras se encontraban dobladas en forma de V invertida. Examinadas estas Clasifícación cañas se observó, en su interior o en el lugar en el cual se había producido el quiebre, una La especie A. glabrata pertenece a la familia larva de tendredínido de color verde. Revisio- Tenthredinidae, subfamilia Allantinae y tribu nes efectuadas en la misma temporada en Empriini.
    [Show full text]
  • Ana Kurbalija PREGLED ENTOMOFAUNE MOČVARNIH
    SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU I INSTITUT RUĐER BOŠKOVI Ć, ZAGREB Poslijediplomski sveučilišni interdisciplinarni specijalisti čki studij ZAŠTITA PRIRODE I OKOLIŠA Ana Kurbalija PREGLED ENTOMOFAUNE MOČVARNIH STANIŠTA OD MEĐUNARODNOG ZNAČENJA U REPUBLICI HRVATSKOJ Specijalistički rad Osijek, 2012. TEMELJNA DOKUMENTACIJSKA KARTICA Sveučilište Josipa Jurja Strossmayera u Osijeku Specijalistički rad Institit Ruđer Boškovi ć, Zagreb Poslijediplomski sveučilišni interdisciplinarni specijalisti čki studij zaštita prirode i okoliša Znanstveno područje: Prirodne znanosti Znanstveno polje: Biologija PREGLED ENTOMOFAUNE MOČVARNIH STANIŠTA OD ME ĐUNARODNOG ZNAČENJA U REPUBLICI HRVATSKOJ Ana Kurbalija Rad je izrađen na Odjelu za biologiju, Sveučilišta Josipa Jurja Strossmayera u Osijeku Mentor: izv.prof. dr. sc. Stjepan Krčmar U ovom radu je istražen kvalitativni sastav entomof aune na četiri močvarna staništa od me đunarodnog značenja u Republici Hrvatskoj. To su Park prirode Kopački rit, Park prirode Lonjsko polje, Delta rijeke Neretve i Crna Mlaka. Glavni cilj specijalističkog rada je objediniti sve objavljene i neobjavljene podatke o nalazima vrsta kukaca na ova četiri močvarna staništa te kvalitativno usporediti entomofau nu pomoću Sörensonovog indexa faunističke sličnosti. Na području Parka prirode Kopački rit utvrđeno je ukupno 866 vrsta kukaca razvrstanih u 84 porodice i 513 rodova. Na području Parka prirode Lonjsko polje utvrđeno je 513 vrsta kukaca razvrstanih u 24 porodice i 89 rodova. Na području delte rijeke Neretve utvrđeno je ukupno 348 vrsta kukaca razvrstanih u 89 porodica i 227 rodova. Za područje Crne Mlake nije bilo dostupne literature o nalazima kukaca. Velika vrijednost Sörensonovog indexa od 80,85% ukazuje na veliku faunističku sličnost između faune obada Kopačkoga rita i Lonjskoga polja. Najmanja sličnost u fauni obada utvrđena je između močvarnih staništa Lonjskog polja i delte rijeke Neretve, a iznosi 41,37%.
    [Show full text]
  • Sawflies (Hym.: Symphyta) of Hayk Mirzayans Insect Museum with Four
    Journal of Entomological Society of Iran 2018, 37(4), 381404 ﻧﺎﻣﻪ اﻧﺠﻤﻦ ﺣﺸﺮهﺷﻨﺎﺳﯽ اﯾﺮان -404 381 ,(4)37 ,1396 Doi: 10.22117/jesi.2018.115354 Sawflies (Hym.: Symphyta) of Hayk Mirzayans Insect Museum with four new records for the fauna of Iran Mohammad Khayrandish1&* & Ebrahim Ebrahimi2 1- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University, Kerman, Iran & 2- Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran 19395-1454, Iran. *Corresponding author, E-mail: [email protected] Abstract A total of 60 species of Symphyta were identified and listed from the Hayk Mirzayans Insect Museum, Iran, of which the species Abia candens Konow, 1887; Pristiphora appendiculata (Hartig, 1837); Macrophya chrysura (Klug, 1817) and Tenthredopsis nassata (Geoffroy, 1785) are newly recorded from Iran. Distribution data and host plants are here presented for 37 sawfly species. Key words: Symphyta, Tenthredinidae, Argidae, sawflies, Iran. زﻧﺒﻮرﻫﺎي ﺗﺨﻢرﯾﺰ ارهاي (Hym.: Symphyta) ﻣﻮﺟﻮد در ﻣﻮزه ﺣﺸﺮات ﻫﺎﯾﮏ ﻣﯿﺮزاﯾﺎﻧﺲ ﺑﺎ ﮔﺰارش ﭼﻬﺎر رﮐﻮرد ﺟﺪﯾﺪ ﺑﺮاي ﻓﻮن اﯾﺮان ﻣﺤﻤﺪ ﺧﯿﺮاﻧﺪﯾﺶ1و* و اﺑﺮاﻫﯿﻢ اﺑﺮاﻫﯿﻤﯽ2 1- ﮔﺮوه ﮔﯿﺎهﭘﺰﺷﮑﯽ، داﻧﺸﮑﺪه ﮐﺸﺎورزي، داﻧﺸﮕﺎه ﺷﻬﯿﺪ ﺑﺎﻫﻨﺮ، ﮐﺮﻣﺎن و 2- ﺑﺨﺶ ﺗﺤﻘﯿﻘﺎت ردهﺑﻨﺪي ﺣﺸﺮات، ﻣﺆﺳﺴﻪ ﺗﺤﻘﯿﻘﺎت ﮔﯿﺎهﭘﺰﺷﮑﯽ اﯾﺮان، ﺳﺎزﻣﺎن ﺗﺤﻘﯿﻘﺎت، ﺗﺮوﯾﺞ و آﻣﻮزش ﮐﺸﺎورزي، ﺗﻬﺮان. * ﻣﺴﺌﻮل ﻣﮑﺎﺗﺒﺎت، ﭘﺴﺖ اﻟﮑﺘﺮوﻧﯿﮑﯽ: [email protected] ﭼﮑﯿﺪه درﻣﺠﻤﻮع 60 ﮔﻮﻧﻪ از زﻧﺒﻮرﻫﺎي ﺗﺨﻢرﯾﺰ ارهاي از ﻣﻮزه ﺣﺸﺮات ﻫﺎﯾﮏ ﻣﯿﺮزاﯾﺎﻧﺲ، اﯾﺮان، ﺑﺮرﺳﯽ و ﺷﻨﺎﺳﺎﯾﯽ ﺷﺪﻧﺪ ﮐﻪ ﮔﻮﻧﻪﻫﺎي Macrophya chrysura ،Pristiphora appendiculata (Hartig, 1837) ،Abia candens Konow, 1887 (Klug, 1817) و (Tenthredopsis nassata (Geoffroy, 1785 ﺑﺮاي اوﻟﯿﻦ ﺑﺎر از اﯾﺮان ﮔﺰارش ﺷﺪهاﻧﺪ. اﻃﻼﻋﺎت ﻣﺮﺑﻮط ﺑﻪ ﭘﺮاﮐﻨﺶ و ﮔﯿﺎﻫﺎن ﻣﯿﺰﺑﺎن 37 ﮔﻮﻧﻪ از زﻧﺒﻮرﻫﺎي ﺗﺨﻢرﯾﺰ ارهاي اراﺋﻪ ﺷﺪه اﺳﺖ.
    [Show full text]
  • The Nearctic Sawflies of the Genera Ametastegia, Aphilo- Dyctium and Allantus
    84 Arb. morph. taxon. Ent. Berlin-Dahlem, Band 4, 1937. Kr. 2. innen hinten mit 2 ganz kurzen Borsten. Mittelmetarsus außen mit langen Borsten. Die drei mittleren Glieder der Mitteltarsen mit auf- fallend langen posterodorsalen Apikaiborsten, von denen die am 3. und 4. Gliede viel länger sind als diese selbst (Fig. 1, rechts). Hinterschienen innen nur in der Basishälfte mit wenigen Borstenhaaren. Flügel schwach grau- lich getrübt, ohne Randdorn, hintere Querader fast gerade. Schüppchen gelblichweiß, dunkler gelb gerandet, Schwinger gelb. Bei dem Versuche, das ö nach den vorhandenen Tabellen zu bestim- men, wird man immer auf H. fabricii Holmgr. kommen. Von dem <S dieser Art unterscheidet es sich aber durch die langen posterodorsalen Apikaiborsten Fig. 1. Hylemyia trispinosa n. sp. an den Mitteltarsen. (Rechts: Die drei mittleren Glieder Q. Stirnstrieme rot. Körper ein- der Mitteltarsen; links: 5. Bauch- farbig gelbgrau, Thorax und Hinter- segment (Sternit). Vergr. 100 X-) leib ohne Striemung. An den Mittel- schienen ist die Beborstung mehr entwickelt, als beim ö. Sie haben außen vorn eine lange Borste, außen hinten eine kürzere und innen hinten zwei kürzere Borsten. Länge 5 mm. Holotype, Allotype und Paratypen im Deutschen Entomologischen Institut, Berlin-Dahlem, ein Pärchen von den letzteren auch in meiner Sammlung. The nearctic sawflies of the genera Ametastegia, Aphilo- dyctium and Allantus. (Hymenoptera: Tenthredinidae.) By Herbert H. R o s s , Illinois State Nafrural History Survey, Urbana, Illinois. (With 25 Text-Figures.) The species of the genera treated in this paper ]) have been placed J) Most of the material discussed in this paper is represented in the collections of the Deutsches Entomologisches Institut, Berlin-Dahlem, deter- mmed and revised by the author.
    [Show full text]
  • Western Australian Viticulture Industry Biosecurity Plan
    Western Australian Viticulture Industry Biosecurity Plan Version 1.1; August 2017 Contributing Organisations The Western Australian Viticulture Industry Biosecurity Plan was coordinated by the Department of Primary Industries and Regional Development and developed through a partnership approach using government and industry resources and expertise. The development of this plan was made possible by Royalties for Regions Funding. The following organisations and agencies were involved in the review of the plan: • The Department of Primary Industries and Regional Development. • Wines of Western Australia • Table Grapes Western Australia Document citation DPIRD 2017, Western Australian Viticulture Industry Biosecurity Plan, version 1.1. Department of Primary Industries and Regional Development, Western Australia. Copyright © Western Australian Agriculture Authority, 2017 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Primary Industries and Regional Development resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever without prior written permission of the Western Australian Agriculture Authority.
    [Show full text]
  • REPORT on APPLES – Fruit Pathway and Alert List
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ .....................................................................................................................................
    [Show full text]
  • Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
    Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2.
    [Show full text]
  • Apples - Chap 19 11/4/03 11:01 Am Page 489
    Apples - Chap 19 11/4/03 11:01 am Page 489 19 Ecology and Management of Apple Arthropod Pests Elizabeth H. Beers,1 D. Max Suckling,2 Ronald J. Prokopy3 and Jesús Avilla4 1Washington State University, Tree Fruit Research and Extension Center, Wenatchee, Washington, USA; 2The Horticulture and Food Research Institute of New Zealand Ltd, Canterbury, New Zealand; 3Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA; 4Centro UdL-IRTA de R+D de Lleida, Universidad de Lleida, Lleida, Spain 19.1 Introduction 489 19.2 Systems of Pest Management 490 19.2.1 Pesticide-based 490 19.2.2 Integrated pest management 499 19.3 Fruit Feeders 501 19.3.1 Direct pests of buds and fruitlets 502 19.3.2 Mature-fruit feeders 503 19.4 Foliage Feeders 509 19.4.1 Mesophyll stylet feeders 510 19.4.2 Bulk leaf feeders 512 19.5 Structural Feeders 512 19.5.1 Superficial woody-tissue and shoot feeders 512 19.5.2 Wood-boring insects 513 19.5.3 Root-system pests 514 19.6 Conclusion 514 19.1 Introduction ered pests at some point in time. This sur- vey referred to one orchard in a temperate Apples present a distinct challenge to inte- production zone in central North America, grated pest management (IPM), due in part and we can only presume the total for the to their perennial growth habit and physical world is far greater. Despite this, only a complexity. The various organs of the tree’s dozen or so arthropods in any given region structure provide multiple habitats suitable are considered serious or chronic pests.
    [Show full text]
  • Invertebrate and Avian Predators As Drivers of Chemical Defensive Strategies in Tenthredinid Sawflies
    Boevé et al. BMC Evolutionary Biology 2013, 13:198 http://www.biomedcentral.com/1471-2148/13/198 RESEARCH ARTICLE Open Access Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies Jean-Luc Boevé1*, Stephan M Blank2, Gert Meijer1,3 and Tommi Nyman4,5 Abstract Background: Many insects are chemically defended against predatory vertebrates and invertebrates. Nevertheless, our understanding of the evolution and diversity of insect defenses remains limited, since most studies have focused on visual signaling of defenses against birds, thereby implicitly underestimating the impact of insectivorous insects. In the larvae of sawflies in the family Tenthredinidae (Hymenoptera), which feed on various plants and show diverse lifestyles, two distinct defensive strategies are found: easy bleeding of deterrent hemolymph, and emission of volatiles by ventral glands. Here, we used phylogenetic information to identify phylogenetic correlations among various ecological and defensive traits in order to estimate the relative importance of avian versus invertebrate predation. Results: The mapping of 12 ecological and defensive traits on phylogenetic trees inferred from DNA sequences reveals the discrete distribution of easy bleeding that occurs, among others, in the genus Athalia and the tribe Phymatocerini. By contrast, occurrence of ventral glands is restricted to the monophyletic subfamily Nematinae, which are never easy bleeders. Both strategies are especially effective towards insectivorous insects such as ants, while only Nematinae species are frequently brightly colored and truly gregarious. Among ten tests of phylogenetic correlation between traits, only a few are significant. None of these involves morphological traits enhancing visual signals, but easy bleeding is associated with the absence of defensive body movements and with toxins occurring in the host plant.
    [Show full text]
  • An Annotated List of Insects and Other Arthropods
    This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Invertebrates of the H.J. Andrews Experimental Forest, Western Cascade Range, Oregon. V: An Annotated List of Insects and Other Arthropods Gary L Parsons Gerasimos Cassis Andrew R. Moldenke John D. Lattin Norman H. Anderson Jeffrey C. Miller Paul Hammond Timothy D. Schowalter U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, Oregon November 1991 Parson, Gary L.; Cassis, Gerasimos; Moldenke, Andrew R.; Lattin, John D.; Anderson, Norman H.; Miller, Jeffrey C; Hammond, Paul; Schowalter, Timothy D. 1991. Invertebrates of the H.J. Andrews Experimental Forest, western Cascade Range, Oregon. V: An annotated list of insects and other arthropods. Gen. Tech. Rep. PNW-GTR-290. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 168 p. An annotated list of species of insects and other arthropods that have been col- lected and studies on the H.J. Andrews Experimental forest, western Cascade Range, Oregon. The list includes 459 families, 2,096 genera, and 3,402 species. All species have been authoritatively identified by more than 100 specialists. In- formation is included on habitat type, functional group, plant or animal host, relative abundances, collection information, and literature references where available. There is a brief discussion of the Andrews Forest as habitat for arthropods with photo- graphs of representative habitats within the Forest. Illustrations of selected ar- thropods are included as is a bibliography. Keywords: Invertebrates, insects, H.J. Andrews Experimental forest, arthropods, annotated list, forest ecosystem, old-growth forests.
    [Show full text]
  • A Generic Classification of the Nearctic Sawflies (Hymenoptera, Symphyta)
    THE UNIVERSITY OF ILLINOIS LIBRARY rL_L_ 5 - V. c_op- 2 CD 00 < ' sturn this book on or before the itest Date stamped below. A arge is made on all overdue oks. University of Illinois Library UL28: .952 &i;g4 1952 %Po S IQ";^ 'APR 1 1953 DFn 7 W54 '•> d ^r-. ''/./'ji. Lit]—H41 Digitized by tine Internet Arciiive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/genericclassific15ross ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XV No. 2 Published by the University of Illinois Under the Auspices of the Graduate School Ukbana, Illinois 1937 EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Harley Jones Van Cleave UNIVERSITY OF ILLINOIS 1000—7-37—11700 ,. PRESS A GENERIC CLASSIFICATION OF THE NEARCTIC SAWFLIES (HYMENOPTERA, SYMPHYTA) WITH SEVENTEEN PLATES BY Herbert H. Ross Contribution No. 188 from the Entomological Laboratories of the University of Illinois, in Cooperation with the Illinois State Natural History Survey CONTENTS Introduction 7 Methods 7 Materials 8 Morphology 9 Head and Appendages 9 Thorax and Appendages 22 Abdomen and Appendages 29 Phylogeny 33 The Superfamilies of Sawflies 33 Family Groupings 34 Hypothesis of Genealogy .... 35 Larval Characters 45 - Biology 46 Summary of Phylogeny 48 Taxonomy 50 Superfamily Tenthredinoidea 51 Superfamily Megalodontoidea 106 Superfamily Siricoidea 110 Superfamily Cephoidea 114 Bibliography 117 Plates 127 Index 162 ACKNOWLEDGMENT This monograph is an elaboration of a thesis sub- mitted in partial fulfillment for the degree of Doctor of Philosophy in Entomology in the Graduate School of the University of Illinois in 1933. The work was done under the direction of Dr.
    [Show full text]