Building Polyhedra by Self-Assembly

Total Page:16

File Type:pdf, Size:1020Kb

Building Polyhedra by Self-Assembly Building polyhedra by self-assembly Govind Menon Experiments Computations Shivendra Pandey Ryan Kaplan, Daniel Johnson David Gracias (lab) Brown University Johns Hopkins University NSF support: DMS 07-7482 (Career), EFRI-10-22638 and 10-22730(BECS). Main reference: Artificial Life, Vol. 20 (Fall 2014) Part 1. Biology, technology, and a little math... This talk is a description of a common mathematical framework to describe self-assembly of polyhedra. I will contrast two problems: The self-assembly of the bacteriophage MS2 (Reidun Twarock's team) Surface tension driven self-folding polyhedra (our work). Examples of icosahedral symmetry in nature C 60 molecule, 0.7 nm Adenovirus, 90 nm Radioalarian 10 µm Widely different self-assembly mechanisms at different scales. It is a very interesting to understand the types of symmetry, the “coding of symmetry” in the genome, and the interplay between symmetry and the pathways of self-assembly. Google Ngram Viewer Ngram Viewer Graph these case-sensitive comma-separated phrases: self assembly between 1900 and 2008 from the corpus English with smoothing of 5 . Search lots of books 0 Tweet 0 Search in Google Books: 1900 - 1974 1975 - 2001 2002 - 2003 2004 - 2005 2006 - 2008 self assembly (English) Run your own experiment! Raw data is available for download here. © 2010 Google - About Google - About Google Books - About Google Books NGram Viewer 1 of 1 One of the first uses of the phrase “self assembly” is by Caspar and Klug in their work on the structure of viruses. They distinguish grades of organization in a cell as sub-assembly and self-assembly and write: Self-assembly (of a virus) is a process akin to crystallization and is governed by the laws of statistical mechanics. The protein subunits and the nucleic acid chain spontaneously come together to form a simple virus particle because this is their lowest free energy state .” Caspar and Klug; Cold Spring Harbor Symposium, (1962) Our work is on synthetic self-assembly. We want biology to inspire the design of devices and materials. In turn, we hope that synthetic models will shed light on biological self-assembly. Typical themes: stripped down interactions (e.g. one dominant energy scale) , simple shapes built out of a few simpler motifs, some randomness. R EPORTS R EPORTS mm), we limited the heighttwo of setsthe solder of dots film differentiated by symmetry: This self-assembled, 3D parallel network The shape and the distribution of solder dots on the wires to ϳ15% that{1} of andthe dots. {2, 5, When 8, and 11}. During self-assem- mimicked bus lines in circuits in which a on the assembling faces raises interesting Forming Electrical Networks in the faces self-assembled, thebly, larger dots fromdots fused one set on a TO connect to dots number of electrical components are powered questions regarding the design of patterns into connections, but thefrom smaller the same wires set did on another TO. These dots by the same common wires. that best enable the “recognition” of one pat- Three Dimensions by not touch and fuse (Fig.are 2C). used It was,for parallel as a or bus-line connections. For the realization of a 3D network with tern by another. Other concepts adapted from result, unnecessary to insulateThe other the wiresdots, {3, to 6, 9, and 12} and {4, 7, serial connectivity (Fig. 4), we used the sets 2D self-assembly, such as hierarchical self- Self-Assembly prevent shorting, even when10, theyand 13}, crossed form on two distinct sets related by of solder dots {3, 6, 9, and 12} and {4, 7, 10, assembly (16) and shape-selective self-as- juxtaposed faces of two TOs.reflection symmetry. Upon assembly, dots and 13} (Fig. 2D) that were off the axes of sembly [that is, use of lock-and-key struc- David H. Gracias, Joe Tien, Tricia L. Breen, Carey Hsu, We wished to demonstrate,from one by set self-as- on a TO (e.g., outputs from one symmetry of the square face (14). The im- tures (17, 18)], offer more sophisticated strat- George M. Whitesides* sembly in 3D, networksprocessor) that are connect widely to those from the other set portant feature of the assembled 3D network egies for the fabrication of asymmetrical net- used in current 2D IC technology.on another In TO these (e.g., inputs to a second pro- was that the cathode of one LED always works incorporating more than one repeating Self-assembly of millimeter-scale polyhedra, with surfaces patterned with sol- systems, pins on processorscessor). belong These to dotsone are used for serial, input/ connected to the anode of another LED unit. der dots, wires, and light-emitting diodes, generated electrically functional, of three groups: bus linesoutput (driving connections. voltage, across the assembling faces. The serial net- We have demonstrated parallel and serial three-dimensional networks. The patterns of dots and wires controlled the clock), inputs, and outputs.Figure Bus lines 3 shows con- the realization of a 3D works were traced by illuminating sets of connectivity separately; it is possible to ex- nect processors in parallel; outputs of one structure of the networks formed; both parallel and serial connections were network with parallel connectivity, using LEDs (e.g., Fig. 4D) (15). tend these ideas to more complex networks generated. processor connect serially to inputs of ad- self-assembly. The pattern of solder dots con- The 3D assemblies can be designed to be involving different combinations of parallel jacent processors. sisted of dots {2, 5, 8, and 11} and {1} (Fig. porous: this porosity may allow for cooling and serial connections. The LEDs in our dem- Most fabrication of microelectronic devices mechanical structures: examples include In the pattern of solder dots (Fig. 2D), the A self-assembling circuit is carried out by photolithography and is “flip-chip” technology (9) and the rotation of five dots that lie on reflection2D), axeswhich comprise were on the axes of symmetry of fluid to be pumped through the assemblies. onstrations are simple bipolar electronic de- intrinsically two-dimensional (2D) (1). The parts of microstructures into nonplanar orien- the square face (13). In the assembled aggre- gate, LEDs on one TO connected to those on 3D interconnections required in current de- tations (10, 11). During assembly, recogni- Fig. 3 (left). Aself-as- vices are fabricated by the superposition of tion of the pattern of dots on one face by that the adjacent TO in parallel, along three or- sembled 2 ϫ 2 ϫ 3 stacked, parallel planes and by their connec- on another orients and registers the patterns, thogonal directions. The fidelity of the inter- aggregate containing tion using perpendicular vias (2–4). We dem- and generates dot-on-dot electrical connec- connections was visualized by lighting up the 12 TOs and demon- onstrate self-assembly as a strategy to form tions among polyhedra. Self-assembly of LEDs connected in parallel in the assembly. strating parallel con- interconnections between electronic devices polyhedra can generate networks in which the nectivity. (A)Thepat- tern of copper dots, and prefabricated circuits, and to form 3D LEDs are connected either in parallel or in on March 23, 2011 wires, and contact pads electrical circuits. series. Figure 1 outlines both the fabrication used. (B)Apatterned on March 23, 2011 Previous uses of self-assembly to fabri- of the patterned polyhedra and their self- TO with three LEDs, cate electronic devices include shape-directed assembly into 3D structures that include elec- prior to assembly. (C)A fluidic self-assembly of light-emitting diodes trical networks (12). photograph of the self- (LEDs) on silicon substrates (5) and coplanar We used a scheme in which LEDs were assembled aggregate integration of segmented integrated circuit mounted on the hexagonal faces of the TO, and a penny (to indi- (IC) devices (6) into 2D “superchips” using and the solder dots were placed on the square cate size). Two electri- cally isolated pairs of capillary forces at the surface of a flotation faces. To maximize the rate of self-assembly, wires connected to a liquid (7). We demonstrate the formation of all of the square faces of the TO had the same www.sciencemag.org battery illuminate six two classes of 3D electrical networks—par- fourfold symmetric pattern of solder dots. LEDs in an electrically www.sciencemag.org allel and serial—by self-assembly, as an ear- With this pattern, correct registration of pat- continuous loop involv- ly step toward a strategy for fabricating 3D terns on juxtaposed faces occurred in one of ing three TOs. (D)Cir- microelectronic devices. The basic unit in four indistinguishable ways; dots on the pat- cuit diagram showing these assemblies is a polyhedron [a truncated terns that transformed into each other under the parallel network octahedron (TO)], on whose faces electrical fourfold rotational symmetry were equivalent formed. The gray cir- cles represent individu- circuits are printed. In the present demonstra- and served the same function. On the 3 mm al TOs. The blue half- tions, these circuits include LEDs to demon- by 3 mm square face, the width of all of the Downloaded from circles represent solder strate electrical connectivity and trace the solder dots was ϳ1 mm (Fig. 2). A common dots that connect on Downloaded from networks; in the future, they will include size was required: the solder wetted the cop- juxtaposed faces of devices with more complex functionality per with a well-defined contact angle, and two TOs. The LEDs are (e.g., processors). The LEDs are wired to each drop of the same size therefore had the shown in black. The patterns of solder dots on adjacent faces of same height. Empirical testing suggested that network contains 16 the polyhedron.
Recommended publications
  • Sonobe Assembly Guide for a Few Polyhedra
    Model Shape # of Units Finished Unit to Fold Crease Pattern Toshie Takahama’s 3 Jewel Cube 6 Large Cube 12 Octahedral Assembly 12 Icosahedral Assembly 30 Spiked Pentakis Dodecahedral 60 Assembly Dodecahedral 90 Assembly 2 Sonobe Variations Sonobe Assembly Basics Sonobe assemblies are essentially “pyramidized” constructing a polyhedron, the key thing to re- polyhedra, each pyramid consisting of three So- member is that the diagonal ab of each Sonobe nobe units. The figure below shows a generic So- unit will lie along an edge of the polyhedron. nobe unit and how to form one pyramid. When a Pocket Tab Forming one Tab pyramid Pocket b A generic Sonobe unit representation Sonobe Assembly Guide for a Few Polyhedra 1. Toshie’s Jewel: Crease three finished units as tabs and pockets. This assembly is also sometimes explained in the table on page 2. Form a pyramid known as a Crane Egg. as above. Then turn the assembly upside down 2. Cube Assembly: Crease six finished units as and make another pyramid with the three loose explained in the table on page 2. Each face will be made up of 3 the center square of one unit and the tabs of two other units. 4 Do Steps 1 and 2 to form one face. Do Steps 3 and 4 to form one corner or vertex. Continue 1 2 interlocking in this manner to arrive at the finished cube. Sonobe Variations 3 3. Large Cube Assembly: Crease 12 finished units as explained on page 2. 5 6 3 The 12-unit large cube is the only assembly that does not involve pyramidizing.
    [Show full text]
  • A Survey of Folding and Unfolding in Computational Geometry
    Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Survey of Folding and Unfolding in Computational Geometry ERIK D. DEMAINE AND JOSEPH O’ROURKE Abstract. We survey results in a recent branch of computational geome- try: folding and unfolding of linkages, paper, and polyhedra. Contents 1. Introduction 168 2. Linkages 168 2.1. Definitions and fundamental questions 168 2.2. Fundamental questions in 2D 171 2.3. Fundamental questions in 3D 175 2.4. Fundamental questions in 4D and higher dimensions 181 2.5. Protein folding 181 3. Paper 183 3.1. Categorization 184 3.2. Origami design 185 3.3. Origami foldability 189 3.4. Flattening polyhedra 191 4. Polyhedra 193 4.1. Unfolding polyhedra 193 4.2. Folding polygons into convex polyhedra 196 4.3. Folding nets into nonconvex polyhedra 199 4.4. Continuously folding polyhedra 200 5. Conclusion and Higher Dimensions 201 Acknowledgements 202 References 202 Demaine was supported by NSF CAREER award CCF-0347776. O’Rourke was supported by NSF Distinguished Teaching Scholars award DUE-0123154. 167 168 ERIKD.DEMAINEANDJOSEPHO’ROURKE 1. Introduction Folding and unfolding problems have been implicit since Albrecht D¨urer [1525], but have not been studied extensively in the mathematical literature until re- cently. Over the past few years, there has been a surge of interest in these problems in discrete and computational geometry. This paper gives a brief sur- vey of most of the work in this area. Related, shorter surveys are [Connelly and Demaine 2004; Demaine 2001; Demaine and Demaine 2002; O’Rourke 2000]. We are currently preparing a monograph on the topic [Demaine and O’Rourke ≥ 2005].
    [Show full text]
  • Arxiv:2105.14305V1 [Cs.CG] 29 May 2021
    Efficient Folding Algorithms for Regular Polyhedra ∗ Tonan Kamata1 Akira Kadoguchi2 Takashi Horiyama3 Ryuhei Uehara1 1 School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan fkamata,[email protected] 2 Intelligent Vision & Image Systems (IVIS), Tokyo, Japan [email protected] 3 Faculty of Information Science and Technology, Hokkaido University, Hokkaido, Japan [email protected] Abstract We investigate the folding problem that asks if a polygon P can be folded to a polyhedron Q for given P and Q. Recently, an efficient algorithm for this problem has been developed when Q is a box. We extend this idea to regular polyhedra, also known as Platonic solids. The basic idea of our algorithms is common, which is called stamping. However, the computational complexities of them are different depending on their geometric properties. We developed four algorithms for the problem as follows. (1) An algorithm for a regular tetrahedron, which can be extended to a tetramonohedron. (2) An algorithm for a regular hexahedron (or a cube), which is much efficient than the previously known one. (3) An algorithm for a general deltahedron, which contains the cases that Q is a regular octahedron or a regular icosahedron. (4) An algorithm for a regular dodecahedron. Combining these algorithms, we can conclude that the folding problem can be solved pseudo-polynomial time when Q is a regular polyhedron and other related solid. Keywords: Computational origami folding problem pseudo-polynomial time algorithm regular poly- hedron (Platonic solids) stamping 1 Introduction In 1525, the German painter Albrecht D¨urerpublished his masterwork on geometry [5], whose title translates as \On Teaching Measurement with a Compass and Straightedge for lines, planes, and whole bodies." In the book, he presented each polyhedron by drawing a net, which is an unfolding of the surface of the polyhedron to a planar layout without overlapping by cutting along its edges.
    [Show full text]
  • Universal Folding Pathways of Polyhedron Nets
    Universal folding pathways of polyhedron nets Paul M. Dodda, Pablo F. Damascenob, and Sharon C. Glotzera,b,c,d,1 aChemical Engineering Department, University of Michigan, Ann Arbor, MI 48109; bApplied Physics Program, University of Michigan, Ann Arbor, MI 48109; cDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109; and dBiointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 Contributed by Sharon C. Glotzer, June 6, 2018 (sent for review January 17, 2018; reviewed by Nuno Araujo and Andrew L. Ferguson) Low-dimensional objects such as molecular strands, ladders, and navigate, thermodynamically, from a denatured (unfolded) state sheets have intrinsic features that affect their propensity to fold to a natured (folded) one. Even after many decades of study, into 3D objects. Understanding this relationship remains a chal- however, a universal relationship between molecular sequence lenge for de novo design of functional structures. Using molecular and folded state—which could provide crucial insight into the dynamics simulations, we investigate the refolding of the 24 causes and potential treatments of many diseases—remains out possible 2D unfoldings (“nets”) of the three simplest Platonic of reach (11–13). shapes and demonstrate that attributes of a net’s topology— In this work, we study the thermodynamic foldability of 2D net compactness and leaves on the cutting graph—correlate nets for all five Platonic solids. Despite being the simplest and with thermodynamic folding propensity. To
    [Show full text]
  • Marvelous Modular Origami
    www.ATIBOOK.ir Marvelous Modular Origami www.ATIBOOK.ir Mukerji_book.indd 1 8/13/2010 4:44:46 PM Jasmine Dodecahedron 1 (top) and 3 (bottom). (See pages 50 and 54.) www.ATIBOOK.ir Mukerji_book.indd 2 8/13/2010 4:44:49 PM Marvelous Modular Origami Meenakshi Mukerji A K Peters, Ltd. Natick, Massachusetts www.ATIBOOK.ir Mukerji_book.indd 3 8/13/2010 4:44:49 PM Editorial, Sales, and Customer Service Office A K Peters, Ltd. 5 Commonwealth Road, Suite 2C Natick, MA 01760 www.akpeters.com Copyright © 2007 by A K Peters, Ltd. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photo- copying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. Library of Congress Cataloging-in-Publication Data Mukerji, Meenakshi, 1962– Marvelous modular origami / Meenakshi Mukerji. p. cm. Includes bibliographical references. ISBN 978-1-56881-316-5 (alk. paper) 1. Origami. I. Title. TT870.M82 2007 736΄.982--dc22 2006052457 ISBN-10 1-56881-316-3 Cover Photographs Front cover: Poinsettia Floral Ball. Back cover: Poinsettia Floral Ball (top) and Cosmos Ball Variation (bottom). Printed in India 14 13 12 11 10 10 9 8 7 6 5 4 3 2 www.ATIBOOK.ir Mukerji_book.indd 4 8/13/2010 4:44:50 PM To all who inspired me and to my parents www.ATIBOOK.ir Mukerji_book.indd 5 8/13/2010 4:44:50 PM www.ATIBOOK.ir Contents Preface ix Acknowledgments x Photo Credits x Platonic & Archimedean Solids xi Origami Basics xii
    [Show full text]
  • Extending Bricard Octahedra
    Extending Bricard Octahedra Gerald D. Nelson [email protected] Abstract We demonstrate the construction of several families of flexible polyhedra by extending Bricard octahedra to form larger composite flexible polyhedra. These flexible polyhedra are of genus 0 and 1, have dihedral angles that are non-constant under flexion, exhibit self- intersections and are of indefinite size, the smallest of which is a decahedron with seven vertexes. 1. Introduction Flexible polyhedra can change in spatial shape while their edge lengths and face angles remain invariant. The first examples of such polyhedra were octahedra discovered by Bricard [1] in 1897. These polyhedra, commonly known as Bricard octahedra, are of three types, have triangular faces and six vertexes and have self-intersecting faces. Over the past century they have provided the basis for numerous investigations and many papers based in total or part on the subject have been published. An early paper published in 1912 by Bennett [2] investigated the kinematics of these octahedra and showed that a prismatic flexible polyhedra (polyhedra that have parallel edges and are quadrilateral in cross section) could be derived from Bricard octahedra of the first type. Lebesgue lectured on the subject in 1938 [3]. The relationship between flexible prismatic polyhedra and Bricard octahedra was described in more detail in 1943 by Goldberg [4]. The well known counter-example to the polyhedra rigidity conjecture [5] was constructed by Connelly in 1977 using elements of Bricard octahedra to provide flexibility. A 1990 study [6] by Bushmelev and Sabitov described the configuration space of octahedra in general and of Bricard octahedra specifically.
    [Show full text]
  • A Pseudopolynomial Algorithm for Alexandrov's Theorem
    A pseudopolynomial algorithm for Alexandrov's theorem The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kane, Daniel, Gregory N. Price and Erik D. Demaine, "A Pseudopolynomial Algorithm for Alexandrov’s Theorem" Algorithms and data structures (Lecture notes in computer science, v. 5664,2009)435-446. Copyright © 2009, Springer . As Published http://dx.doi.org/10.1007/978-3-642-03367-4_38 Publisher Springer Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/61985 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ A Pseudopolynomial Algorithm for Alexandrov’s Theorem Daniel Kane1?, Gregory N. Price2??, and Erik D. Demaine3??? 1 Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge MA 02139, USA, [email protected] 2 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA, {price,edemaine}@mit.edu Abstract. Alexandrov’s Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of some convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution is the polyhedron corresponding to a given metric. We describe an al- gorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. 1 Introduction Consider the intrinsic metric induced on the surface M of a convex body in R3. Clearly M under this metric is homeomorphic to a sphere, and locally convex in the sense that a circle of radius r has circumference at most 2πr.
    [Show full text]
  • Prescribing the Gauss Curvature of Convex Bodies in Hyperbolic Space
    PRESCRIBING THE GAUSS CURVATURE OF CONVEX BODIES IN HYPERBOLIC SPACE JER´ OME^ BERTRAND AND PHILIPPE CASTILLON Abstract. The Gauss curvature measure of a pointed Euclidean convex body is a measure on the unit sphere which extends the notion of Gauss curvature to non-smooth bodies. Alexandrov's problem consists in finding a convex body with given curvature measure. In Euclidean space, A.D. Alexandrov gave a necessary and sufficient condition on the measure for this problem to have a solution. In this paper, we address Alexandrov's problem for convex bodies in the m+1 hyperbolic space H . After defining the Gauss curvature measure of an arbitrary hyperbolic convex body, we completely solve Alexandrov's problem in this setting. Contrary to the Euclidean case, we also prove the uniqueness of such a convex body. The methods for proving existence and uniqueness of the solution to this problem are both new. Contents Introduction1 1. The geometry of convex sets in the hyperbolic and de Sitter spaces4 1.1. The geometric framework4 m+1 m+1 1.2. Convex bodies in H and dS+ 6 1.3. Duality and convex bodies9 2. The curvature measure 10 2.1. Definition of the curvature measure 10 2.2. Properties of the curvature measure 14 2.3. Uniqueness of the convex body with prescribed curvature 17 3. The prescription of curvature as an optimization problem 18 3.1. From convex bodies to c-conjugate pairs 18 3.2. A nonlinear Kantorovich problem 19 3.3. Alexandrov meets Kantorovich 20 4. Solving the optimization problem 22 4.1.
    [Show full text]
  • Some Polycubes Have No Edge Zipper Unfolding∗
    Some Polycubes Have No Edge Zipper Unfolding∗ Erik D. Demainey Martin L. Demaine∗ David Eppsteinz Joseph O'Rourkex July 24, 2020 Abstract It is unknown whether every polycube (polyhedron constructed by gluing cubes face-to-face) has an edge unfolding, that is, cuts along edges of the cubes that unfolds the polycube to a single nonoverlapping polygon in the plane. Here we construct polycubes that have no edge zipper unfolding where the cut edges are further restricted to form a path. 1 Introduction A polycube P is an object constructed by gluing cubes whole-face to whole- face, such that its surface is a manifold. Thus the neighborhood of every surface point is a disk; so there are no edge-edge nor vertex-vertex nonmanifold surface touchings. Here we only consider polycubes of genus zero. The edges of a polycube are all the cube edges on the surface, even when those edges are shared between two coplanar faces. Similarly, the vertices of a polycube are all the cube vertices on the surface, even when those vertices are flat, incident to 360◦ total face angle. Such polycube flat vertices have degree 4. It will be useful to distinguish these flat vertices from corner vertices, nonflat vertices with total incident angle 6= 360◦ (degree 3, 5, or 6). For a polycube P , let its 1-skeleton graph GP include every vertex and edge of P , with vertices marked as either corner or flat. It is an open problem to determine whether every polycube has an edge arXiv:1907.08433v3 [cs.CG] 22 Jul 2020 unfolding (also called a grid unfolding) | a tree in the 1-skeleton that spans all corner vertices (but need not include flat vertices) which, when cut, unfolds the surface to a net, a planar nonoverlapping polygon [O'R19].
    [Show full text]
  • Creating Foldable Polyhedral Nets Using Evolution Control
    Creating Foldable Polyhedral Nets Using Evolution Control Yue Hao Yun-hyeong Kim Zhonghua Xi and Jyh-Ming Lien George Mason University Seoul National University George Mason University Fairfax, VA Seoul, South Korea Fairfax, VA [email protected] [email protected] fzxi, [email protected] Abstract—Recent innovations enable robots to be manufac- tured using low-cost planar active material and self-folded into 3D structures. The current practice for designing such structures *$%& often uses two decoupled steps: generating an unfolding (called (a) #'(%)& net) from a 3D shape, and then finding collision-free folding motion that brings the net back to the 3D shape. This raises a foldability problem, namely that there is no guarantee that continuous motion can be found in the latter step, given a net !"#$%& #'(%)& generated in the former step. Direct evaluation on the foldability (b) of a net is nontrivial and can be computationally expensive. This paper presents a novel learning strategy that generates foldable nets using an optimized genetic-based unfolder. The proposed !"#$%& strategy yields a fitness function that combines the geometric and topological properties of a net to approximate the foldability. !"#$%& The fitness function is then optimized in an evolution control framework to generate foldable nets. The experimental results show that our new unfolder generates valid unfoldings that (c) are easy to fold. Consequently, our approach opens a door to automate the design of more complex self-folding machines. I. INTRODUCTION Fig. 1: Foldability of nets of an L mesh with 28 triangles. (a) A net with deep self-intersections (shown in red) throughout the The concept of self-folding machines has recently inspired path linearly interpolated between start and goal configurations many innovations [1], [2], [3].
    [Show full text]
  • Flat-Foldability of Origami Crease Patterns
    Flat-Foldability of Origami Crease Patterns Jonathan Schneider December 10, 2004 1 FLAT ORIGAMI. Origami has traditionally been appreciated as an art form and a recreation. Increasingly over the course of the 20th century, however, attention has been drawn to the scientific and mathematical properties of paperfolding, with the majority of this work occurring in the past 20 years or so. Even today, many of the most basic and intuitive problems raised by origami still lack definitive solutions. Origami is unlike most forms of sculpture in that its medium—a sheet of paper, usually square in shape—undergoes almost no physical change during the creation process. The paper is never cut nor chemically manipulated; its size, shape, and flatness are never altered; nothing is ever added or taken away. Only its position in space is affected. Origami has been described as an “art of constraints.” The art lies in exploring and expanding the realm of what can be achieved within the constraints naturally imposed by the paper. Designing an origami model of a particular subject requires considerable ingenuity. Many origami models are so cleverly designed that their final forms bear almost no resem- blance to the sheets of paper from which they are made. However, there exists a substantial class of origami forms which share one basic characteristic of the original paper: flatness. Flat models like the crane (fig. 1) can be pressed between the pages of a book. A math- ematical inquiry into paperfolding could logically start by examining the rules that govern flat-folding. The added constraint of flatness actually simplifies our mathematical description of folding by reducing the number of relevant spatial dimensions to two.
    [Show full text]
  • Lesson 14: Nets and Surface Area
    GRADE 6 MATHEMATICS Lesson 14: Nets and Surface Area Let’s use nets to find the surface area of polyhedra. 14.1: Matching Nets Each of the following nets can be assembled into a polyhedron. Match each net with its corresponding polyhedron, and name the polyhedron. Be prepared to explain how you know the net and polyhedron go together. 14.2: Using Nets to Find Surface Area Your teacher will give you the nets of three polyhedra to cut out and assemble. 1. Name the polyhedron that each net would form when assembled. A: B: C: 2. Cut out your nets and use them to create three-dimensional shapes. 3. Find the surface area of each polyhedron. Explain your reasoning clearly (Download for free at openupresources.org) 99 Unit 1: Area and Surface Area Lesson 14: Nets and Surface Area Open Up Resources GRADE 6 MATHEMATICS Are you ready for more? 1. For each of these nets, decide if it can be assembled into a rectangular prism. 2. For each of these nets, decide if it can be folded into a triangular prism. (Download for free at openupresources.org) 100 Unit 1: Area and Surface Area Lesson 14: Nets and Surface Area Open Up Resources GRADE 6 MATHEMATICS Lesson 14 Summary A net of a pyramid has one polygon that is the base. The rest of the polygons are triangles. A pentagonal pyramid and its net are shown here. A net of a prism has two copies of the polygon that is the base. The rest of the polygons are rectangles.
    [Show full text]