Endogenous Biosynthesis of Prostacyclin and Thromboxane and Platelet Function During Chronic Administration of Aspirin in Man

Total Page:16

File Type:pdf, Size:1020Kb

Endogenous Biosynthesis of Prostacyclin and Thromboxane and Platelet Function During Chronic Administration of Aspirin in Man Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. G A FitzGerald, … , J A Lawson, A R Brash J Clin Invest. 1983;71(3):676-688. https://doi.org/10.1172/JCI110814. Research Article To assess the pharmacologic effects of aspirin on endogenous prostacyclin and thromboxane biosynthesis, 2,3-dinor-6- keto PGF1 alpha (PGI-M) and 2,3-dinor-thromboxane B2 (Tx-M) were measured in urine by mass spectrometry during continuing administration of aspirin. To define the relationship of aspirin intake to endogenous prostacyclin biosynthesis, sequential urines were initially collected in individuals prior to, during, and subsequent to administration of aspirin. Despite inter- and intra-individual variations, PGI-M excretion was significantly reduced by aspirin. However, full mass spectral identification confirmed continuing prostacyclin biosynthesis during aspirin therapy. Recovery of prostacyclin biosynthesis was incomplete 5 d after drug administration was discontinued. To relate aspirin intake to indices of thromboxane biosynthesis and platelet function, volunteers received 20 mg aspirin daily followed by 2,600 mg aspirin daily, each dose for 7 d in sequential weeks. Increasing aspirin dosage inhibited Tx-M excretion from 70 to 98% of pretreatment control values; platelet TxB2 formation from 4.9 to 0.5% and further inhibited platelet function. An extended study was performed to relate aspirin intake to both thromboxane and prostacyclin generation over a wide range of doses. Aspirin, in the range of 20 to 325 mg/d, resulted in a dose-dependent decline in both Tx-M and PGI-M excretion. At doses of 325-2,600 mg/d Tx-M excretion ranged from 5 to 3% of control values while PGI-M remained at 37-23% of control. 3 d […] Find the latest version: https://jci.me/110814/pdf Endogenous Biosynthesis of Prostacyclin and Thromboxane and Platelet Function during Chronic Administration of Aspirin in Man GARRET A. FITZGERALD, JOHN A. OATES, JACEK HAWIGER, RICHARD L. MAAS, L. JACKSON ROBERTS II, JOHN A. LAWSON, and ALAN R. BRASH, Divisions of Clinical Pharmacology and Thrombosis and Hemostasis, Departments of Medicine and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 A B S T R A C T To assess the pharmacologic effects of tion over a wide range of doses. Aspirin, in the range aspirin on endogenous prostacyclin and thromboxane of 20 to 325 mg/d, resulted in a dose-dependent de- biosynthesis, 2,3-dinor-6-keto PGFia (PGI-M) and 2,3- cline in both Tx-M and PGI-M excretion. At doses of dinor-thromboxane B2 (Tx-M) were measured in urine 325-2,600 mg/d Tx-M excretion ranged from 5 to by mass spectrometry during continuing administra- 3% of control values while PGI-M remained at 37-23% tion of aspirin. To define the relationship of aspirin of control. 3 d after the last dose of aspirin (2,600 mg/ intake to endogenous prostacyclin biosynthesis, se- d) mean Tx-M excretion had returned to 85% of con- quential urines were initially collected in individuals trol, whereas mean PGI-M remained at 40% of pre- prior to, during, and subsequent to administration of dosing values. Although the platelet aggregation re- aspirin. Despite inter- and intra-individual variations, sponse (Tmax) to ADP ex vivo was inhibited during PGI-M excretion was significantly reduced by aspirin. administration of the lower doses of aspirin the ag- However, full mass spectral identification confirmed gregation response returned to control values during continuing prostacyclin biosynthesis during aspirin the final two weeks of aspirin administration (1,300 therapy. Recovery of prostacyclin biosynthesis was in- and 2,600 mg aspirin/d) despite continued inhibition complete 5 d after drug administration was discontin- of thromboxane biosynthesis. ued. To relate aspirin intake to indices of thromboxane These results suggest that although chronic admin- biosynthesis and platelet function, volunteers received istration of aspirin results in inhibition of endogenous 20 mg aspirin daily followed by 2,600 mg aspirin daily, thromboxane and prostacyclin biosynthesis over a wide each dose for 7 d in sequential weeks. Increasing as- dose range, inhibition of thromboxane biosynthesis is pirin dosage inhibited Tx-M excretion from 70 to 98% more selective at 20 than at 2,600 mg aspirin/d. How- of pretreatment control values; platelet TxB2 forma- ever, despite this, inhibition of platelet function is not tion from 4.9 to 0.5% and further inhibited platelet maximal at the lower aspirin dosage. Doses of aspirin function. in excess of 80 mg/d resulted in substantial inhibition An extended study was performed to relate aspirin of endogenous prostacyclin biosynthesis. Thus, it is intake to both thromboxane and prostacyclin genera- unlikely that any dose of aspirin can maximally inhibit thromboxane generation without also reducing endog- Portions of this work were presented at the 54th Session enous prostacyclin biosynthesis. These results also in- of the American Heart Association, 16-19 October 1981 Dallas, TX, at the National Meeting of the American Society dicate that recovery of endogenous prostacyclin bio- for Clinical Investigation, Washington, DC, 7-10 May 1982, synthesis is delayed following aspirin administration and at the 5th International Conference on Prostaglandins, and that the usual effects of aspirin on platelet function 18-21 May 1982, Florence, Italy. ex vivo may be obscured during chronic aspirin ad- Dr. FitzGerald is the recipient of a Faculty Development in man. Award from the Pharmaceutical Manufacturer's Association ministration Foundation. Dr. Oates is the Joe and Morris Werthan Professor of In- INTRODUCTION vestigative Medicine. Received for publication 8 October 1982 and in revised The use of aspirin as an analgesic, antiinflammatory, form 26 November 1982. and antipyretic agent has evolved empirically in ther- 676 J. Clin. Invest. © The American Society for Clinical Investigation, Inc. * 0021-9738/83/03/0676/13 $1.00 Volume 71 March 1983 676-688 apeutic practice. The more recent interest in aspirin mg four times per day. Full mass spectral analysis was per- as a platelet-inhibiting agent has derived from the formed on pooled urines obtained before and during aspirin administration to confirm continuing prostacyclin synthesis observation that aspirin prolonged the bleeding time during aspirin therapy. and inhibited platelet aggregation ex vivo (1). It is now In another investigation five different male volunteers appreciated that aspirin has several actions potentially (aged 28-33 yr; wt 78±7 kg) received aspirin in daily doses relevant to platelet function and that these may be of 20 and 2,600 mg (650 mg four times daily), each dose for 7 d, in successive weeks. Urine was obtained for determi- mutually antagonistic. Furthermore, the relative nation of 2,3-dinor-thromboxane B2 (Tx-M) and blood drawn prominence of these actions may be highly dependent for platelet function studies on the day prior to dosing and on the dose of aspirin administered. on the final day of each dosing period. Blood samples were Inhibition of human platelet aggregation ex vivo by obtained following an overnight (12-h) fast and were drawn aspirin is seen after doses as low as 20 mg daily (2). 1 h after the morning doses during the treatment period. In the final study, five different male volunteers received These low doses inhibit the cyclooxygenase enzyme of aspirin capsules in oral doses of 20, 40, 80, 160, 325, 650, the platelet and it is likely that this explains the ag- 1,300, and 2,600 mg daily. Each dose was given for 7 d and gregation defect. Aspirin irreversibly acetylates this ascending doses were administered in consecutive weeks. enzyme and thereby inhibits the capacity of the plate- Aspirin was administered as a single daily dose except the let to synthesize thromboxane A2, which can induce two highest doses, which were given as 650 mg twice per day and 650 mg four times per day. Highly motivated re- irreversible platelet aggregation (3). This is generally search workers were selected as volunteers to enhance com- regarded as a beneficial action of aspirin. However, pliance. Additionally, compliance was assessed by capsule the cyclooxygenase pathway in other tissues leads to count. 24 h collections of urine for prostacyclin and throm- the formation of prostaglandins that may themselves boxane metabolite determination were performed on the day prior to the first dose of aspirin, on the final day of each inhibit platelet activation. Recent attention has fo- dosage period and for the 3 d after the last dose of aspirin. cussed on prostacyclin, a vasodilator and potent in- Prostaglandin metabolites were adjusted to creatinine ex- hibitor of platelet aggregation formed in vascular en- cretion to reduce the possibility that incomplete collection dothelium (4). It has been suggested that tissue sen- of urine might have confounded the results. Urinary values sitivity to cyclooxygenase inhibition by aspirin is of creatinine did not significantly alter during the course of highly variable and thus aspirin may selectively alter any of the studies described. the capacity to synthesize endogenous prostaglandins (5, 6). Biochemical analyses Although the enzyme remains inhibited for the life- time of Quantification of Tx-M. Both Tx-M and PGI-M were exposed platelets, enzyme turnover permits measured by stable isotope dilution assay using gas chro- functional recovery in the vascular endothelium in matography-mass spectrometry. Briefly, the assay for Tx-M vitro (5). In addition, platelet cyclooxygenase may be required the addition of 100 ng of a combined tritium and more sensitive than the vascular enzyme to aspirin in- deuterium labeled internal standard to a 10% aliquot of a hibition in vitro (6), suggesting that it might be possible 24-h collection of urine. The urine was acidified to pH 3.2 and absorbed onto a column of Amberlite XAD-2 and the to achieve a dose-dependent, selective inhibition of metabolite eluted with ethanol.
Recommended publications
  • Challenging the FDA Black Box Warning for High Aspirin Dose with Ticagrelor in Patients with Diabetes James J
    PERSPECTIVES IN DIABETES Challenging the FDA Black Box Warning for High Aspirin Dose With Ticagrelor in Patients With Diabetes James J. DiNicolantonio and Victor L. Serebruany – Ticagrelor, a novel reversible antiplatelet agent, has a Food and ASA 300 325 mg (53.6%) in the U.S. compared with the Drug Administration (FDA) black box warning to avoid mainte- rest of the world (1.7%) was the only factor to explain nance doses of aspirin (ASA) .100 mg/daily. This restriction is (out of 37 variables explored) the regional interaction based on the hypothesis that ASA doses .100 mg somehow de- that ticagrelor was less effective and potentially more creased ticagrelor’s benefit in the Platelet Inhibition and Patient harmful than clopidogrel (2). However, this interaction Outcomes (PLATO) U.S. cohort. However, these data are highly was not significant, is highly postrandomized, comes postrandomized, come from a very small subgroup in PLATO from a very small subgroup of PLATO, and makes no (57% of patients in the U.S. site), and make no biological sense. biological sense (3). Moreover, the ticagrelor-ASA interaction was not significant by any multivariate Cox regression analyses. The Complete Re- sponse Review for ticagrelor indicates that for U.S. PLATO patients, an ASA dose .300 mg was not a significant interaction TICAGRELOR-ASA HYPOTHESIS for vascular outcomes. In the ticagrelor-ASA .300 mg cohort, all- The claimed ticagrelor-ASA interaction states that ticagrelor cause and vascular mortality were not significantly increased fi – P plus low-dose ASA is bene cial, whereas increasing doses (hazard ratio [HR] 1.27 [95% CI 0.84 1.93], = 0.262 and 1.39 of ASA in combination with ticagrelor produces adverse [0.87–2.2], P = 0.170), respectively.
    [Show full text]
  • GTH 2021 State of the Art—Cardiac Surgery: the Perioperative Management of Heparin-Induced Thrombocytopenia in Cardiac Surgery
    Review Article 59 GTH 2021 State of the Art—Cardiac Surgery: The Perioperative Management of Heparin-Induced Thrombocytopenia in Cardiac Surgery Laura Ranta1 Emmanuelle Scala1 1 Department of Anesthesiology, Cardiothoracic and Vascular Address for correspondence Emmanuelle Scala, MD, Centre Anesthesia, Lausanne University Hospital (CHUV), Lausanne, Hospitalier Universitaire Vaudois, Rue du Bugnon 46, BH 05/300, 1011 Switzerland Lausanne, Suisse, Switzerland (e-mail: [email protected]). Hämostaseologie 2021;41:59–62. Abstract Heparin-induced thrombocytopenia (HIT) is a severe, immune-mediated, adverse drug Keywords reaction that paradoxically induces a prothrombotic state. Particularly in the setting of ► Heparin-induced cardiac surgery, where full anticoagulation is required during cardiopulmonary bypass, thrombocytopenia the management of HIT can be highly challenging, and requires a multidisciplinary ► cardiac surgery approach. In this short review, the different perioperative strategies to run cardiopul- ► state of the art monary bypass will be summarized. Introduction genicity of the antibodies and is diagnostic for HIT. The administration of heparin to a patient with circulating Heparin-induced thrombocytopenia (HIT) is a severe, im- pathogenic HITabs puts the patient at immediate risk of mune-mediated, adverse drug reaction that paradoxically severe thrombotic complications. induces a prothrombotic state.1,2 Particularly in the setting The time course of HIT can be divided into four distinct of cardiac surgery, where full anticoagulation is required phases.6 Acute HIT is characterized by thrombocytopenia during cardiopulmonary bypass (CPB), the management of and/or thrombosis, the presence of HITabs, and confirma- HIT can be highly challenging, and requires a multidisciplin- tion of their platelet activating capacity by a functional ary approach.
    [Show full text]
  • Inverse Agonism of SQ 29,548 and Ramatroban on Thromboxane A2 Receptor
    Inverse Agonism of SQ 29,548 and Ramatroban on Thromboxane A2 Receptor Raja Chakraborty1,3, Rajinder P. Bhullar1, Shyamala Dakshinamurti2,3, John Hwa4, Prashen Chelikani1,2,3* 1 Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada, 2 Departments of Pediatrics, Physiology, University of Manitoba, Winnipeg, Manitoba, Canada, 3 Biology of Breathing Group- Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada, 4 Department of Internal Medicine (Cardiology), Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, United States of America Abstract G protein-coupled receptors (GPCRs) show some level of basal activity even in the absence of an agonist, a phenomenon referred to as constitutive activity. Such constitutive activity in GPCRs is known to have important pathophysiological roles in human disease. The thromboxane A2 receptor (TP) is a GPCR that promotes thrombosis in response to binding of the prostanoid, thromboxane A2. TP dysfunction is widely implicated in pathophysiological conditions such as bleeding disorders, hypertension and cardiovascular disease. Recently, we reported the characterization of a few constitutively active mutants (CAMs) in TP, including a genetic variant A160T. Using these CAMs as reporters, we now test the inverse agonist properties of known antagonists of TP, SQ 29,548, Ramatroban, L-670596 and Diclofenac, in HEK293T cells. Interestingly, SQ 29,548 reduced the basal activity of both, WT-TP and the CAMs while Ramatroban was able to reduce the basal activity of only the CAMs. Diclofenac and L-670596 showed no statistically significant reduction in basal activity of WT-TP or CAMs. To investigate the role of these compounds on human platelet function, we tested their effects on human megakaryocyte based system for platelet activation.
    [Show full text]
  • Effect of Prostanoids on Human Platelet Function: an Overview
    International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1).
    [Show full text]
  • Activation of the Murine EP3 Receptor for PGE2 Inhibits Camp Production and Promotes Platelet Aggregation
    Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation Jean-Etienne Fabre, … , Thomas M. Coffman, Beverly H. Koller J Clin Invest. 2001;107(5):603-610. https://doi.org/10.1172/JCI10881. Article The importance of arachidonic acid metabolites (termed eicosanoids), particularly those derived from the COX-1 and COX-2 pathways (termed prostanoids), in platelet homeostasis has long been recognized. Thromboxane is a potent agonist, whereas prostacyclin is an inhibitor of platelet aggregation. In contrast, the effect of prostaglandin E2 (PGE2) on platelet aggregation varies significantly depending on its concentration. Low concentrations of PGE2 enhance platelet aggregation, whereas high PGE2 levels inhibit aggregation. The mechanism for this dual action of PGE2 is not clear. This study shows that among the four PGE2 receptors (EP1–EP4), activation of EP3 is sufficient to mediate the proaggregatory actions of low PGE2 concentration. In contrast, the prostacyclin receptor (IP) mediates the inhibitory effect of higher PGE2 concentrations. Furthermore, the relative activation of these two receptors, EP3 and IP, regulates the intracellular level of cAMP and in this way conditions the response of the platelet to aggregating agents. Consistent with these findings, loss of the EP3 receptor in a model of venous inflammation protects against formation of intravascular clots. Our results suggest that local production of PGE2 during an inflammatory process can modulate ensuing platelet responses. Find the latest version: https://jci.me/10881/pdf Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation Jean-Etienne Fabre,1 MyTrang Nguyen,1 Krairek Athirakul,2 Kenneth Coggins,1 John D.
    [Show full text]
  • Prostacyclin Therapies for the Treatment of Pulmonary Arterial Hypertension
    Eur Respir J 2008; 31: 891–901 DOI: 10.1183/09031936.00097107 CopyrightßERS Journals Ltd 2008 SERIES ‘‘PULMONARY HYPERTENSION: BASIC CONCEPTS FOR PRACTICAL MANAGEMENT’’ Edited by M.M. Hoeper and A.T. Dinh-Xuan Number 2 in this Series Prostacyclin therapies for the treatment of pulmonary arterial hypertension M. Gomberg-Maitland* and H. Olschewski# ABSTRACT: Prostacyclin and its analogues (prostanoids) are potent vasodilators and possess AFFILIATIONS antithrombotic, antiproliferative and anti-inflammatory properties. Pulmonary hypertension (PH) *Dept of Cardiology, University of Chicago Hospitals, Chicago, IL, USA. is associated with vasoconstriction, thrombosis and proliferation, and the lack of endogenous #Dept of Pulmonology, Medical prostacyclin may considerably contribute to this condition. This supports a strong rationale for University Graz, Graz, Austria. prostanoid use as therapy for this disease. The first experiences of prostanoid therapy in PH patients were published in 1980. CORRESPONDENCE H. Olschewski Epoprostenol, a synthetic analogue of prostacyclin, and the chemically stable analogues Dept of Pulmonology iloprost, beraprost and treprostinil were tested in randomised controlled trials. The biological Medical University Graz actions are mainly mediated by activation of specific receptors of the target cells; however, new Auenbruggerplatz 20 data suggest effects on additional intracellular pathways. In the USA and some European Graz 8010 Austria countries, intravenous infusion of epoprostenol and treprostinil, as well as subcutaneous infusion Fax: 43 3163853578 of treprostinil and inhalation of iloprost, have been approved for therapy of pulmonary arterial E-mail: horst.olschewski@ hypertension. Iloprost infusion and beraprost tablets have been approved in few other countries. meduni-graz.at Ongoing clinical studies investigate oral treprostinil, inhaled treprostinil and the combination of Received: inhaled iloprost and sildenafil in pulmonary arterial hypertension.
    [Show full text]
  • HIGHLIGHTS of PRESCRIBING INFORMATION These Highlights Do Not Include All the Information Needed to Use Remodulin Safely and Effectively
    HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use Remodulin safely and effectively. See full prescribing information for Remodulin. ---------------------DOSAGE FORMS AND STRENGTHS---------------------- • Remodulin is supplied in 20 mL vials containing 20, 50, 100, or 200 mg REMODULIN (treprostinil) Injection of treprostinil (1 mg/mL, 2.5 mg/mL, 5 mg/mL or 10 mg/mL). (3) Initial U.S. Approval: May 2002 -------------------------------CONTRAINDICATIONS------------------------------ ----------------------------RECENT MAJOR CHANGES-------------------------- None Dosage and Administration (2.1) 01/2010 -----------------------WARNINGS AND PRECAUTIONS------------------------ Warnings and Precautions (5.1) 01/2010 • Chronic intravenous infusions of Remodulin are delivered using an ----------------------------INDICATIONS AND USAGE--------------------------- indwelling central venous catheter. This route is associated with the risk Remodulin is a prostacyclin vasodilator indicated for: of blood stream infections (BSIs) and sepsis, which may be fatal. (5.1) • • Treatment of pulmonary arterial hypertension (PAH) in patients with Remodulin should be used only by clinicians experienced in the NYHA Class II-IV symptoms, to diminish symptoms associated with diagnosis and treatment of PAH. (5.2) exercise (1.1) • Adjust dosage based on clinical response, including infusion site • Patients who require transition from Flolan, to reduce the rate of clinical symptoms. (5.3) deterioration. The risks and benefits
    [Show full text]
  • Increased Serum Thromboxane A2 and Prostacyclin but Lower Complement C3 and C4
    medRxiv preprint doi: https://doi.org/10.1101/2021.04.10.21255240; this version posted April 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . 1 Increased serum thromboxane A2 and prostacyclin but lower complement C3 and C4 levels in COVID-19: associations with chest CT-scan anomalies and lowered peripheral oxygen saturation. Hussein Kadhem Al-Hakeim a, Shaymaa Ali Al-Hamami, b, Michael Maes c, d, e. a Department of Chemistry, College of Science, University of Kufa, Iraq. E-mail: [email protected] b Department of Medical Laboratory Techniques, Altoosi University College, Najaf, Iraq. E-mail: [email protected] c Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria. d Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. e School of Medicine, IMPACT Strategic Research Centre, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia. Corresponding author: Prof. Dr. Michael Maes, M.D., Ph.D., IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, Vic, Australia. E-mail: [email protected]. 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.04.10.21255240; this version posted April 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Prostacyclin Synthesis by COX-2 Endothelial Cells
    Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-2 This information is current as of October 2, 2021. Gillian E. Caughey, Leslie G. Cleland, Peter S. Penglis, Jennifer R. Gamble and Michael J. James J Immunol 2001; 167:2831-2838; ; doi: 10.4049/jimmunol.167.5.2831 http://www.jimmunol.org/content/167/5/2831 Downloaded from References This article cites 36 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/167/5/2831.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-21 Gillian E. Caughey,2* Leslie G.
    [Show full text]
  • 2621.Full.Pdf
    Prostaglandin D2 Plays an Essential Role in Chronic Allergic Inflammation of the Skin via CRTH2 Receptor This information is current as Takahiro Satoh, Rie Moroi, Kosuke Aritake, Yoshihiro of September 29, 2021. Urade, Yasumasa Kanai, Koji Sumi, Hiroo Yokozeki, Hiroyuki Hirai, Kinya Nagata, Toshifumi Hara, Masanori Utsuyama, Katsuiku Hirokawa, Kazuo Sugamura, Kiyoshi Nishioka and Masataka Nakamura J Immunol 2006; 177:2621-2629; ; Downloaded from doi: 10.4049/jimmunol.177.4.2621 http://www.jimmunol.org/content/177/4/2621 References This article cites 36 articles, 13 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/177/4/2621.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online
    [Show full text]
  • Recent Advances in Targeting the Prostacyclin Pathway in Pulmonary Arterial Hypertension
    REVIEW PULMONARY HYPERTENSION Recent advances in targeting the prostacyclin pathway in pulmonary arterial hypertension Irene M. Lang1 and Sean P. Gaine2 Affiliations: 1Division of Cardiology, Medical University of Vienna, Vienna, Austria. 2National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland. Correspondence: Irene M. Lang, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria. E-mail: [email protected] ABSTRACT Pulmonary arterial hypertension (PAH) is a severe disease characterised by increased pulmonary vascular resistance, which leads to restricted pulmonary arterial blood flow and elevated pulmonary arterial pressure. In patients with PAH, pulmonary concentrations of prostacyclin, a prostanoid that targets several receptors including the IP prostacyclin receptor, are reduced. To redress this balance, epoprostenol, a synthetic prostacyclin, or analogues of prostacyclin have been given therapeutically. These therapies improve exercise capacity, functional class and haemodynamic parameters. In addition, epoprostenol improves survival among patients with PAH. Despite their therapeutic benefits, treatments that target the prostacyclin pathway are underused. One key factor is their requirement for parenteral administration: continuous intravenous administration can lead to embolism and thrombosis; subcutaneous administration is associated with infusion-site pain; and inhalation is time consuming, requiring multiple daily administrations. Nevertheless,
    [Show full text]
  • Antagonism of the Prostaglandin D Receptors DP and CRTH2 As An
    REVIEWS Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases Roy Pettipher*, Trevor T. Hansel‡ and Richard Armer* Abstract | Immunological activation of mast cells is an important trigger in the cascade of inflammatory events leading to the manifestation of allergic diseases. Pharmacological studies using the recently discovered DP1 and CRTH2 antagonists combined with genetic analysis support the view that these receptors have a pivotal role in mediating aspects of allergic diseases that are resistant to current therapy. This Review focuses on the emerging roles that DP1 and CRTH2 (also known as DP2) have in acute and chronic aspects of allergic diseases and proposes that, rather than having opposing actions, these receptors have complementary roles in the initiation and maintenance of the allergy state. We also discuss recent progress in the discovery and development of selective antagonists of these receptors. Prostaglandin Prostaglandins D2 (PGD2) is an acidic lipid mediator that leads to the rapid production of PGD2, which can be Acidic lipids derived from the is derived from arachidonic acid by the sequential action detected in the bronchoalveolar lavage fluid within metabolism of arachidonic acid of cyclooxygenase(s) (COX) and PGD2 synthase(s). The minutes, reaching biologically active levels at least by the action of cyclo- COX(s) convert arachidonic acid in a two-step process 150-fold higher than pre-allergen levels10. Local anti- oxygenase enzymes and to first PGG and then PGH . These unstable endoper- gen challenge also stimulates PGD production in the downstream synthase 2 2 2 11 enzymes. Prostaglandins have oxide intermediates are converted to PGD2 by either the nasal mucosa of patients with allergic rhinitis and in (FIG.
    [Show full text]