The Helminthological Society of Washington
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Digenea: Opecoelidae
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Scott aG rdner Publications & Papers Parasitology, Harold W. Manter Laboratory of 2017 Pseudopecoelus mccauleyi n. sp. and Podocotyle sp. (Digenea: Opecoelidae) from the Deep Waters off Oregon and British Columbia with an Updated Key to the Species of Pseudopecoelus von Wicklen, 1946 and Checklist of Parasites from Lycodes cortezianus (Perciformes: Zoarcidae) Charles K. Blend Corpus Christi, Texas, [email protected] Norman O. Dronen Texas A & M University, [email protected] Gábor R. Rácz University of Nebraska - Lincoln, [email protected] Scott yL ell Gardner FUonilvloerwsit ythi of sN aendbras akdda - Litiionncolaln, slwg@unlorks a.etdu: http://digitalcommons.unl.edu/slg Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, Marine Biology Commons, and the Parasitology Commons Blend, Charles K.; Dronen, Norman O.; Rácz, Gábor R.; and Gardner, Scott yL ell, "Pseudopecoelus mccauleyi n. sp. and Podocotyle sp. (Digenea: Opecoelidae) from the Deep Waters off Oregon and British Columbia with an Updated Key to the Species of Pseudopecoelus von Wicklen, 1946 and Checklist of Parasites from Lycodes cortezianus (Perciformes: Zoarcidae)" (2017). Scott aG rdner Publications & Papers. 3. http://digitalcommons.unl.edu/slg/3 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Scott aG rdner Publications & Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Blend, Dronen, Racz, & Gardner in Acta Parasitologica (2017) 62(2). Copyright 2017, W. Stefański Institute of Parasitology. -
Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 3-2002 Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected] Louis H. Evans Curtin University of Technology Frances J. Stephens Curtin University of Technology Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, and the Parasitology Commons Edgerton, Brett .;F Evans, Louis H.; Stephens, Frances J.; and Overstreet, Robin M., "Synopsis of Freshwater Crayfish Diseases and Commensal Organisms" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 884. https://digitalcommons.unl.edu/parasitologyfacpubs/884 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 206:1–2 (March 2002), pp. 57–135; doi: 10.1016/S0044-8486(01)00865-1 Copyright © 2002 Elsevier Science. Creative Commons Attribution Non-Commercial No Deriva- tives License. Accepted October 18, 2001; published online November 30, 2001. Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett F. Edgerton,1 Louis H. Evans,2 Frances J. Stephens,2 and Robin M. Overstreet3 1. Department of Microbiology and Immunology, James Cook University, Townsville, QLD 4810, Australia 2. -
Digeneans (Trematoda) Parasitic in Freshwater Fishes (Osteichthyes) of the Lake Biwa Basin in Shiga Prefecture, Central Honshu, Japan
Digeneans (Trematoda) Parasitic in Freshwater Fishes (Osteichthyes) of the Lake Biwa Basin in Shiga Prefecture, Central Honshu, Japan Takeshi Shimazu1, Misako Urabe2 and Mark J. Grygier3 1 Nagano Prefectural College, 8–49–7 Miwa, Nagano City, Nagano 380–8525, Japan and 10486–2 Hotaka-Ariake, Azumino City, Nagano 399–8301, Japan E-mail: [email protected] 2 Department of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone City, Shiga 522–8533, Japan 3 Lake Biwa Museum, 1091 Oroshimo, Kusatsu City, Shiga 525–0001, Japan Abstract: The fauna of adult digeneans (Trematoda) parasitic in freshwater fishes (Osteichthyes) from the Lake Biwa basin in Shiga Prefecture, central Honshu, Japan, is studied from the literature and existing specimens. Twenty-four previously known, 2 new, and 4 unidentified species in 17 gen- era and 12 families are recorded. Three dubious literature records are also mentioned. All 30 con- firmed species, except Sanguinicolidae gen. sp. (Aporocotylidae), are described and figured. Life cy- cles are discussed where known. Philopinna kawamutsu sp. nov. (Didymozoidae) was found in the connective tissue between the vertebrae and the air bladder near the esophagus of Nipponocypris tem- minckii (Temminck and Schlegel) (Cyprinidae). Genarchopsis yaritanago sp. nov. (Derogenidae) was found in the intestine of Tanakia lanceolata (Temminck and Schlegel) (Cyprinidae). Asymphylodora innominata (Faust, 1924) comb. nov. is proposed for A. macrostoma Ozaki, 1925 (Lissorchiidae). A key to the families, genera, and species of these digeneans is provided. Host-parasite and parasite- host lists are given. Key words: adult digeneans, Trematoda, parasites, morphology, life cycle, Philopinna kawamutsu sp. -
Biology, Stock Status and Management Summaries for Selected Fish Species in South-Western Australia
Fisheries Research Report No. 242, 2013 Biology, stock status and management summaries for selected fish species in south-western Australia Claire B. Smallwood, S. Alex Hesp and Lynnath E. Beckley Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Smallwood, C. B.; Hesp, S. A.; and Beckley, L. E. 2013. Biology, stock status and management summaries for selected fish species in south-western Australia. Fisheries Research Report No. 242. Department of Fisheries, Western Australia. 180pp. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Fisheries Western Australia. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Department of Fisheries Western Australia does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Fish illustrations Illustrations © R. Swainston / www.anima.net.au We dedicate this guide to the memory of our friend and colleague, Ben Chuwen Department of Fisheries 3rd floor SGIO Atrium 168 – 170 St Georges Terrace PERTH WA 6000 Telephone: (08) 9482 7333 Facsimile: (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 Published by Department of Fisheries, Perth, Western Australia. Fisheries Research Report No. 242, March 2013. ISSN: 1035 - 4549 ISBN: 978-1-921845-56-7 ii Fisheries Research Report No.242, 2013 Contents ACKNOWLEDGEMENTS ............................................................................................... -
Dynamic Distributions of Coastal Zooplanktivorous Fishes
Dynamic distributions of coastal zooplanktivorous fishes Matthew Michael Holland A thesis submitted in fulfilment of the requirements for a degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science University of New South Wales, Australia November 2020 4/20/2021 GRIS Welcome to the Research Alumni Portal, Matthew Holland! You will be able to download the finalised version of all thesis submissions that were processed in GRIS here. Please ensure to include the completed declaration (from the Declarations tab), your completed Inclusion of Publications Statement (from the Inclusion of Publications Statement tab) in the final version of your thesis that you submit to the Library. Information on how to submit the final copies of your thesis to the Library is available in the completion email sent to you by the GRS. Thesis submission for the degree of Doctor of Philosophy Thesis Title and Abstract Declarations Inclusion of Publications Statement Corrected Thesis and Responses Thesis Title Dynamic distributions of coastal zooplanktivorous fishes Thesis Abstract Zooplanktivorous fishes are an essential trophic link transferring planktonic production to coastal ecosystems. Reef-associated or pelagic, their fast growth and high abundance are also crucial to supporting fisheries. I examined environmental drivers of their distribution across three levels of scale. Analysis of a decade of citizen science data off eastern Australia revealed that the proportion of community biomass for zooplanktivorous fishes peaked around the transition from sub-tropical to temperate latitudes, while the proportion of herbivores declined. This transition was attributed to high sub-tropical benthic productivity and low temperate planktonic productivity in winter. -
The Good Old Days? Historical Insights Into New South Wales Coastal Fish Populations and Their Fisheries
THE GOOD OLD DAYS? HISTORICAL INSIGHTS INTO NEW SOUTH WALES COASTAL FISH POPULATIONS AND THEIR FISHERIES Report to The NSW Recreational Fishing Trusts Expenditure Committee by Pepperell Research & Consulting Pty Ltd The Good Old Days? Historical insights into coastal NSW fish populations and their fisheries Julian G Pepperell Pepperell Research & Consulting Pty Ltd Introduction What were the fish populations and potential fishing like before Europeans arrived on Australian shores and began to cast their nets and baits into the pristine waters they found? What might fishing have been like before the advent of high tech fishing gear, both commercial and recreational? Is fishing today a shadow of its former self or have fish populations managed to sustain themselves over the past 200 plus years? Is it possible to gain some historic insights into the status of the coastal fish populations of New South Wales? New South Wales has the longest history of European exploration and settlement of any Australian State. From the time of the arrival of Captain James Cook in April 1770, observations and accounts of fish in coastal waters form a small but continual part of the narrative of exploration and settlement. Fish were obviously an important source of fresh food to the colonists so it is not surprising that their supply was a subject of interest in early writings and records. The genesis for the present study was a well publicised American study, published in July 2001, which utilized a variety of retrospective-looking methods in an attempt to gain an idea of what eastern US coastal habitats and marine populations were like when Europeans first reached the New World, and in the ensuing several centuries. -
The Sparid Fishes of Pakistan, with New Distribution Records
Zootaxa 3857 (1): 071–100 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3857.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:A26948F7-39C6-4858-B7FD-380E12F9BD34 The sparid fishes of Pakistan, with new distribution records PIRZADA JAMAL SIDDIQUI1, SHABIR ALI AMIR1, 2 & RAFAQAT MASROOR2 1Centre of Excellence in Marine Biology, University of Karachi, Karachi, Pakistan 2Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad–44000, Pakistan Corresponding author Shabir Ali Amir, email: [email protected] Abstract The family sparidae is represented in Pakistan by 14 species belonging to eight genera: the genus Acanthopagrus with four species, A. berda, A. arabicus, A. sheim, and A. catenula; Rhabdosargus, Sparidentex and Diplodus are each represented by two species, R. sarba and R. haffara, Sparidentex hasta and S. jamalensis, and Diplodus capensis and D. omanensis, and the remaining four genera are represented by single species, Crenidens indicus, Argyrops spinifer, Pagellus affinis, and Cheimerius nufar. Five species, Acanthopagrus arabicus, A. sheim, A. catenula, Diplodus capensis and Rhabdosargus haffara are reported for the first time from Pakistani coastal waters. The Arabian Yellowfin Seabream Acanthopagrus ar- abicus and Spotted Yellowfin Seabream Acanthopagrus sheim have only recently been described from Pakistani waters, while Diplodus omanensis and Pagellus affinis are newly identified from Pakistan. Acanthopagrus catenula has long been incorrectly identified as A. bifasciatus, a species which has not been recorded from Pakistan. All species are briefly de- scribed and a key is provided for them. Key words: Acanthopagrus, Rhabdosargus, Sparidentex, Diplodus, Crenidens, Argyrops, Pagellus, Cheimerius, Spari- dae, Karachi, Pakistan Introduction The fishes belonging to family Sparidae, commonly known as porgies and seabreams, are widely distributed in tropical to temperate seas (Froese & Pauly, 2013). -
Opecoelus (Opecoelidae: Japan
JapaneseJapaneseSociety Society ofSystematicof Systematic Zoology Zool., No. 37:1-19. 25, 1988. PToc. .Iapn. Soc. syst. June Trematodes of the Genera Coitocaecum, Dimerosacc"s and Opecoelus (Opecoelidae: Opecoelinae) from Freshwater Fishes of Japan Takeshi SHIMAZU Synopsis SmMAzu, T. 1988 Trematodes of the genera Coitocaecum, Dim.erosaccus and Opecoelus (Opeeoelidae: Opecoelinae) irom freshwater fishes of Japan. Proc. Japn. Soc. "yst. Zool., Tokuo, No. 37: 1-19. Three species of three trematode genera (Opeeeelidae: Opecoelinae) are reported from freshwater fishes of ,Japan: (Joitocaectt7n plagie7'ch,is OzAKI, 1926; Dimerosacczts oneerhynehi (EGuciTr, 1931) SHIMAzu, 1980; and a new speeies Opecoel?ts ?.tkigori. Diagnoses of the family, subfarnily and genera are given. Each specties is deseribecl and illusti'ated, and its systemati[: position is diseussed. Opecot.lits ?{kigeri lrom Chaenogobins aimttla7'is (the freshwater and rniddle- reaehes types) (Gobiidae) of sauthern Hokkaido most elosely resembles O. 77tutzif YAMAGuTi, 1940, and O. va・?n'abilis CRiBB, 1985, in morphology, but differs from the former in more posteriorly leeated testes and a much shorter external seminal vesiele, and from the latter in a larger body size, longer digitiform appendages of the ventral sucker, a shorter external seminal vesiele and smal]er eggs. This trematode is likely to be a freshwater speeies. This is the third report on the trematodes of the Japanese freshwater fishes. It deals with three species of the genera, Coitocaec?.tm NicoLL, 1915, Dimerosacctts SHIMAzu, 1980, and Opecoel・zts OzAKI, 1925 (Opeeo-- elidae; Opecoelinae). For the materials and methods, the first report (SHJMAzu, 1988) is to be referred. Family Opecoelidae OzAKI, 1925 Opeeoelidae OzAKi, 1925, p. -
Plant Protection News, No 116, Spring 2020
PLANT PROTECTION NEWS In this issue AGRICULTURAL RESEARCH COUNCIL - PLANT HEALTH AND PROTECTION Spring 2020 No 116 Outbreaks of the brown locust, Locustana pardalina, Hidden treasure uncovered in the Rhizobia collection reported from the Karoo Outbreaks of the brown lo- cust, Locustana pardalina, developed in the eastern and south-eastern Karoo in September-October after good early rains induced hatching from overwin- NEW diagnostic seed health test tering egg concentrations. available Some of the early reports were of large-size and highly gregarious hop- per bands, which indicated mass- hatching from overwintering egg beds Outbreak areas in the Karoo that had been laid by the previous gen- eration in March-April 2020. As the ARC predicted, the Quarantine nematode found on garlic hopper bands started to fledge into adults from mid-November 2020. The fledgling swarms then aggregated into large adult swarms that started to migrate by the end of No- vember 2020. Swarms that develop during The brown locust Locustana pardalina New early summer (November-December) book launched in the eastern and south-eastern Karoo typically fly east and north-east on the prevailing winds. During such outbreaks, swarms can readily escape the Karoo and invade the cereal crop producing areas of the Free State Province and North West Province. These swarms can also invade neighbouring Leso- Editorial Committee tho, as they have done in the past. Almie van den Berg (ed.) ● Ian Millar ● Marika van der Merwe Young maize crops will be particularly vulnerable to the locust swarms and severe dam- ● Petro Marais ● Elsa van Niekerk age to crops can be expected if swarms are not controlled. -
An Investigation of the Role of Amino Acids in Plant-Plant Parasitic Nematode Chemotaxis and Infestation
An Investigation of The Role of Amino Acids in Plant-Plant Parasitic Nematode Chemotaxis and Infestation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Timothy S. Frey Graduate Program in Plant Pathology The Ohio State University 2019 Dissertation Committee; Professor Christopher G. Taylor, Advisor Professor Soledad M. Benitez Ponce Professor Pierluigi Bonello Professor Joshua Blakelslee Copyright by Timothy S. Frey 2019 Abstract Plant parasitic nematodes are economically devastating crop pests. They are responsible for billions of dollars in crop loss in all crop growing regions of the world. Management of these pests is difficult and involves many laborious, toxic or marginally effective measures that in the best of circumstances do not lead to complete control. Plant-parasitic nematodes are obligate biotrophic parasites and must obtain all of their nutrition from a living host. Plant parasitic nematodes lack the metabolic enzymes to synthesize certain amino acids, thus it is essential for them to obtain them from a plant. Because of the essential nature of amino acids for plant- parasitic nematodes the general aim of this study was to investigate their impact throughout nematode life cycles. This investigation examined the role of amino acids throughout the lifecycle of root-knot nematode, Meloidogyne incognita, and as a factor for chemotaxis of the sugar beet cyst nematode, Heterodera schactii, and the soybean cyst nematode, Heterodera glycines as well as the model nematode, Caenorhabditis elegans. The role of amino acids in M. incognita infestation was investigated using amino acid homeostasis knockouts and overexpression lines. -
Review of Pasteuria Penetrans: Biology, Ecology, and Biological Control Potential 1
Journal of Nematology 30(3):313-340. 1998. © The Society of Nematologists 1998. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential 1 Z. X. CHEN AND D. W. DICKSON 2 Abstract: Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria sl0p. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years. Key words: bacterium, Belonolaimus longicaudatus, biological control, biology, cyst nematode, dagger nematode, ecology, endospore, Heterodera spp., Meloidogyne spp., nematode, Pasteuria penetrans, review, root-knot nematode, sting nematode, Xiphinema diversicaudatum.