Elemental Fluorine Product Information (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Elemental Fluorine Product Information (Pdf) Elemental Fluorine Contents 1 Introduction ............................................................................................................... 4 2.1 Technical Application of Fluorine ............................................................................. 5 2.2 Electronic Application of Fluorine ........................................................................... 7 2.3 Fluorine On-Site Plant ............................................................................................ 8 3 Specifications ............................................................................................................ 9 4 Safety ...................................................................................................................... 10 4.1 Maintenance of the F2 system .............................................................................. 12 4.2 First Aid ................................................................................................................ 13 5.1 Chemical Properties ............................................................................................. 14 5.2 Physical Data ....................................................................................................... 15 6 Toxicity .................................................................................................................... 18 7 Shipping and Transport ........................................................................................... 20 8 Environment ............................................................................................................ 22 8.1 Product Stewardship for F2 .................................................................................. 22 8.2 Solvay Way ........................................................................................................... 23 9 Solvay – The Specialists for Fluorides ..................................................................... 24 10 Bibliography .......................................................................................................... 26 Solvay Special Chemicals Elemental Fluorine 3 1 Introduction The element fluorine (chemical symbol: F) In the field of organic fluorine chemistry belongs to the halogen group. The name the development of new products con- “fluorine” derives from the mineral “fluor- tinues. Fluorine containing polymers are spar”. highly valued for their remarkable prop- Fluorine is the most reactive element in erties. The most known examples are the periodic table. This is why fluorine oc- polytetrafluorethylene (PTFE) and polyvi- curs in nature only in chemically bonded nylidene fluoride (PVDF). Fluorinated or- form as fluoride. ganic compounds are also used as: Electrolyte in Lithium ion batteries Fluorspar (CaF2) was added to the metal ores to lower their melting point and thus Solvents make them more fluid (hence the name, Surfactants from the Latin = fluere, “to flow”). Among the halogens, fluorine is the element that Pharmaceuticals occurs most abundantly in nature. Solvay Pesticides owns two fluorspar mines in Namibia and Lubricants Bulgaria to secure the raw material for its fluorine production sites in Europe and Blood substitutes Asia. Insecticides The manufacture of fluorine, together with Starting material for organic synthesis its inorganic and organic compounds has And many more. given remarkable new impulse to fluorine chemistry. Typical areas of application Today the main industrial applications for include metallurgy, aluminum electroly- elemental fluorine are fuel tank fluorination sis, the manufacture and processing of for cars and cleaning of CVD tools during glass, abrasives, electroplating process- the production of semiconductors. es, ceramics, electrical engineering, elec- trochemical elements, energy storage, nuclear technology, flat panel production, photovoltaic production and semiconduc- tor production. Fig. 01: The raw material: fluorspar crystal from the Solvay mine in Okorusu, Namibia. 4 Elemental Fluorine Solvay Special Chemicals 2.1 Technical Application of Fluorine Fluorine is widely used in applications for the direct reaction with organic sub- stances. The reaction between the pure fluorine and the organic substance results in the formation of the thermodynamically more stable end products CF4 and HF: CnH2n + 2 + (3n + 1) F2 -> – E nCF4 + (2n + 2)HF This entails that the aim in all methods of fluorine treatment is to minimize the for- mation of by-products or waste products as far as possible. At the same time it is essential to maximize the yield of the tar- get compound. An optimum reaction is achieved through control of the process parameters: Concentration of reagent blow moulding process (in-line treatment) Reaction temperature so that only the inner walls are treated. Fig. 02: Fluorinated plastics for high performance applications. Reaction time. Off-line fluorination, carried out when blow-moulding is completed, is a discon- In simplified terms, the various processes tinuous process. Fluorination may be con- used may be divided into two categories: fined to the inner walls of the container; Single-phase fluorination alternatively, both inner and outer walls Two-phase fluorination. may be treated. In another process, plas- tic surfaces are treated with elemental flu- In the single-phase method, the sub - orine i.e. in solution with inert solvents or stance to be fluorinated and the fluori- solvent mixtures. nating agent (F2 diluted with an inert gas) are present in one and the same phase. Plastic Processing A number of different variants have been The finishing of plastic surfaces is of great developed for both the gaseous-phase significance in the foil industry. For the and liquid-phase fluorination technique. production processes of gluing, coating, In the case of two-phase fluorination the laminating, painting and printing good ad- compound to be fluorinated and the fluori- hesion is absolutely essential. nating agent are present in different phas- During the nineteen eighties a continuous es. As early as 1954, Rudge filed a patent fluorinating process was developed for application in which the fluorination of pol- the treatment of foils. With this method the yethylene surfaces by means of a fluorine/ surfaces of foils can be activated, on one inert gas mixture was described. A whole or both sides, independent of the size and series of processes specifically designed length of the rolls, in a continuous process for direct fluorination of plastic surfaces from roll to roll. The fluorination of almost have subsequently been developed, some all types of foils consistently results in a of them differing in terms of the steps in- significant increase in surface energy. volved. Foam sheeting can be treated in a continuous fluorination process. Selective fluorination of hollow plastic containers can now be carried out during the actual Solvay Special Chemicals Elemental Fluorine 5 Fluorination of Tanks For this reason the automobile indus - try performs the fluorination process to Polyethylene, the plastic employed for the reduce the permeability of fuel through production of fuel tanks and containers petrol tanks walls. A layer of CF will be for different chemicals, has often the dis- 2 formed. The permeation of fuel through advantage of being relatively permeable to polyethylene fuel-container walls can be the stored vapour. This undesirable prop- dramatically reduced by the chemical erty leads to permeate to the extent of a process of forming a layer which is almost few grams per day from a PE container. impermeable. [CF2]n 100% < 1 % Untreated Tank Fluorinated Tank Fig. 03: Permeation in plastic fuel tanks. inner wall outer wall ~ 10 µm ~ 3 mm Fig. 04: Cross-Section of a container wall with a fluorinated inner layer. 6 Elemental Fluorine Solvay Special Chemicals 2.2 Electronic Application of Fluorine Solvay is producing F2 electronic grade in two plants in Germany and South Korea. This is unique in the world so far and ena- bles the highest possible supply security among all F2 high purity manufactures. As fluorine is the most reactive element, it is obvious that it is a strong oxidizer. This ability is useful for the removal of Silicon- oxide (SiO2) and Siliconnitride (Si3N4). This process is done in a CVD Tool (Chemical Vapour Deposition) and the residues of these compounds are deposited at the chamber walls of these tools. After remov- ing the wafer, the tool has to be cleaned with fluorine containing gases like NF3, SF6, CF4, C2F6 and others. These gases however have global warming potential. An environmental friendly alternative Fig. 05: Chamber cleaning in the semiconduc- tor industry with F mixtures. to these cleaning gases are F2/N2 or Ar, Kr as mixtures are used. The radiation 2 F2/N2/Ar mixtures. Fluorine reacts spon- of these gas mixtures is reflecting the min- taneously already at ambient temperature imum size of the structure. with deposits of silicon and all its com- F2 Nitrogen Mixtures as pounds to generate SiF4, which is gase- ous and can be therefore easily removed Replacement for Other Cleaning from the chamber to be cleaned. In order Gases to have the reaction better controlled fluo- F2 in dilution with nitrogen at 20 % is a rine is diluted with nitrogen. very competitive cleaning gas for cleaning CVD tools. Tests at the Fraunhofer Insti- F /N Mixtures 2 2 tute in Munich have proven the full com- Within the production process of semi- patibility of the F2 mixtures on the AMAT P
Recommended publications
  • Aero-Flex Corporation 3147 Jupiter Park Circle Suite 2 Jupiter, Florida 33458 (561) 745-2534
    Aero-Flex Corporation 3147 Jupiter Park Circle Suite 2 Jupiter, Florida 33458 (561) 745-2534 QUALITY WITHOUT QUESTION Flexible Metal Hose Assemblies Corrugated Metal Hoses that we offer: Hose Master Hoses OmegaFlex Hoses Penflex Hoses ANNUFLEX 700 Series Abrasion Resistant Tubular Braid for 1SBX Braid for 700 Series Hose Annuflex 700 Series Series 300 Hose- Stainless Steel Bronze Braid T304 Bronzeflex 1100 Series Monel Braid Bronze Tubular Braid for Series 400 ChemKing™ Hose Series 400 Stainless Steel Hose Monel Tubular Braid for Series 500 Series 600 Stainless Steel Braid ChlorSafe™ Hose Series 600 Stainless Steel Hose Series 100 - Helical, Stainless Steel, Series 700 Stainless Steel and Extraflex 9000 Series Standard Pitch Hose Compressed Hose Formaflex 900 Series Series 300 - Annular, Stainless Steel, Series 740 Monel Hose Standard Pitch Hose Series 794 Bronze Hose Hydraflex 9400 Series Series 400 - Annular, Bronze, Standard Pitch Hose Series 800 High Pressure Braid Interflex Series 800 Stainless Steel Hose Series 500 - Annular, Monel, Standard Pitch Hose Series 900 High Pressure Braid Masterflex 500 Series Series 900 Stainless Steel Hose Series 800 - Annular, Stainless Steel, Pressureflex HP High Pressure Hose and Braid Series P3 Stainless Steel Braid PressureMax HP Series P3 Stainless Steel Hose Tubular Braid for Series 100 Hose - Stainless Steel T304, T321 and T316 Stainless Steel Braid for Series Tar and Asphalt 400 Helical Hose Tubular Braid for Series 300 Stainless Steel Standard Braid for Ultraflex Braided Braid for Series 300 Series 700 Hose 1/4 - 12 inch 304, 316, & 321 Stainless Steel Single or Double Braid Why Flex Hose? It is comparatively light weight, temperature resistance, has great pressure retention, and allows for variance in fit up and alignment.
    [Show full text]
  • UNITED STATES PATENT Office SVEND S
    Patented May 24, 1932 1,859,998 UNITED STATES PATENT oFFICE SVEND S. SVENDSEN, OF CHICAGO, ILLINOIS, ASSIGNOR TO CLAY REDUCTION comi PANY, OF CHICAGO, ILLINOIS, A CORPORATION OF ILLINOIs . HYDRATED SILICA No Drawing. Application filed December 23, 1927. Serial No. 242,291. This invention relates to the production of silicofluoride is also volatilized and collected hydrated silica from a silicious material such in aqueous animonia. The volatilization oc as silica and silicates generally. - - - - curs about 300 C. The following reactions According to the invention the silicious take place in the aqueous ammonia at tem 5 material is treated with ammonium fluoride peratures below 34 C.: 5 5 or bifluoride and silicon ammonia fluorine compounds are produced. These compounds 2SiF(NH) +2H.O= are volatilized and converted into hydrated (NH4)2SiFs--SiO, (hydrated) + silica by the action of water and ammonia. 2NH.F. (IV) O Metallic silicates or substances containing (NH)SiF+4NH,+2HO = them can be subjected to this treatment di SiO, (hydrated) + 6NH.F. (V) rectly. In treating silica in the form of quartz it is found to be necessary to subject It is thus apparent that O heating the it to a preliminary treatment in order to fa silicious material with the ammonium-flu cilitate the action of the ammonium fluoride oride, ammonia-silicon-fluorine compounds a or bifluoride thereon. A suitable preliminary are formed, and by employing suitable tem treatment is to heat the quartz to a bright red peratures are volatilized from the reaction heat and suddenly cool it by immersion in mixture. These compounds may be silicon water.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Product & Service Guide
    Product & Service Guide Your complete guide to JohnsonDiversey cleaning and hygiene solutions www.johnsondiversey.co.uk 2 Your complete guide to 1 JohnsonDiversey cleaning and hygiene solutions Whether you are a new or existing customer we want you to get the most from this guide. Contents Contents Features of this guide: There is a product index at the back Sustainability 2 72 Product Index A A Cif Wood Floor Cleaner 65 Enhance Foam Shampoo 27 Supply Chain 4 Agressor 31 CLAX 100 OB 48 Enhance Spot & Stain 27 Aquamat 10 56 CLAX 100 S 48 Ensign 360/460 55 Aquamat 20 56 CLAX 500 49 Ensign SM1/2 55 Aquamat 30 56 CLAX Bright 47 Ensign Stealth 1/2 55 Aquamat 45 56 CLAX Build 48 Ergodisc 1200 57 Customer Service Commitment 5 CLAX Diamond 47 Ergodisc 165 56 CLAX Elegant 3CL2 47 Ergodisc 200 56 B B CLAX Hypo 48 Ergodisc 238 56 Bactosol Beerline Cleaner 11 CLAX Kombi Citric 48 Ergodisc 400 56 Product Index Bactosol Cabinet Detergent 11 CLAX Mild 3RL1 47 Ergodisc 438 57 Bactosol Cabinet Glasswash Rinse Aid 11 CLAX Novix 49 Ergodisc Accessories 60 Kitchen Hygiene 6 Bactosol Glass Renovator 11 CLAX Oxy 4EP1 49 Ergodisc duo 56 Bactosol Hand Glasswashing Liquid 11 CLAX Perfect 48 Ergodisc Foam Generator 56 Balimat 45 58 CLAX Profi 47 Ergodisc Mini 56 Bourne Aqua Seal 27 CLAX Revita 49 Ergodisc omni 57 Bourne Seal 27 Clax Revoflow 45 Exact System 40 Bar & Cellar Cleaning 11 Bourne Traffic Liquid Wax 27 CLAX Saturn 49 Brillo Catering Scourers No.96 69 CLAX Sigma 48 Brillo Cleaner & Degreaser 68 CLAX Silver 48 F B Florzip Sweeping System 54 Brillo Concentrated
    [Show full text]
  • 2018 Annual Survey of Biological and Chemical Agents Regulated by Homeland Security (And Carcinogens Regulated by OSHA)
    Name: Dept: Date: 2018 Annual Survey of Biological and Chemical Agents regulated by Homeland Security (and carcinogens regulated by OSHA) Due (date) All labs that do not have a current chemical inventory in Chematix MUST complete this survey. The University is required to make an annual report of all chemicals on the Chemical Facility Anti-Terrorism Standards (CFATS) lists. Additional information regarding the regulations is available on the EH&S website at http://www.safety.rochester.edu/restricted/occsafe/chemicalagent.html and https://www.selectagents.gov. 1. Please review the lists on the following pages and indicate if any are possessed by your lab. The CAS# has been added to the list for ease of searching databases. The CAS# is a Chemical Abstract Service numbering system which assigns a unique number to every chemical substance based on structure; this helps avoid confusion by use of synonyms or different naming conventions. a. If yes for possession, place an X in the applicable box and if requested, include the quantity held in your lab. b. If no, leave blank. 2. After reviewing the list, please complete the information box below (or on last page for possession), then sign, date and return to EH&S. 3. Please call Donna Douglass at 275-2402 if you have any questions. Thank you for your cooperation in collecting data required by the Department of Homeland Security! Possession: 1) Fill in applicable boxes, 2) have PI sign last page, 3) return all pages to Donna Douglass OR Non-possession: 1) Check only one box on the left, 2) sign, 3) return just this page to Donna Douglass I do not have a lab, do not work in a lab, nor do I possess any of the agents in this survey.
    [Show full text]
  • Stainless Steel Selection Guide
    TAContentsBLE OF Discovery of Stainless Steel . .page 2 What is Stainless Steel . .page 3 Stainless Steel Classifications . .page 4 • Austenitic . .page 4 • Ferritic . .page 5 • Duplex . .page 5 • Martensitic . .page 6 • Precipitation Hardening . .page 6 Nickel Based Alloys . .page 7 Strength & Heat Treatment . .page 7 The Basics of Corrosion . .page 8 • General or Uniform Corrosion . .page 9 • Galvanic Corrosion . .page 11 • Pitting Corrosion . .page 11 • Crevice Corrosion . .page 13 • Intergranular Corrosion . .page 14 • Stress Corrosion Cracking . .page 15 • Microbiologically Influence Corrosion . .page 17 Welding Stainless Steel . .page 18 Alloy Selection . .page 22 Wrought Stainless Steel Composition . .page 24 Wrought Nickel Alloy Composition . .page 25 Stainless Steel and Nickel Alloy Filler Metal . .page 26 PR“It’sEF stainlessAC steel,E it shouldn’t rust” This is often the kind of statements heard from individuals when discussing a failure of process piping or equipment. This is also an indication of how little is actually understood about stainless steel and the applications where it is used. For years the food, beverage and pharmaceutical industries have used stainless steels in their process piping systems. Most of the time stainless steel components provide satisfactory results. Occasionally a catastrophic failure will occur. The purpose of the information contained within this document is to bring an understanding to stainless steel, it’s uses, and why it will fail under certain conditions. In the following pages we will discuss the different classes of stainless steel, heat treatment, corrosion, welding, and finally material selection. As with any failure, it is imperative the cause of the failure be identified before a proper fix can be recognized.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • Effects of Various Fluorine Compounds on the Albino Rat
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-1948 Effects of Various Fluorine Compounds on the Albino Rat Robert Floyd Pevahouse University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Animal Sciences Commons Recommended Citation Pevahouse, Robert Floyd, "Effects of Various Fluorine Compounds on the Albino Rat. " Master's Thesis, University of Tennessee, 1948. https://trace.tennessee.edu/utk_gradthes/3073 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Robert Floyd Pevahouse entitled "Effects of Various Fluorine Compounds on the Albino Rat." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Animal Science. Charles S. Hobbs, Major Professor We have read this thesis and recommend its acceptance: Sam L. Hansard, Marshall C. Hervey, & Ollia E. Goff Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) · June 17, 1948 To the Committee on Graduate Study : I am submitting to you a thesis written by Robert Floyd Pevahouse entitle d "Effects of Various Fluorine Comp ounds on the Albino Rat ." I rec ommend that it be accepted for nine quarter hours credit in partial fulfillment of the requirements for the degree of Mas ter of Science, with a major in Animal Husbandry.
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • "Fluorine Compounds, Organic," In: Ullmann's Encyclopedia Of
    Article No : a11_349 Fluorine Compounds, Organic GU¨ NTER SIEGEMUND, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany WERNER SCHWERTFEGER, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany ANDREW FEIRING, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States BRUCE SMART, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States FRED BEHR, Minnesota Mining and Manufacturing Company, St. Paul, Minnesota, United States HERWARD VOGEL, Minnesota Mining and Manufacturing Company, St. Paul, Minnesota, United States BLAINE MCKUSICK, E. I. DuPont de Nemours & Co., Wilmington, Delaware, United States 1. Introduction....................... 444 8. Fluorinated Carboxylic Acids and 2. Production Processes ................ 445 Fluorinated Alkanesulfonic Acids ...... 470 2.1. Substitution of Hydrogen............. 445 8.1. Fluorinated Carboxylic Acids ......... 470 2.2. Halogen – Fluorine Exchange ......... 446 8.1.1. Fluorinated Acetic Acids .............. 470 2.3. Synthesis from Fluorinated Synthons ... 447 8.1.2. Long-Chain Perfluorocarboxylic Acids .... 470 2.4. Addition of Hydrogen Fluoride to 8.1.3. Fluorinated Dicarboxylic Acids ......... 472 Unsaturated Bonds ................. 447 8.1.4. Tetrafluoroethylene – Perfluorovinyl Ether 2.5. Miscellaneous Methods .............. 447 Copolymers with Carboxylic Acid Groups . 472 2.6. Purification and Analysis ............. 447 8.2. Fluorinated Alkanesulfonic Acids ...... 472 3. Fluorinated Alkanes................. 448 8.2.1. Perfluoroalkanesulfonic Acids
    [Show full text]
  • Investigation of Supramolecular Assemblies Based on De Novo Coiled Coil Peptidic Scaffolds
    Investigation of supramolecular assemblies based on de novo coiled coil peptidic scaffolds Inaugural-Dissertation To obtain the academic degree Doctor rerum naturalium (Dr. rer. nat) Submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by Ana Rita de Lima Fernandes First reviewer: Prof. Dr. Beate Koksch (Freie Universität Berlin) Second reviewer: Prof. Dr. Kevin Pagel (Freie Universität Berlin) Disputation: 17.09.2019 iii Declaration This PhD thesis was carried out from April 2015 to April 2019 under supervision of Prof. Dr. Beate Koksch at the Institute of Chemistry and Biochemistry in the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin. I declare that this PhD thesis was prepared autonomously. Third party content, quotes or images are referred to the original work. Additional contributions are: ▪ Electron microscopy studies were acquired by PD Dr. Christoph Böttcher and Dorian Mikolajczak at the BioSupraMol core facility of Freie Universität Berlin (Germany). ▪ UV-vis absorbance and fluorescence studies were performed in collaboration with Dr. Hans von Berlepsch. ▪ Infrared nano-spectroscopy were performed by Katerina Kanevche and Emanuel Pfitzner from the Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin. ▪ Computational modelling was performed by Natalia Ernst and PD Dr. Marcus Weber from the Zuse Institute Berlin (ZIB), Takustrasse 7, 14195 Berlin. ▪ 19F MRI was performed by Dr. Sonia Waiczies and Dr. Min-Chi Ku from the Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany. v Publications Vukelić, S., Moschner, J., Huhmann, S., Fernandes, R., Berger, A.A., and Koksch, B., Synthesis of side-chain fluorinated amino acids and their effects on the properties of peptides and proteins, in Modern Synthesis Processes and Reactivity of Fluorinated Compounds: Progress in Fluorine Science, 1st Ed., 2016.
    [Show full text]
  • Subchapter B—Food for Human Consumption (Continued)
    SUBCHAPTER B—FOOD FOR HUMAN CONSUMPTION (CONTINUED) PART 170—FOOD ADDITIVES 170.106 Notification for a food contact sub- stance formulation (NFCSF). Subpart A—General Provisions Subpart E—Generally Recognized as Safe Sec. (GRAS) Notice 170.3 Definitions. 170.203 Definitions. 170.6 Opinion letters on food additive sta- 170.205 Opportunity to submit a GRAS no- tus. tice. 170.10 Food additives in standardized foods. 170.210 How to send your GRAS notice to 170.15 Adoption of regulation on initiative FDA. of Commissioner. 170.215 Incorporation into a GRAS notice. 170.17 Exemption for investigational use 170.220 General requirements applicable to a and procedure for obtaining authoriza- GRAS notice. tion to market edible products from ex- 170.225 Part 1 of a GRAS notice: Signed perimental animals. statements and certification. 170.18 Tolerances for related food additives. 170.230 Part 2 of a GRAS notice: Identity, 170.19 Pesticide chemicals in processed method of manufacture, specifications, foods. and physical or technical effect. Subpart B—Food Additive Safety 170.235 Part 3 of a GRAS notice: Dietary ex- posure. 170.20 General principles for evaluating the 170.240 Part 4 of a GRAS notice: Self-lim- safety of food additives. iting levels of use. 170.22 Safety factors to be considered. 170.245 Part 5 of a GRAS notice: Experience 170.30 Eligibility for classification as gen- based on common use in food before 1958. erally recognized as safe (GRAS). 170.250 Part 6 of a GRAS notice: Narrative. 170.35 Affirmation of generally recognized 170.255 Part 7 of a GRAS notice: List of sup- as safe (GRAS) status.
    [Show full text]