Apples - Chap 19 11/4/03 11:01 Am Page 489

Total Page:16

File Type:pdf, Size:1020Kb

Apples - Chap 19 11/4/03 11:01 Am Page 489 Apples - Chap 19 11/4/03 11:01 am Page 489 19 Ecology and Management of Apple Arthropod Pests Elizabeth H. Beers,1 D. Max Suckling,2 Ronald J. Prokopy3 and Jesús Avilla4 1Washington State University, Tree Fruit Research and Extension Center, Wenatchee, Washington, USA; 2The Horticulture and Food Research Institute of New Zealand Ltd, Canterbury, New Zealand; 3Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA; 4Centro UdL-IRTA de R+D de Lleida, Universidad de Lleida, Lleida, Spain 19.1 Introduction 489 19.2 Systems of Pest Management 490 19.2.1 Pesticide-based 490 19.2.2 Integrated pest management 499 19.3 Fruit Feeders 501 19.3.1 Direct pests of buds and fruitlets 502 19.3.2 Mature-fruit feeders 503 19.4 Foliage Feeders 509 19.4.1 Mesophyll stylet feeders 510 19.4.2 Bulk leaf feeders 512 19.5 Structural Feeders 512 19.5.1 Superficial woody-tissue and shoot feeders 512 19.5.2 Wood-boring insects 513 19.5.3 Root-system pests 514 19.6 Conclusion 514 19.1 Introduction ered pests at some point in time. This sur- vey referred to one orchard in a temperate Apples present a distinct challenge to inte- production zone in central North America, grated pest management (IPM), due in part and we can only presume the total for the to their perennial growth habit and physical world is far greater. Despite this, only a complexity. The various organs of the tree’s dozen or so arthropods in any given region structure provide multiple habitats suitable are considered serious or chronic pests. A for arthropod colonization. In one study few, such as the codling moth, the European (Oatman et al., 1964), 763 species of arthro- red mite and, to a lesser extent, the two- pods were discovered using apple as a host spotted spider mite are pests virtually plant. While many of these were transitory, wherever apples are grown; others are perhaps 100 or so species have been consid- strictly regional pests. © CAB International 2003. Apples: Botany, Production and Uses (eds D.C. Ferree and I.J. Warrington) 489 Apples - Chap 19 11/4/03 11:01 am Page 490 490 E.H. Beers et al. When the pest complexes are viewed as The classification of pests in this chapter a whole, a pattern of ecological homo- is necessarily an arbitrary choice. We refer logues emerges. These homologues may be to arthropod taxa, but, for pest-manage- closely related species, or unrelated taxa ment purposes, the taxon is not necessarily that have similar feeding habits. The the most useful unit. Our approach has tetranychid mite complex in the Pacific been more crop-centred, in that groupings north-west (Tetranychus urticae Koch, have been made on the basis of damage Panonychus ulmi (Koch) and Tetranychus type (Fig. 19.1), which is in turn usually mcdanieli McGregor) all feed in the same highly related to its potential economic manner and cause a similar type of foliar importance. Within some of the larger damage (Beers et al., 1993). The leaf-roller groups (fruit feeders), we have grouped complex (moths in the family Tortricidae) pests by time of attack or by type of damage all feed on leaves and the surface of apple caused. Overarching the crop and produc- fruits. Weevils (e.g. the plum curculio tivity issues, we have superimposed the Conotrachelus nenuphar (Herbst)) and thrips ecological niche and ecological homologue (the western flower thrips, Frankliniella occi- concepts in an attempt to make the dentalis (Pergande)) are examples of two plant–herbivore relationship clearer. unrelated taxa that cause similar types of damage (surface feeding and oviposition, leaving a superficial scar) and at about the 19.2 Systems of Pest Management same period in fruit development (during or shortly after bloom). 19.2.1 Pesticide-based A number of pest species are strictly monophagous on apple (e.g. Aphis pomi De The discovery and commercialization of Geer), while others are oligophagous or synthetic organic pesticides in the latter half even highly polyphagous (e.g. T. urticae). of the 20th century represented a major The degree of host specialization does not qualitative change in pest management. For appear to be related to pest status. One of the first time since the beginning of agricul- the key pests worldwide (codling moth, ture, producers had a broad range of highly Cydia pomonella (L.)) is moderately effective and relatively inexpensive prod- oligophagous, feeding primarily on a few ucts to use for insect control (Table 19.1). species of Rosaceae and one member (wal- Their ease of use and often long residual nut) of the Juglandaceae. However, many toxicity to pests made them very popular species exhibit a certain degree of plasticity and, to some extent, the applications were in their feeding behaviour and are capable an insurance policy against pest damage. of shifting hosts or expanding their host The euphoria was short-lived, as resistance range over time. An example is the apple problems began developing, sometimes maggot, Rhagoletis pomonella Walsh, in west- within a few seasons’ use. The organochlo- ern North America. A host shift was recently rines, introduced to agriculture after the demonstrated for this species (from apple to Second World War, were largely supplanted cherry) (Jones et al., 1989), even though a by the organophosphates, carbamates and closely related species, Rhagoletis indifferens pyrethroids within a few decades. The Curran, already occupied this niche in this problems associated with the use of these region (Utah). Apple is an introduced crop products became apparent after a relatively in the majority of the areas where it is short time, including environmental persis- grown, so the pest complex of any given tence and damage (especially the region is typically a mixture of pests from organochlorines), mammalian toxicity (e.g. the native region that have been introduced applicator and farm-worker safety, espe- over time (many before strict quarantine cially the organophosphates), possible con- regulations were imposed) and native pests sumer effects from residues on foods that have adapted to using apple as a host (carcinogenicity, teratogenicity, mutagenic- (e.g. apple maggot). ity or chronic neural effects), and destruc- Apples - Chap 19 11/4/03 11:01 am Page 491 Apple Arthropod Pests 491 Fig. 19.1. Examples of arthropod pests attacking various parts of the tree. Clockwise from top: scale (feed on bark); aphids (phloem feeders in shoots and leaves); leafhoppers (pierce mesophyll cells and remove contents); woolly apple aphid galls (on roots); bark beetles (attack trunk and major scaffolds); leaf-rollers (feed on fruit surface and leaves); codling moth (feeds internally in fruit); plum curculio (oviposits and scars young fruitlets). (Illustration by G. Steffan.) tion of pests’ natural enemies and selection tive tactics was minimal, because of the effi- for resistant pest populations. There were cacy of the new pesticides. Non-pesticidal clear economic benefits driving the use of tactics with some degree of promise were these materials: 30–50% damage from dismissed because of their relatively higher codling moth in the latter part of the lead expense, lower efficacy or greater complexity arsenate era (1940s) was common (Driggers, of implementation. The concept of mating 1937), whereas the economic threshold for disruption, well established by the 1970s this pest today is generally set at < 1%. (Roelofs, 1979), was not registered for use on Despite this, the disenchantment with these apples in North America until the early 1990s, materials has been growing steadily since and is still not registered in some European the 1950s. countries. Similarly, the sterile-insect tech- One of the side-effects of the pesticide- nique, although demonstrated as feasible for based era was that the bulk of entomological codling-moth control in the 1960s (Proverbs research was directed at the development et al., 1966), was not implemented in tree and optimum use of the new pesticides, and fruit on a large commercial scale until the basic biology and biological-control research early 1990s, and then only on a limited slowed considerably. The search for alterna- acreage in British Columbia, Canada. Apples -Chap1911/4/0311:01amPage492 Table 19.1. Historical use of insecticides and acaricides in apple. 492 E.H.Beers Type (I = insecticide, Use period Class/pesticidea A = acaricide) (approximate) Comments Inorganic Lead Arsenate I 1890s–1950s Once the sole control measure for codling moth and other pests, this compound was used for > 50 years until resistance occurred and replacement insecticides became available. Soil residues are still present Sulphur I/A Late 1800s–present Often applied with lime as a safener, this material is still widely used for both day arthropod pests and diseases. Used in late winter or early spring, it can be phytotoxic Cryolite I Used briefly during periods of codling-moth resistance; occasional use in organic production Dinitro Compounds Several compounds in this group have been used, but DNOC was the most common Dinitro-o-cresol (DNOC) I/A 1930s–1970s Highly phytotoxic; thus use was confined to dormant sprays. Used with oil to control aphid eggs and overwintering scale. No longer permitted in Europe (2000) DN-111 A 1940s–early 1950s A summer acaricide. Phytotoxic Botanicals As a group, these were once the primary pesticides allowed in organic produc- et al tion; some are being withdrawn (see individual chemicals). Widely variable in . terms of mammalian toxicity Neem I 1980s–present Derived from the seeds of neem (tree) (Azadirachta indica A. Juss); has antifeedant, repellency and/or growth-regulator influence on many orders of insects Ryania extracts (main I 1950s–present Ground bark of a tropical shrub (Ryania spp.); once widely used for codling-moth active ingredient ryanodine) control, it still has a limited place in organic apple production Rotenone I/A 1930s–present A neurotoxin best known for its toxicity to fish; no longer allowed in most organic certification programmes.
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Het News Issue 22 (Spring 2015)
    Circulation : An informal newsletter circulated periodically to those interested in Heteroptera Copyright : Text & drawings © 2015 Authors. Photographs © 2015 Photographers Citation : Het News, 3 rd series, 22, Spring 2015 Editor : Tristan Bantock: 101 Crouch Hill, London N8 9RD [email protected] britishbugs.org.uk , twitter.com/BritishBugs CONTENTS ANNOUNCEMENTS Scutelleridae A tribute – Ashley Wood…………………………………………….. 1 Odonotoscelis fuliginosa ……………………………………………... 5 Updated keys to Terrestrial Heteroptera exc. Miridae…………… 2 Stenocephalidae County Recorder News……………………………………………… 2 Dicranocephalus medius feeding on Euphorbia x pseudovirgata 5 IUCN status reviews for Heteroptera………………………………. 2 Lygaeidae New RES Handbook to Shieldbugs & Allies of Britain and Ireland 2 Nysius huttoni ………………………………………………………… 5 Request for photographs of Peribalus spp…………………………. 2 Ortholomus punctipennis …………………….……………………… 5 Ischnodemus sabuleti ……………..………….……………………… 5 SPECIES NEW TO BRITAIN Rhyparochromus vulgaris ……………………………………………. 6 Centrocoris variegatus (Coreidae)………………………………….. 2 Drymus pumilio…………………………………………………….…. 6 Orius horvathi (Anthocoridae)……………………………………….. 2 Miridae Nabis capsiformis (Nabidae)………………………………………… 3 Globiceps fulvicollis cruciatus…………………….………………… 6 Psallus anaemicus (Miridae)………………………………………… 3 Hallodapus montandoni………………………………………………. 6 Psallus helenae (Miridae)……………………………………………. 3 Pachytomella parallela……………………………………………….. 6 Hoplomachus thunbergii……………………………………………… 6 SPECIES NOTES Chlamydatus evanescens……………………… …………………….
    [Show full text]
  • Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
    insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil.
    [Show full text]
  • Phytophagous Mirid Bugs Nymphs Mullein Plant Bug: Campylomma Verbasci (Meyer) MPB Nymphs Are Small ( L-2 Mm; 0
    http://hdl.handle.net/1813/43117 Insect Identification Sheet No. 125 TREE FRUIT IPM 1998 fMtegrated est CORNELL COOPERATIVE EXTENSION RManagement Phytophagous Mirid Bugs Nymphs Mullein plant bug: Campylomma verbasci (Meyer) MPB nymphs are small ( l-2 mm; 0. 04-0.08 in.) and lime Apple brown bug: Atractotomus mali (Meyer) green (fig. 2a). They might be confused with rosy apple Heteroptera: Miridae aphid or white apple leafhopper nymphs (which appear in limb-tapping samples at about the same time), but David P. Kain and Joseph Kovach they move much more rapidly. They may have a reddish cast after feeding on European red mites. Department of Entomology, New York State Agricultural Experiment Station, Geneva ABB nymphs are mahogany brown, are larger than MPB at the same sampling period, and have enlarged Introduction second antennal segments (fig. 2b). Mullein plant bug (MPB) and apple brown bug (ABB) are Both species pass through five nymphal ins tars, which occasional pests of apple and pear in New York. Because take about four weeks to complete, depending largely on they occur in the same place at the same time and cause temperature. the same kind of damage, they are collectively referred to here as "mirid bugs." In western New York, MPB is more prevalent than ABB. Both are considered beneficial for part of the season, being predators of pest mites and aphids. From bloom (when overwintering eggs hatch) until shortly after petal fall, however, they may severely damage fruit by feeding on flower parts or young fruit­ lets. Figure 2a Eggs ..... "·'.. .. \':····~·. MPB eggs are laid, singly, in the fall under the bark ..
    [Show full text]
  • Scaffolds and Crop Development R U I T U N a July 31, 2000 VOLUME 9, No
    Update on Pest Management scaffolds and Crop Development R U I T u N A July 31, 2000 VOLUME 9, No. 20 Geneva, NY PLEASE DON'T They are also very expensive. EAT THESE DAISIES This regular annual article used (Dave Kain & to state that the four most common Art Agnello, botanicals available for use in fruit Entomology, crops today were rotenone, pyre- Geneva) thrin, sabadilla and ryania. Unfortu­ nately, for those who found them use­ ❖ ❖ Naturally occuring pesticides ful, sabadilla and ryania are no longer on that are derived from plants or plant parts are the list due to voluntary cancellation of their commonly referred to as “botanicals”. Botani- registrations. To round out the article, we’ll sub­ cals have been around for quite a while. Along stitute information on a few, newer, natural ma­ with arsenicals and other inorganic pesticides, terials that, while not technically botanicals, kind they were pretty commonly used before the of fit the category. Information on these products advent of the synthetic, organic pesticides ren­ appears in the 2000 Tree-Fruit Recommenda­ dered them “obsolete”. From time to time they’re tions (pp. 24-26). re-examined for various reasons and may be familiar. Botanicals are of interest to those ROTENONE Rotenone is derived from the root concerned with pest management for a variety of of various plants of the Derris or Lonchocarpus reasons. They are generally less toxic to the species from Southeast Asia, Central and South applicator than many synthetic pesticides. They America. It is available as at least 118 formu­ may be acceptable in the organic market where lated products from a large number of manufac­ synthetic pesticides are not.
    [Show full text]
  • British Lepidoptera (/)
    British Lepidoptera (/) Home (/) Anatomy (/anatomy.html) FAMILIES 1 (/families-1.html) GELECHIOIDEA (/gelechioidea.html) FAMILIES 3 (/families-3.html) FAMILIES 4 (/families-4.html) NOCTUOIDEA (/noctuoidea.html) BLOG (/blog.html) Glossary (/glossary.html) FAMILY: YPONOMEUTIDAE (8G +1EX 22S +2EX) Suborder:Glossata Infraorder:Heteroneura, Superfamily:Yponomeutoidea MBGBI3 includes families Ypsolophidae, Plutellidae, Argyresthiidae, Praydidae and Scythropiidae as subfmailies (Ypsolophinae, Plutellinae, Argyresthiinae, Praydinae and Scythropiinae) of Yponomeutidae. MBGBI3 also lists Acrolepiinae a subfamily of Yponomeutidae, it is now considered a subfamily of Glyphipterigidae. The remaining Family: Yponomeutidae is equivalent to Subfamily: Yponomeutinae as considered in MBGBI3. Abdominal tergites spined Uncus present, with a pair of prongs Aedeagus usually with a sheath Larvae are mostly web-spinners Yponomeuta (8S) Head smooth or rough-scaled, frons smooth Proboscis developed Antenna ¾ length of forewing; simple at base, weakly serrate beyond basal quarter, minutely ciliate; scape with or without pecten Labial palp moderate, curved, ascending; S2 somewhat rough ventrally; S3 =/> S2 Forewing broad, discal cell long, almost reaching 5/6; white or whitish with longitudinal rows of black spots Hindwing as long as forewing, elongate-ovate; hyaline space between cell and base (/001-yponomeuta-evonymella-bird-cherry-ermine.html) (/002-yponomeuta-padella-orchard-ermine.html) (/003-yponomeuta-malinellus-apple-ermine.html) (/004-yponomeuta-cagnagella-spindle-ermine.html)
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Aphis Spiraecola
    Rapid Pest Risk Analysis (PRA) for Aphis spiraecola STAGE 1: INITIATION 1. What is the name of the pest? Aphis spiraecola Patch (Hemiptera, Aphididae) – Spiraea aphid (also Green citrus aphid). Synonyms: many, due to historic confusion over its identity; most common is Aphis citricola van der Goot (see CABI, 2013). 2. What initiated this rapid PRA? The UK Plant Health Risk Register identified the need to update the first UK PRA (MacLeod, 2000), taking into account recent information on hosts, impacts, vectored pathogens and UK status. 3. What is the PRA area? The PRA area is the United Kingdom of Great Britain and Northern Ireland. STAGE 2: RISK ASSESSMENT 4. What is the pest’s status in the EC Plant Health Directive (Council Directive 2000/29/EC1) and in the lists of EPPO2? Aphis spiraecola is not listed in the EC Plant Health Directive, not recommended for regulation as a quarantine pest by EPPO and it is not on the EPPO Alert List. 5. What is the pest’s current geographical distribution? Aphis spiraecola probably originates in the Far East. It is now very widespread around the world in temperate and tropical regions, occurring across every continent except Antarctica (CABI, 2013). In Europe, A. spiraecola is found around the Mediterranean, with a patchy Balkan distribution and it is absent from Scandinavia and the Baltic states. It is stated as present in: Spain, Portugal, France, Switzerland, Italy, Slovenia, Croatia, Serbia, Hungary, Bulgaria, Greece, Cyprus, Malta, and Russia (west of the Urals) (CABI 2013). It is not confirmed as being established in the Netherlands, either outdoors or under protection.
    [Show full text]
  • Artículos Originales
    BOLETIN DEL MUSEO ENTOMOLÓGICO FRANCISCO LUÍS GALLEGO ARTÍCULOS ORIGINALES SPECIES OF THE BEETLE GENUS ANTHONOMUS GERMAR, 1817 (CURCULIONIDAE: CURCULIONINAE: ANTHONOMINI) OF QUARANTINE IMPORTANCE INTERCEPTED AT U.S. PORTS OF ENTRY Allan H. Smith-Pardo. Entomologist. USDA-APHIS-PPQ, 389 Oyster Point Blvd., Suite 2, South San Francisco, CA. 94080. United States of America. [email protected] Abstract This paper presents a discussion on the taxonomy of weevils of the genus Anthonomus and presents diagnostic characters useful for the identification of adult and immature stages of the genus. In addition, I ran a search in the USDA’s AQAS database for interceptions of species of Anthonomus of quarantine importance that have been intercepted at United States ports of entry. In total, six species of quarantine importance have been intercepted: Anthonomus flavus, Anthonomus grandis, Anthonomus melanosticus, Anthonomus pomorum, Anthonomus rubi, and Anthonomus sisyphus. Photographs and information on the origin and hosts of these interceptions are included. Key words Weevil, pest, crop, imported commodities, diagnostic character Resumen En este artículo se presenta una discusión acerca de la taxonomía de escarabajos- picudos del genero Anthonomus y se presentan los caracteres diagnósticos para la identificación de estadios inmaduros y de adultos. Adicionalmente, se hizo una búsqueda de las intercepciones de especies del genero Anthonomus de 7 Volumen 7 • Número 1 Marzo • 2015 importancia cuarentenaria en los EEUU plants of the family Rosaceae and is an que han sido interceptados en puertos de important pest of strawberry (Fragaria x entrada. En total se han interceptado seis ananassa) and raspberry (Rubus idaeus); especies de importancia cuarentenaria and the pepper weevil, Anthonomus de acuerdo a la base de datos AQAS del eugenii, which feeds on plants of the USDA: Anthonomus flavus, Anthonomus genus Capsicum and Solanum] or as grandis, Anthonomus melanosticus, biological control agents of invasive Anthonomus pomorum, Anthonomus rubi plants [e.g.
    [Show full text]
  • Yponomeuta Malinellus
    Yponomeuta malinellus Scientific Name Yponomeuta malinellus (Zeller) Synonyms: Hyponomeuta malinella Zeller Hyponomeuta malinellus Zeller Yponomeuta malinella Yponomeuta padella (L.) Yponomeuta padellus malinellus Common Names Apple ermine moth, small ermine moth Figure 1. Y. malinellus adult (Image courtesy of Eric LaGasa, Washington State Department of Agriculture, Bugwood.org). Type of Pest Caterpillar Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Yponomeutidae Reason for Inclusion 2012 CAPS Additional Pests of Concern Pest Description Eggs: “The individual egg has the appearance of a flattened, yellow, soft disc with the centre area slightly raised, and marked with longitudinal ribbings. Ten to eighty eggs are deposited in overlapping rows to form a flattened, slightly convex, oval egg mass. At the time of deposition, the egg mass is covered with a glutinous substance, which on exposure to air forms a resistant, protective coating. This coating not only acts as an egg-shield but provides an ideal overwintering site for the diapausing first-instar larvae. The egg mass is yellow at first but then darkens until eventually it is grey-brown and resembles the bark of apple twigs. Egg masses average 3-10 mm [0.12-0.39 in] in length and 4 mm [0.16 in] in width but vary considerably in size and shape” (CFIA, 2006). Larvae: “Grey, yellowish-grey, greenish-brown, and greyish-green larvae have been reported. The mature larva is approximately 15-20 mm [0.59-0.79 in] in length; the anterior and posterior extremities are much narrower than the remainder of the body. There are 2 conspicuous laterodorsal black dots on each segment from the mesothorax to the 8th abdominal segment.
    [Show full text]
  • Annotated Checklist of the Plant Bug Tribe Mirini (Heteroptera: Miridae: Mirinae) Recorded on the Korean Peninsula, with Descriptions of Three New Species
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 467–492, 2018 http://www.eje.cz doi: 10.14411/eje.2018.048 ORIGINAL ARTICLE Annotated checklist of the plant bug tribe Mirini (Heteroptera: Miridae: Mirinae) recorded on the Korean Peninsula, with descriptions of three new species MINSUK OH 1, 2, TOMOHIDE YASUNAGA3, RAM KESHARI DUWAL4 and SEUNGHWAN LEE 1, 2, * 1 Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; e-mail: [email protected] 2 Research Institute of Agriculture and Life Sciences, Seoul National University, Korea; e-mail: [email protected] 3 Research Associate, Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; e-mail: [email protected] 4 Visiting Scientists, Agriculture and Agri-food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A, 0C6, Canada; e-mail: [email protected] Key words. Heteroptera, Miridae, Mirinae, Mirini, checklist, key, new species, new record, Korean Peninsula Abstract. An annotated checklist of the tribe Mirini (Miridae: Mirinae) recorded on the Korean peninsula is presented. A total of 113 species, including newly described and newly recorded species are recognized. Three new species, Apolygus hwasoonanus Oh, Yasunaga & Lee, sp. n., A. seonheulensis Oh, Yasunaga & Lee, sp. n. and Stenotus penniseticola Oh, Yasunaga & Lee, sp. n., are described. Eight species, Apolygus adustus (Jakovlev, 1876), Charagochilus (Charagochilus) longicornis Reuter, 1885, C. (C.) pallidicollis Zheng, 1990, Pinalitopsis rhodopotnia Yasunaga, Schwartz & Chérot, 2002, Philostephanus tibialis (Lu & Zheng, 1998), Rhabdomiris striatellus (Fabricius, 1794), Yamatolygus insulanus Yasunaga, 1992 and Y. pilosus Yasunaga, 1992 are re- ported for the fi rst time from the Korean peninsula.
    [Show full text]
  • The Biology of the Predator Complex of the Filbert Aphid, Myzocallis Coryli
    AN ABSTRACT OF THE THESIS OF Russell H. Messing for the degree of Master of Science in Entomology presented in July 1982 Title: The Biology of the Predator Complex of the Filbert Aphid, Myzocallis coryli (Goetze) in Western Oregon. Abstract approved: Redacted for Privacy M. T. AliNiiee Commercial filbert orchards throughout the Willamette Valley were surveyed for natural enemies of the filbert aphid, Myzocallis coryli (Goetze). A large number of predaceous insects were found to prey upon M. coryli, particularly members of the families Coccinellidae, Miridae, Chrysopidae, Hemerobiidae, and Syrphidae. Also, a parasitic Hymenopteran (Mesidiopsis sp.) and a fungal pathogen (Triplosporium fresenii) were found to attack this aphid species. Populations of major predators were monitored closely during 1981 to determine phenology and synchrony with aphid populations and to determine their relative importance. Adalia bipunctata, Deraeocoris brevis, Chrysopa sp. and Hemerobius sp. were found to be extremely well synchronized with aphid population development cycles. Laboratory feeding trials demonstrated that all 4 predaceous insects tested (Deraeocoris brevis, Heterotoma meriopterum, Compsidolon salicellum and Adalia bipunctata) had a severe impact upon filbert aphid population growth. A. bipunctata was more voracious than the other 3 species, but could not live as long in the absence of aphid prey. Several insecticides were tested both in the laboratory and field to determine their relative toxicity to filbert aphids and the major natural enemies. Field tests showed Metasystox-R to be the most effective against filbert aphids, while Diazinon, Systox, Zolone, and Thiodan were moderately effective. Sevin was relatively ineffective. All insecticides tested in the field severely disrupted the predator complex.
    [Show full text]