Worldwide Dissemination and Importance of the Root-Knot Nematodes, Meloidogyne Spp

Total Page:16

File Type:pdf, Size:1020Kb

Worldwide Dissemination and Importance of the Root-Knot Nematodes, Meloidogyne Spp Worldwide Dissemination and Importance of the Root-knot Nematodes, Meloidogyne spp. r J. N. SASSEW Abstract: Root-knot nematodes are widely distributed throughout the world. Their distribution and economic importance are purported to be related to biological and environmental factors favorable 1o Meloidogyne spp. A scheme for comparing Meloidogyne spp. with two other genera of diverse biological characteristics is presented to support this hypothesis. It is further suggested that a probability index can be developed to predict the likelihood of a given nematode species being transported, established, and becoming economically important ill regions of the world where it does not already occur. Key Words: root-knot nematodes, Meloidogyne spp., distribution. Root-knot nematodes of the genus phts M. ovalis (22), M. carolinensis (7), M. Meloidogyne are more widely distributed thamesi (2), M. naasi (9), M. ottersoni (27, throughout the world than any other 28), M. graminis (25, 28), and M. gramini- major group of plant-parasitic nematodes. cola (12), are known to occur in the United Furthermore, when their importance is States. Meloidogyne incognita, M. javanica, considered on a worldwide basis, they rank M. arenaria, M. hapla, and M. graminis high on the list of animate pathogens are widespread in the United States, al- affecting the production of economic plants. thongh distribution varies with species. The If one assumes that these two observations other species known to occur in the United are true, certain biological characteristics States are more host specific, a factor which and environmental influences favorable to may account for their limited distribution. Meloidogyne spp. must account for their For example, M. carolinensis has been wide distribution and economic importance. reported only fi'om blueberry in eastern Information concerning distribution of North Carolina; M. ottersoni from Canary described species of Meloidogyne is pre- grass, Wind Lake area, Wisconsin; M. ovalis sented, but no attempt is made to indicate from maple in Wisconsin; M. graminicola countries in which each species occurs. on grasses in Louisiana; and M. naasi on More importantly, biological characteristics various gramineae from California, Illinois, of nematodes which influence successful Oregon, Kansas, and Maryland. dissemination and establishment in a new Twenty-four additional species, which environment are discussed. are lesser known and of more restricted In any discussion about root-knot distribution, were described or first reported nematodes, one can separate the species from other continents or regions of the into two categories: (i) the most common world. The most common and well-known and well-known species, Meloidogyne species in the United States, indicated in incognita, M. iavanica, M. arenaria, and parenthesis, also occur in most other M. hapla, included in Chitwood's 1949 continents or regions. revision of the genus (1); and (ii) the less Central and South America: Meloido- widespread species, most of which were gyne exigua (11, 18), M. coffeicola (19), M. described later. lordeUoi (21), M. inornata (17), M. bauru- Since 1949, additional species have been ensis (16), (M. incognita, M. javanica, M. described from the United States and from arenaria, and M. hapla). other parts of the world so that approxi- Africa: M. africana (29), M. acronea (3), mately 35 are now recognized (6). Of these, M. kikuyensis (4), M. ethiopica (30), M. 11, including those species listed previously decalineata (30), M. megadora (30), M. otei[ae (5), (M. incognita, M. javanica, M. Received for publication 7 June 1976. arenaria, and M. hapla). 1Journal Series Paper No. 5118 of the North Carolina Agricultural Experiment Station, Raleigh 27607. Sym- India: M. indica (30), M. lucknowica posium paper presented at the joint annual meetings of (24), M. brevicauda (15), (M. incognita, M. the Society of Nematologists and the American Phyto- pathological Society, Houston, Texas, U.S.A. 10-14 August arenaria, M. javanica, M. graminicoIa, and 1975. M. hapla). M. brevicauda occurs in Sri 2 Professor, Department of Plant Pathology, North Carolina State University, Raleigh 27607. Lanka (Ceylon) where it was first reported. 26 Dissemination of Meloidogyne spp.: Sasser 27 England: M. artiellia (8), M. naasi (9), influence the chances of successful dissemi- M. ardenensis (23), and O ¢. hapla). nation and establishment of a nematode Remainder of Europe and the Mediter- species and the likelihood that it will be- ranean region: M. deconincki (5), M. come economicaly important. From the litoralis (5), M. naasi, (M. incognita, M. known facts, we should be able to predict javanica, M. arenaria, and M. hapla). the probability that a particular species of Russia: M. hirjanovae (26), M. megrien- nematode can compete in all three phases sis (6), and M. tadshikistanica (14), (M. by placing numerical values on factors incognita). influencing distribution and establishment. Japan: M. mali (13), (M. hapla, m. For example, if we rate each biological or ]avaniea, M. incognita, and M. arenaria). environmental factor on a scale of 0-10, Southeast Asia, Australia, Fiji Islands: with 0 being most unfavorable and 10 being No new species described. (M. incognita, M. most favorable, an index of success could javanica, and M. arenaria). be estimated. In Table 1, M. incognita is Canada: M. microtfla (20), (M. hapla compared with two other nematode species and M. incognita). which represent very diverse characteristics Of the lesser known species described within the parameters considered. outside the United States since 1950, only" In the hypothetical scheme presented in M. naasi has been reported as occurring in Table 1, some factors should probably be the United States. Thus, despite very active given more weight in a formula than investigation in many parts of the world, others. This adjustment could be done only five or six cosmopolitan species have rather easily. Also, any one of several been found. Yet, all of these seem to have factors could impede or stop the process. the same biological characteristics, except Therefore, in the development of a formula possibly limitation of host range. A closer for predicting the likelihood of all three look is necessary. phases being completed, a built-in value or A comparison of Meloidogyne spp. with constant has to be inserted. Values given two other genera of diverse biological are subjective and vary among individuals characteristics may illustrate and support making the ratings. In spite of these limita- the hypothesis that distribution and eco- tions, a formula or index can be devised nomic importance of a given nematode can which would enable scientists to predict he explained on the basis of biological with a reasonable degree of accuracy the advantages or disadvantages and environ- relative probability of spread and establish- mental influences. If this can be done, there ment among many nematode groups and is reason to believe that a formula or index species. It seems reasonable that the genus can be developed which would help predict Meloidogyne is widely disseminated and whether or not a particular nematode pest economically important because of the high is likely to spread and become important in ratings reflected for several of the key areas where it does not already occur. For factors in the "establishment" and the "'eco- convenience, consideration will be given to nomically important phases." Anguina each of three phases as follows: (i) dis- tritici has a higher value for the "in transit" semination of live developmental stages of phase but lesser values than M. incognita a nematode species from one part of the for the "establishment" and "economic world to another, (ii) successful establish- importance" phases. Belonolaimus longi- ment in a new location, and (iii) conditions caudatus would rank third among these or factors favoring the likelihood that the three genera in the likelihood of being introduced species would develop to the transported and becoming established in a point of becoming an economically im- new environment. This fact can be attrib- portant pest. It is important to realize also uted to its ectoparasitic life habit, low that the first phase can occur without the reproductive rate, specific soil requirements, second, and that the first two phases can and perhaps other factors. occur without the third. A problem emerges There are many nematode species which in a new area only when all three phases are not widespread but which have the are completed. potential of becoming economically im- The factors shown in Table 1 obviously portant should they be transported to 28 Journal of Nematology, Volume 9, No. 1, January 1977 TABLE 1. Some factors which influence successful dissemination, establishment, and economic importance of a parasitic nematode. Probability Index" Meloidogyne Belonolaimus Anguina Biological and/or Environmental Influences incognita longicaudatus tritici In transit phase 1) Endo-/or Ectoparasite 6 3 10 2) Developmental stage(s) involved in transit 6 3 10 3) Amount of inoculum and frequency of transport 10 1 10 4) Type and condition of carrier--soil, fleshy root, seed, or leaves 6 3 10 5) Sensitivity to desiccation 3 2 10 Establishment phase 1) Number and relative suitability of available hosts 10 8 1 2) Amount of inoculum and frequency of transport 10 1 10 3) Temperature requirements 7 4 6 4) Moisture requirements 7 6 5 5) Soil requirements 7 1 9 6) Mode of reproduction 10 2 5 7) Survival mechanisms 3 3 1 8) Capacity to change and adapt to new situations and cultivars 5 1 1 Economic importance phase 1) Host range and economic importance of crops attacked 10 2 1 2) Number of life cycles and reproductive capacity at prevailing environmental conditions 10 3 3 3) Pathogenicity 6 8 10 4) Ability to interact with other soil-borne pathogens in disease complexes 10 5 2 5) Cropping systems and land management practices ~Probability index--Scale of 0-10; 0= highly unfavorable; 10=highly favorable. certain parts of the world.
Recommended publications
  • A Revision of the Family Heteroderidae (Nematoda: Tylenchoidea) I
    A REVISION OF THE FAMILY HETERODERIDAE (NEMATODA: TYLENCHOIDEA) I. THE FAMILY HETERODERIDAE AND ITS SUBFAMILIES BY W. M. WOUTS Entomology Division, Department of Scientific and Industrial Research, Nelson, New Zealand The family Heteroderidae and the subfamilies Heteroderinae and Meloidoderinae are redefined. The subfamily Meloidogyninae is raised to family Meloidogynidae. The genus Meloidoderita Poghossian, 1966 is transferred to the family Meloidogynidae.Ataloderinae n. subfam. is proposed and diagnosed in the family Heteroderidae. A key to the three subfamilies is presented and a possible phylogeny of the family Heteroderidae is discussed. The family Heteroderidae (Filipjev & Schuurmans Stekhoven, 1941) Skar- bilovich, 1947 was proposed for the sexually dimorphic, obligate plant parasites of the nematode genera Heterodera Schmidt, 1871 and T'ylenchulu.r Cobb, 1913. Because of differences in body length of the female, number of ovaries, position of the excretory pore and presence or apparent absence of the anal opening they were placed in separate subfamilies; Heteroderinae Filipjev & Schuurmans Stek- hoven, 1941 and Tylenchulinae Skarbilovich, 1947. Independently Thorne (1949), on the basis of sexual dimorphism, proposed Heteroderidae to include Heterodera and Meloidogyne Goeldi, 1892; he considered the short rounded tail of the male and the absence of caudal alae as family charac- ters, and included Heteroderinae as the only subfamily. Chitwood & Chitwood ( 1950) ignored sexual dimorphism and based the family on the heavy stylet and general characters of the head and the oesophagus of the adults. They recognised as subfamilies Heteroderinae, Hoplolaiminae Filipjev, 1934 and the new subfamily Nacobbinae. Skarbilovich (1959) re-emphasized sexual dimorphism as a family character and stated that "It is quite illegitimate for the [previous] authors to assign the subfamily Hoplolaiminae to the family Heteroderidae".
    [Show full text]
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi As an Alternative for Biological Control
    Appl Microbiol Biotechnol (2016) 100:3799–3812 DOI 10.1007/s00253-015-7233-6 MINI-REVIEW Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes Thomas Degenkolb1 & Andreas Vilcinskas1,2 Received: 4 October 2015 /Revised: 29 November 2015 /Accepted: 2 December 2015 /Published online: 29 December 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Plant-parasitic nematodes are estimated to cause Keywords Phytoparasitic nematodes . Nematicides . global annual losses of more than US$ 100 billion. The num- Oligosporon-type antibiotics . Nematophagous fungi . ber of registered nematicides has declined substantially over Secondary metabolites . Biocontrol the last 25 years due to concerns about their non-specific mechanisms of action and hence their potential toxicity and likelihood to cause environmental damage. Environmentally Introduction beneficial and inexpensive alternatives to chemicals, which do not affect vertebrates, crops, and other non-target organisms, Nematodes as economically important crop pests are therefore urgently required. Nematophagous fungi are nat- ural antagonists of nematode parasites, and these offer an eco- Among more than 26,000 known species of nematodes, 8000 physiological source of novel biocontrol strategies. In this first are parasites of vertebrates (Hugot et al. 2001), whereas 4100 section of a two-part review article, we discuss 83 nematicidal are parasites of plants, mostly soil-borne root pathogens and non-nematicidal primary and secondary metabolites (Nicol et al. 2011). Approximately 100 species in this latter found in nematophagous ascomycetes. Some of these sub- group are considered economically important phytoparasites stances exhibit nematicidal activities, namely oligosporon, of crops.
    [Show full text]
  • Plant-Parasitic Nematodes and Their Management: a Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.8, No.1, 2018 Plant-Parasitic Nematodes and Their Management: A Review Misgana Mitiku Department of Plant Pathology, Southern Agricultural Research Institute, Jinka, Agricultural Research Center, Jinka, Ethiopia Abstract Nowhere will the need to sustainably increase agricultural productivity in line with increasing demand be more pertinent than in resource poor areas of the world, especially Africa, where populations are most rapidly expanding. Although a 35% population increase is projected by 2050. Significant improvements are consequently necessary in terms of resource use efficiency. In moving crop yields towards an efficiency frontier, optimal pest and disease management will be essential, especially as the proportional production of some commodities steadily shifts. With this in mind, it is essential that the full spectrums of crop production limitations are considered appropriately, including the often overlooked nematode constraints about half of all nematode species are marine nematodes, 25% are free-living, soil inhabiting nematodes, I5% are animal and human parasites and l0% are plant parasites. Today, even with modern technology, 5-l0% of crop production is lost due to nematodes in developed countries. So, the aim of this work was to review some agricultural nematodes genera, species they contain and their management methods. In this review work the species, feeding habit, morphology, host and symptoms they show on the effected plant and management of eleven nematode genera was reviewed.
    [Show full text]
  • Proceedings of the Helminthological Society of Washington 43(2) 1976
    Volume July 1976 Number 2 PROCEEDINGS '* " ' "•-' ""' ' - ^ \~ ' '':'-'''' ' - ~ .•' - ' ' '*'' '* ' — "- - '• '' • The Helminthologieal Society of Washington ., , ,; . ,-. A semiannual journal of research devoted io He/m/nfho/ogy and aJ/ branches of Parasifo/ogy ''^--, '^ -^ -'/ 'lj,,:':'--' •• r\.L; / .'-•;..•• ' , -N Supported in partly the % BraytonH. Ransom :Memorial Trust Fund r ;':' />•!',"••-•, .' .'.• • V''' ". .r -,'"'/-..•" - V .. ; Subscription $15.00 x« Volume; Foreign, $15J50 ACHOLONU, AtEXANDER D. Hehnihth Fauria of Saurians from Puertox Rico>with \s on the liife Cycle of Lueheifr inscripta (Weslrurrib, 1821 ) and Description of Allopharynx puertoficensis sp. n ....... — — — ,... _.J.-i.__L,.. 106 BERGSTROM, R. C., L. R. tE^AKi AND B. A. WERNER. ^JSmall Dung , Beetles as Biolpgical Control Agents: laboratory Studies of Beetle Action on Tricho- strongylid Eggs in Sheep and Cattle Feces „ ____ ---i.--— .— _..r-..........,_: ______ .... ,171 ^CAKE, EDVWN W., JR. A Key" to Iiarval;Cestodes of Shallow-water, Benthic , ~ . Mollusks of the Northern Gulf 'bf Mexico ... .„'„_ „». -L......^....:,...^;.... _____ ..1.^..... 160 DAVIDSON, WILLIAM R. Endopa'rasjites of Selected Populations of Gray Squir- rels ( Sciurus carolinensis) in the Southeastern United States „;.„.„ ____ i ____ .... 211 DORAN, D. J. AND P: C. AUGUSTINE. / Eimeria tenella: Comparative Oocyst ;> i; Production in Primary Cultures of Chicken Kidney Cells Maintained in •\s Media Systems ^.......^.L...,.....J..^hL.. ____; C.^i,.^^..... ____ ..7._u......;. 126 cEssER,^R. P., V. Q.^PERRY AND A. L. TAYLOR. A '-Diagnostic Compendium of the _ Genus Meloidogyne ([Nematoda: Heteroderidae ) .... .... ... y— ..L_^...-...,_... ___ ...v , 138 EISCHTHAL, JACOB H. AND .ALEXANDER D. AciiOLONy. Some Digenetic Trem- ' atodes from the Atlantic UHawksbill Turtle,' Eretmochdys inibricata ^ /irribrieaia (L.), from Puerto Rico ~L^ _____ ,:,.......„._: ____ , _______ .
    [Show full text]
  • Theory Manual Course No. Pl. Path
    NAVSARI AGRICULTURAL UNIVERSITY Theory Manual INTRODUCTORY PLANT NEMATOLOGY Course No. Pl. Path 2.2 (V Dean’s) nd 2 Semester B.Sc. (Hons.) Agri. PROF.R.R.PATEL, ASSISTANT PROFESSOR Dr.D.M.PATHAK, ASSOCIATE PROFESSOR Dr.R.R.WAGHUNDE, ASSISTANT PROFESSOR DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY BHARUCH 392012 1 GENERAL INTRODUCTION What are the nematodes? Nematodes are belongs to animal kingdom, they are triploblastic, unsegmented, bilateral symmetrical, pseudocoelomateandhaving well developed reproductive, nervous, excretoryand digestive system where as the circulatory and respiratory systems are absent but govern by the pseudocoelomic fluid. Plant Nematology: Nematology is a science deals with the study of morphology, taxonomy, classification, biology, symptomatology and management of {plant pathogenic} nematode (PPN). The word nematode is made up of two Greek words, Nema means thread like and eidos means form. The words Nematodes is derived from Greek words ‘Nema+oides’ meaning „Thread + form‟(thread like organism ) therefore, they also called threadworms. They are also known as roundworms because nematode body tubular is shape. The movement (serpentine) of nematodes like eel (marine fish), so also called them eelworm in U.K. and Nema in U.S.A. Roundworms by Zoologist Nematodes are a diverse group of organisms, which are found in many different environments. Approximately 50% of known nematode species are marine, 25% are free-living species found in soil or freshwater, 15% are parasites of animals, and 10% of known nematode species are parasites of plants (see figure at left). The study of nematodes has traditionally been viewed as three separate disciplines: (1) Helminthology dealing with the study of nematodes and other worms parasitic in vertebrates (mainly those of importance to human and veterinary medicine).
    [Show full text]
  • Diversity, Phylogeny, Characterization and Diagnostics of Root-Knot and Lesion Nematodes
    Diversity, phylogeny, characterization and diagnostics of root-knot and lesion nematodes Toon Janssen Promotors: Prof. Dr. Wim Bert Prof. Dr. Gerrit Karssen Thesis submitted to obtain the degree of doctor in Sciences, Biology Proefschrift voorgelegd tot het bekomen van de graad van doctor in de Wetenschappen, Biologie 1 Table of contents Acknowledgements Chapter 1: general introduction 1 Organisms under study: plant-parasitic nematodes .................................................... 11 1.1 Pratylenchus: root-lesion nematodes ..................................................................................... 13 1.2 Meloidogyne: root-knot nematodes ....................................................................................... 15 2 Economic importance ..................................................................................................... 17 3 Identification of plant-parasitic nematodes .................................................................. 19 4 Variability in reproduction strategies and genome evolution ..................................... 22 5 Aims .................................................................................................................................. 24 6 Outline of this study ........................................................................................................ 25 Chapter 2: Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. 1 Abstract
    [Show full text]
  • Biology and Control of the Anguinid Nematode
    BIOLOGY AND CONTROL OF THE AIIGTIINID NEMATODE ASSOCIATED WITH F'LOOD PLAIN STAGGERS by TERRY B.ERTOZZI (B.Sc. (Hons Zool.), University of Adelaide) Thesis submitted for the degree of Doctor of Philosophy in The University of Adelaide (School of Agriculture and Wine) September 2003 Table of Contents Title Table of contents.... Summary Statement..... Acknowledgments Chapter 1 Introduction ... Chapter 2 Review of Literature 2.I Introduction.. 4 2.2 The 8acterium................ 4 2.2.I Taxonomic status..' 4 2.2.2 The toxins and toxin production.... 6 2.2.3 Symptoms of poisoning................. 7 2.2.4 Association with nematodes .......... 9 2.3 Nematodes of the genus Anguina 10 2.3.1 Taxonomy and sYstematics 10 2.3.2 Life cycle 13 2.4 Management 15 2.4.1 Identifi cation...................'..... 16 2.4.2 Agronomicmethods t6 2.4.3 FungalAntagonists l7 2.4.4 Other strategies 19 2.5 Conclusions 20 Chapter 3 General Methods 3.1 Field sites... 22 3.2 Collection and storage of Polypogon monspeliensis and Agrostis avenaceø seed 23 3.3 Surface sterilisation and germination of seed 23 3.4 Collection and storage of nematode galls .'.'.'.....'.....' 24 3.5 Ext¡action ofjuvenile nematodes from galls 24 3.6 Counting nematodes 24 3.7 Pot experiments............. 24 Chapter 4 Distribution of Flood Plain Staggers 4.1 lntroduction 26 4.2 Materials and Methods..............'.. 27 4.2.1 Survey of Murray River flood plains......... 27 4.2.2 Survey of southeastern South Australia .... 28 4.2.3 Surveys of northern New South Wales...... 28 4.3 Results 29 4.3.1 Survey of Murray River flood plains...
    [Show full text]
  • Evaluation of Metabarcoding Primers for Analysis of Soil Nematode Communities
    diversity Article Evaluation of Metabarcoding Primers for Analysis of Soil Nematode Communities Md. Maniruzzaman Sikder 1,2 , Mette Vestergård 1 , Rumakanta Sapkota 3 , Tina Kyndt 4 and Mogens Nicolaisen 1,* 1 Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark; [email protected] (M.M.S.); [email protected] (M.V.) 2 Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh 3 Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, 4000 Roskilde, Denmark; [email protected] 4 Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +45-24757668 Received: 5 August 2020; Accepted: 7 October 2020; Published: 9 October 2020 Abstract: While recent advances in next-generation sequencing technologies have accelerated research in microbial ecology, the application of high throughput approaches to study the ecology of nematodes remains unresolved due to several issues, e.g., whether to include an initial nematode extraction step or not, the lack of consensus on the best performing primer combination, and the absence of a curated nematode reference database. The objective of this method development study was to compare different primer sets to identify the most suitable primer set for the metabarcoding of nematodes without initial nematode extraction. We tested four primer sets for amplicon sequencing: JB3/JB5 (mitochondrial, I3-M11 partition of COI gene), SSU_04F/SSU_22R (18S rRNA, V1-V2 regions), and Nemf/18Sr2b (18S rRNA, V6-V8 regions) from earlier studies, as well as MMSF/MMSR (18S rRNA, V4-V5 regions), a newly developed primer set.
    [Show full text]
  • Transcriptome Profiling of the Root-Knot Nematode Meloidogyne Enterolobii During Parasitism and Identification of Novel Effector Proteins
    Ecole Doctorale de Sciences de la Vie et de la Santé Unité de recherche : UMR ISA INRA 1355-UNS-CNRS 7254 Thèse de doctorat Présentée en vue de l’obtention du grade de docteur en Biologie Moléculaire et Cellulaire de L’UNIVERSITE COTE D’AZUR par NGUYEN Chinh Nghia Etude de la régulation du transcriptome de nématodes parasites de plante, les nématodes à galles du genre Meloidogyne Dirigée par Dr. Bruno FAVERY Soutenance le 8 Décembre, 2016 Devant le jury composé de : Pr. Pierre FRENDO Professeur, INRA UNS CNRS Sophia-Antipolis Président Dr. Marc-Henri LEBRUN Directeur de Recherche, INRA AgroParis Tech Grignon Rapporteur Dr. Nemo PEETERS Directeur de Recherche, CNRS-INRA Castanet Tolosan Rapporteur Dr. Stéphane JOUANNIC Chargé de Recherche, IRD Montpellier Examinateur Dr. Bruno FAVERY Directeur de Recherche, UNS CNRS Sophia-Antipolis Directeur de thèse Doctoral School of Life and Health Sciences Research Unity: UMR ISA INRA 1355-UNS-CNRS 7254 PhD thesis Presented and defensed to obtain Doctor degree in Molecular and Cellular Biology from COTE D’AZUR UNIVERITY by NGUYEN Chinh Nghia Comprehensive Transcriptome Profiling of Root-knot Nematodes during Plant Infection and Characterisation of Species Specific Trait PhD directed by Dr Bruno FAVERY Defense on December 8th 2016 Jury composition : Pr. Pierre FRENDO Professeur, INRA UNS CNRS Sophia-Antipolis President Dr. Marc-Henri LEBRUN Directeur de Recherche, INRA AgroParis Tech Grignon Reporter Dr. Nemo PEETERS Directeur de Recherche, CNRS-INRA Castanet Tolosan Reporter Dr. Stéphane JOUANNIC Chargé de Recherche, IRD Montpellier Examinator Dr. Bruno FAVERY Directeur de Recherche, UNS CNRS Sophia-Antipolis PhD Director Résumé Les nématodes à galles du genre Meloidogyne spp.
    [Show full text]
  • Morphological and Molecular Characterization of <I>Meloidogyne
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 2004 Morphological and Molecular Characterization of Meloidogyne mayaguensis Isolates from Florida J. Brito Florida Department of Agriculture and Consumer Services Thomas O. Powers University of Nebraska-Lincoln, [email protected] P. G. Mullin University of Nebraska-Lincoln Florida Department of Agriculture and Consumer Services N. Florida Department of Agriculture and Consumer Services D. W. Dickson University of Florida Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Brito, J.; Powers, Thomas O.; Mullin, P. G.; Florida Department of Agriculture and Consumer Services N.; and Dickson, D. W., "Morphological and Molecular Characterization of Meloidogyne mayaguensis Isolates from Florida" (2004). Papers in Plant Pathology. 242. https://digitalcommons.unl.edu/plantpathpapers/242 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Nematology 36(3):232–240. 2004. © The Society of Nematologists 2004. Morphological and Molecular Characterization of Meloidogyne mayaguensis Isolates from Florida1 J. Brito,2 T. O. Powers,3 P. G. Mullin,4 R. N. Inserra,2 and D. W. Dickson5 Abstract: The discovery of Meloidogyne mayaguensis is confirmed in Florida; this is the first report for the continental United States. Meloidogyne mayaguensis is a virulent species that can reproduce on host cultivars bred for nematode resistance. The perineal patterns of M. mayaguensis isolates from Florida show morphological variability and often are similar to M.
    [Show full text]
  • 433 Among Other Nematodes, Root-Knot Specimens Were Collected from Wheat Ro.Ots Var. Capeiti, C38290. They Were Identified As M
    SHORT COMMUNICATIONS 433 Among other nematodes, root-knot specimens were collected from wheat ro.ots var. Capeiti, C38290. They were identified as M. artiellia Franklin, 1961. This root-knot nematode was first reported and described from England on cabbage grown in sandy loam in Norfolk. Other hosts noted by Franklin are oats, barley, wheat, kale, lucerne, pea, ciover and broad bean. All stages off the nematode were found. Second stage larvae were collected from soil samples and from egg masses. Males were found partly or completely within root tissue producing small knots of abnormal, dark coloured cells (Fig. 3), and were .often seen near or around the partly embedded females. The mature females were flask or pear-shaped with neck tapering t.o a small head, and smooth, rounded posterior part with terminal vulva and annulated region around the tail. The perineal patterns were similar to those described by Franklin (1961) and Whitehead (1968) for artiellia (Figs. 1, 2). Measurements. 5 Q Q: L = 640 p (611-675); width = 432 JL (357-458), dorsal oesophageal gland orifice 4.6 a behind stylet base; vulva = 21 p (20-22). Stylet = 14.3 JL. 10 eggs = 95 JL (90-99) X 40 p (40-40.3). 8 8 : L = 872-1090 ,u; width = 27.25-30.6 p. a = 32.3-35; b = 11-14.3; c = 80-83; stylet = 21.8-23.2 it; spicules 25-27 ,a; dorsal oesophageal gland orifice 5.2 p behind stylet base. Many mature females were found only partly embedded in the root and covered completely by the gelatinous sac even before the eggs are laid.
    [Show full text]