Nsaids and Cardiovascular Drugs in Neurodegenerative and Cerebrovascular Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Nsaids and Cardiovascular Drugs in Neurodegenerative and Cerebrovascular Diseases NSAIDs and Cardiovascular Drugs in Neurodegenerative and Cerebrovascular Diseases Mendel Haag ACKNOWLEDGMENTS The work presented in this thesis was conducted at the Department of Epidemiology at Erasmus MC, Rotterdam, the Netherlands. The Rotterdam Study of the Department of Epidemiology at the Erasmus MC is supported by Erasmus MC and Erasmus University Rotterdam, the Netherlands Organisation for Scientific Research (NWO), the Netherlands Organisation for Health Research and Development (ZonMW), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry of Health, Welfare and Sports, the European Commission (DGX II) and the Municipality of Rotterdam. The Rotterdam Scan Study of the Department of Epidemiology at Erasmus MC is supported by grants from the Netherlands Organisation for Scientific Research (NWO) and the Netherlands Heart Foundation, Erasmus MC and Erasmus University Rotterdam, the Netherlands. The author gratefully acknowledges the collaboration with the Department of Neurology (Prof.dr. P.J. Koudstaal), the Department of Radiology of Erasmus MC and the inhabitants, general practitioners and pharmacists participating in The Rotterdam Study. The publication of this thesis was financially supported by the Department of Epidemiology at Erasmus MC and Erasmus University, Rotterdam, the Netherlands. Addtional financial support for publication of this thesis was granted by: Alzheimer Nederland AstraZeneca Internationale Stichting Alzheimer Onderzoek Pfizer bv Cover design by Mendel Haag and Printpartners Ipskamp, Rotterdam. Lay-out by Legatron Electronic Publishing, Rotterdam. Printed by Printpartners Ipskamp, Enschede. ISBN: 978-90-9023916-3 © Mendel Haag, 2009 No part of this thesis may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without permission of the author, or, when appropriate, of the publishers of the publication. NSAIDs and Cardiovascular Drugs in Neurodegenerative and Cerebrovascular Diseases NSAIDs en cardiovasculaire medicatie in neurodegeneratieve en cerebrovasculaire aandoeningen Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. S.W.J. Lamberts en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op vrijdag 13 februari 2009 om 15:45 uur door Mendel Digna Margarete Haag geboren te Amsterdam PROMOTIECOMMISSIE Promotoren: Prof.dr. M.M.B. Breteler Prof.dr. B.H.C. Stricker Overige leden: Dr. A.H. van den Meiracker Prof.dr. H.G.M. Leufkens Prof.dr. P.J. Koudstaal CONTENTS Introduction 7 Chapter 1. Nonsteroidal anti-inflammatory drugs (NSAIDs) 17 1.1 NSAIDs and risk of Stroke 19 1.2 NSAIDs and risk of Transient Ischemic Attack 35 1.3 NSAIDs and risk of Parkinson disease 47 1.4 NSAIDs and risk of Alzheimer disease 57 Chapter 2. Cardiovascular drugs 73 2.1 Statins and risk of Alzheimer disease 75 2.2 Antihypertensive drugs and risk of Dementia 91 2.3 Antihypertensive drugs and progression of White Matter Lesions 111 2.4 Antithrombotic drugs and presence of Cerebral Microbleeds 127 General discussion 145 Summary 163 Samenvatting 167 Dankwoord 173 About the author 179 MANUSCRIPTS AND PUBLICATIONS BASED ON THIS THESIS Chapter 1.1 Haag MDM, Bos MJ, Hofman A, Koudstaal PJ, Breteler MMB, Stricker BHC. Cyclooxygenase Selectivity of Nonsteroidal anti-inflammatory drugs and Risk of Stroke. Arch Intern Med. 2008;168(11):1219-1224. Chapter 1.2 Haag MDM, Bos MJ, Hofman A, Koudstaal PJ, Breteler MMB, Stricker BHC. Nonsteroidal Anti-inflammatory Drugs and Risk of Transient Ischemic Attack. Chapter 1.3 Bornebroek M, de Lau LM, Haag MDM, Koudstaal PJ, Hofman A, Stricker BHC, Breteler MMB. Nonsteroidal Anti-inflammatory Drugs and the Risk of Parkinson disease. Neuroepidemiology. 2007;28(4):193-196. Chapter 1.4 Haag MDM, van Oijen M, de Jong FJ, Hofman A, Koudstaal PJ, Stijnen T, Stricker BHC, Breteler MMB. Amyloid-β42 Modulating Properties of Nonsteroidal Anti-Inflammatory Drugs and the Risk of Alzheimer Disease: a population-based cohort study. Submitted. Chapter 2.1 Haag MDM, Hofman A, Koudstaal PJ, Stricker BCH, Breteler MMB. Statins are associated with a Reduced risk of Alzheimer disease regardless of Lipophilicity. The Rotterdam Study. JNNP. October 17, 2008, Epub ahead of print. Chapter 2.2 Haag MDM, Hofman A, Koudstaal PJ, Breteler MMB, Stricker BHC. Duration of Antihypertensive Drug Use and Risk of Dementia, a Prospective Cohort Study. Neurology. Accepted for publication. Chapter 2.3 Haag MDM, Van Dijk EW, Prins ND, Ikram MA, Hofman A, Breteler MMB, Stricker BHC. Antihypertensives and Progression of White Matter Lesions. The Rotterdam Scan Study. Submitted. Chapter 2.4 Vernooij MW*, Haag MDM*, van der Lugt A, Hofman A, Krestin GP, Stricker BHC, Breteler MMB. Use of antithrombotic drugs and presence of Cerebral Microbleeds. The Rotterdam Scan Study. Archives of Neurology. Accepted for publication. Introduction Introduction Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer disease (AD)), Parkinson disease (PD) and stroke. The prevalence of these neurological disorders rises with older age. From 55 years to 90 years and above, the prevalence of dementia increases from less than 1% to over 40%.1-3 For PD, the prevalence increases over the same age range from less than 0.5% to more than 4%,4,5 and for stroke from approximately 1% to nearly 10%.6,7 Similar age-related patterns are observed for incidence figures.8-11 In the Netherlands, the population of persons of 65 years and older is expected to increase from 2.4 million in 2007 to 3.9 million in 2050.12 At a global level, 2 billion persons above 65 years are expected by 2050.13 As a consequence of the aging population the incidence and prevalence of age-related neurological diseases will increase accordingly. Moreover, these neurological disorders all constitute highly disabling diseases, with appreciable impact on quality-of-life at the patient level, but also on society, both economically and socially.12,14-17 Currently, there is no effective cure for AD18, PD19 or the consequences of stroke.20 Hence, identification of determinants of these neurological diseases and development of preventive strategies is of paramount importance. This search is, in part, directed at currently available drugs which target established risk factors of neurological disease, or that have, in in vivo or in vitro studies, shown to interfere with more specific elements of the supposed pathogenic pathway of disease. Two drug groups commonly used by elderly are of interest, namely nonsteroidal anti-inflammatory drugs (NSAIDs) and cardiovascular medication. The general objective of this thesis was to study the role of these drugs as determinants of neurodegenerative and cerebrovascular diseases. NONSTEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDS) NSAIDs are among the most widely prescribed drugs worldwide owing to their anti- inflammatory, antipyretic and analgesic properties.21 Registered indications relevant to the elderly population include mild to moderate pain and symptomatic relief in musculoskeletal and joint diseases. In the early 1970’s, a decade after their market introduction, it was discovered that NSAIDs mediate their anti-inflammatory effects through inhibition of the cyclooxygenase (COX) enzyme.21 COX is the enzyme required for the conversion of arachidonic acid to prostaglandins, a group of compounds with extensive functions in human physiology. At least two isoforms of COX to date have been identified, COX1 and COX2.22-24 NSAIDs differ with respect to relative selectivity 8 Introduction for either of the COX-enzymes.25 The ‘traditional’ NSAIDs are mostly non-selective and inhibit both COX-enzymes concurrently. Due to their inhibition of COX1, which is involved in gastric mucosal defence, the ‘traditional’ NSAIDs are known for their gastrointestinal adverse effects.26-28 In order to reduce these adverse events, the more recently developed compounds selectively inhibit COX2. However, in September 2004, a COX2-selective NSAID was voluntarily withdrawn from the market as a result of concerns regarding its cardiovascular safety based on clinical trial data.29-31 It was thought that selective COX2-inhibition, without concomitant inhibition of COX1, causes platelet aggregation and thereby induces a prothrombotic state.32,33 Retrospective analyses of observational series and non-cardiovascular clinical trials suggested, however, that cardiovascular events may also occur with non-selective NSAIDs. Hence, it was debated whether the cardiovascular risk is restricted to the COX2-selective compounds.28,34-36 Furthermore, it is unclear whether NSAID use poses similar risks for different cardiovascular and cerebrovascular events. We investigated the association between NSAID use and risk of stroke in Chapter 1.1 and transient ischemic attack (TIA) in Chapter 1.2 and determined whether associations differed for the different NSAID groups, based on their COX-selectivity. NSAIDs have been a focus of pharmacoepidemiological research in neurodegenerative disease.37,38 Inflammation is a process that has been related to the onset of numerous neurodegenerative disorders.39,40 Findings from epidemiological studies have repeatedly suggested that anti-inflammatory drugs, particularly NSAIDs, could protect against AD and possibly against PD.37,41,42 Initially, it was thought that the anti-inflammatory
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • Specifications of Approved Drug Compound Library
    Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format.
    [Show full text]
  • Are Nsaids Useful to Treat Alzheimer's Disease Or Mild Cognitive
    REVIEW ARTICLE published: 21 May 2010 AGING NEUROSCIENCE doi: 10.3389/fnagi.2010.00019 Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Bruno P. Imbimbo1*, Vincenzo Solfrizzi 2 and Francesco Panza 3 1 Research and Development Department, Chiesi Farmaceutici, Parma, Italy 2 Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Bari, Italy 3 Department of Medical Sciences, Geriatric Unit and Gerontology-Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy Edited by: Several epidemiological studies suggest that long-term use of non-steroidal anti-infl ammatory Elena Galea, Universitat Autònoma de drugs (NSAIDs) may protect subjects carrying one or more ε4 allele of the apolipoprotein E Barcelona, Spain (APOE ε4) against the onset of Alzheimer’s disease (AD). The biological mechanism of this Reviewed by: Mathieu Lichtenstein, Universitat protection is not completely understood and may involve the anti-infl ammatory properties of Autònoma de Barcelona, Spain NSAIDs or their ability of interfering with the β-amyloid (Aβ) cascade. Unfortunately, long-term, Merce Boada, Institut Català de placebo-controlled clinical trials with both non-selective and cyclooxygenase-2 (COX-2) selective Neurociències Aplicades, Spain inhibitors in mild-to-moderate AD patients produced negative results. A secondary prevention Elena Galea, Universitat Autònoma de Barcelona, Spain study with rofecoxib, a COX-2 selective inhibitor, in patients with mild cognitive impairment *Correspondence: was also negative. A primary prevention study (ADAPT trial) of naproxen (a non-selective COX Bruno P. Imbimbo, Research and inhibitor) and celecoxib (a COX-2 selective inhibitor) in cognitively normal elderly subjects with Development Department, Chiesi a family history of AD was prematurely interrupted for safety reasons after a median period Farmaceutici, Via Palermo 26/A, 43100 of treatment of 2 years.
    [Show full text]
  • Endogenous Biosynthesis of Prostacyclin and Thromboxane and Platelet Function During Chronic Administration of Aspirin in Man
    Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. G A FitzGerald, … , J A Lawson, A R Brash J Clin Invest. 1983;71(3):676-688. https://doi.org/10.1172/JCI110814. Research Article To assess the pharmacologic effects of aspirin on endogenous prostacyclin and thromboxane biosynthesis, 2,3-dinor-6- keto PGF1 alpha (PGI-M) and 2,3-dinor-thromboxane B2 (Tx-M) were measured in urine by mass spectrometry during continuing administration of aspirin. To define the relationship of aspirin intake to endogenous prostacyclin biosynthesis, sequential urines were initially collected in individuals prior to, during, and subsequent to administration of aspirin. Despite inter- and intra-individual variations, PGI-M excretion was significantly reduced by aspirin. However, full mass spectral identification confirmed continuing prostacyclin biosynthesis during aspirin therapy. Recovery of prostacyclin biosynthesis was incomplete 5 d after drug administration was discontinued. To relate aspirin intake to indices of thromboxane biosynthesis and platelet function, volunteers received 20 mg aspirin daily followed by 2,600 mg aspirin daily, each dose for 7 d in sequential weeks. Increasing aspirin dosage inhibited Tx-M excretion from 70 to 98% of pretreatment control values; platelet TxB2 formation from 4.9 to 0.5% and further inhibited platelet function. An extended study was performed to relate aspirin intake to both thromboxane and prostacyclin generation over a wide range of doses. Aspirin, in the range of 20 to 325 mg/d, resulted in a dose-dependent decline in both Tx-M and PGI-M excretion. At doses of 325-2,600 mg/d Tx-M excretion ranged from 5 to 3% of control values while PGI-M remained at 37-23% of control.
    [Show full text]
  • Challenging the FDA Black Box Warning for High Aspirin Dose with Ticagrelor in Patients with Diabetes James J
    PERSPECTIVES IN DIABETES Challenging the FDA Black Box Warning for High Aspirin Dose With Ticagrelor in Patients With Diabetes James J. DiNicolantonio and Victor L. Serebruany – Ticagrelor, a novel reversible antiplatelet agent, has a Food and ASA 300 325 mg (53.6%) in the U.S. compared with the Drug Administration (FDA) black box warning to avoid mainte- rest of the world (1.7%) was the only factor to explain nance doses of aspirin (ASA) .100 mg/daily. This restriction is (out of 37 variables explored) the regional interaction based on the hypothesis that ASA doses .100 mg somehow de- that ticagrelor was less effective and potentially more creased ticagrelor’s benefit in the Platelet Inhibition and Patient harmful than clopidogrel (2). However, this interaction Outcomes (PLATO) U.S. cohort. However, these data are highly was not significant, is highly postrandomized, comes postrandomized, come from a very small subgroup in PLATO from a very small subgroup of PLATO, and makes no (57% of patients in the U.S. site), and make no biological sense. biological sense (3). Moreover, the ticagrelor-ASA interaction was not significant by any multivariate Cox regression analyses. The Complete Re- sponse Review for ticagrelor indicates that for U.S. PLATO patients, an ASA dose .300 mg was not a significant interaction TICAGRELOR-ASA HYPOTHESIS for vascular outcomes. In the ticagrelor-ASA .300 mg cohort, all- The claimed ticagrelor-ASA interaction states that ticagrelor cause and vascular mortality were not significantly increased fi – P plus low-dose ASA is bene cial, whereas increasing doses (hazard ratio [HR] 1.27 [95% CI 0.84 1.93], = 0.262 and 1.39 of ASA in combination with ticagrelor produces adverse [0.87–2.2], P = 0.170), respectively.
    [Show full text]
  • GTH 2021 State of the Art—Cardiac Surgery: the Perioperative Management of Heparin-Induced Thrombocytopenia in Cardiac Surgery
    Review Article 59 GTH 2021 State of the Art—Cardiac Surgery: The Perioperative Management of Heparin-Induced Thrombocytopenia in Cardiac Surgery Laura Ranta1 Emmanuelle Scala1 1 Department of Anesthesiology, Cardiothoracic and Vascular Address for correspondence Emmanuelle Scala, MD, Centre Anesthesia, Lausanne University Hospital (CHUV), Lausanne, Hospitalier Universitaire Vaudois, Rue du Bugnon 46, BH 05/300, 1011 Switzerland Lausanne, Suisse, Switzerland (e-mail: [email protected]). Hämostaseologie 2021;41:59–62. Abstract Heparin-induced thrombocytopenia (HIT) is a severe, immune-mediated, adverse drug Keywords reaction that paradoxically induces a prothrombotic state. Particularly in the setting of ► Heparin-induced cardiac surgery, where full anticoagulation is required during cardiopulmonary bypass, thrombocytopenia the management of HIT can be highly challenging, and requires a multidisciplinary ► cardiac surgery approach. In this short review, the different perioperative strategies to run cardiopul- ► state of the art monary bypass will be summarized. Introduction genicity of the antibodies and is diagnostic for HIT. The administration of heparin to a patient with circulating Heparin-induced thrombocytopenia (HIT) is a severe, im- pathogenic HITabs puts the patient at immediate risk of mune-mediated, adverse drug reaction that paradoxically severe thrombotic complications. induces a prothrombotic state.1,2 Particularly in the setting The time course of HIT can be divided into four distinct of cardiac surgery, where full anticoagulation is required phases.6 Acute HIT is characterized by thrombocytopenia during cardiopulmonary bypass (CPB), the management of and/or thrombosis, the presence of HITabs, and confirma- HIT can be highly challenging, and requires a multidisciplin- tion of their platelet activating capacity by a functional ary approach.
    [Show full text]
  • Inverse Agonism of SQ 29,548 and Ramatroban on Thromboxane A2 Receptor
    Inverse Agonism of SQ 29,548 and Ramatroban on Thromboxane A2 Receptor Raja Chakraborty1,3, Rajinder P. Bhullar1, Shyamala Dakshinamurti2,3, John Hwa4, Prashen Chelikani1,2,3* 1 Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada, 2 Departments of Pediatrics, Physiology, University of Manitoba, Winnipeg, Manitoba, Canada, 3 Biology of Breathing Group- Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada, 4 Department of Internal Medicine (Cardiology), Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, United States of America Abstract G protein-coupled receptors (GPCRs) show some level of basal activity even in the absence of an agonist, a phenomenon referred to as constitutive activity. Such constitutive activity in GPCRs is known to have important pathophysiological roles in human disease. The thromboxane A2 receptor (TP) is a GPCR that promotes thrombosis in response to binding of the prostanoid, thromboxane A2. TP dysfunction is widely implicated in pathophysiological conditions such as bleeding disorders, hypertension and cardiovascular disease. Recently, we reported the characterization of a few constitutively active mutants (CAMs) in TP, including a genetic variant A160T. Using these CAMs as reporters, we now test the inverse agonist properties of known antagonists of TP, SQ 29,548, Ramatroban, L-670596 and Diclofenac, in HEK293T cells. Interestingly, SQ 29,548 reduced the basal activity of both, WT-TP and the CAMs while Ramatroban was able to reduce the basal activity of only the CAMs. Diclofenac and L-670596 showed no statistically significant reduction in basal activity of WT-TP or CAMs. To investigate the role of these compounds on human platelet function, we tested their effects on human megakaryocyte based system for platelet activation.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0202780 A1 Gavin Et Al
    US 20120202780A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0202780 A1 Gavin et al. (43) Pub. Date: Aug. 9, 2012 (54) CARRIER COMPOSITION Publication Classification (76) Inventors: Paul David Gavin, Chadstone (51) Int. Cl. (AU); Mahmoud El-Tamimy, A6II 47/24 (2006.01) Meadow Heights (AU); Jeremy A6II 3/196 (2006.01) James Cottrell, Caulfield South A6IP5/00 (2006.01) (AU); Giacinto Gaetano, South A 6LX 3/573 (2006.01) Melbourne (AU); Nicholas John A6IP 23/00 (2006.01) Kennedy, Boronia (AU) A6IP 29/00 (2006.01) A6II 3/167 (2006.01) (21) Appl. No.: 13/501,494 A63L/407 (2006.01) (22) PCT Fled: Dec. 22, 2010 (52) U.S. Cl. ......... 514/180: 514/785: 514/788: 514/772: 514/626; 514/567; 514/413: 514/179 (86) PCT NO.: S371 (c)(1), (57) ABSTRACT (2), (4) Date: Apr. 12, 2012 A carrier composition of the present invention comprises a phosphate compound of an electron transfer agent and a rela Related U.S. Application Data tively high concentration of a polar protic solvent. A biologi (60) Provisional application No. 61/289,507, filed on Dec. cally active compound may be formulated with a carrier com 23, 2009. position of the present invention to provide a formulation. Patent Application Publication Aug. 9, 2012 Sheet 1 of 5 US 2012/0202780 A1 - - if solvent E. -ie-20% solvent 3. ". S. .t E FGURE 1 Patent Application Publication Aug. 9, 2012 Sheet 2 of 5 US 2012/0202780 A1 -H 10 LC2 s -C- 20 ulcm2 . - a 30 ulcm2 t E re FIGURE 2A HO licm2 80i -o- 20 ul/cm2 'i -A-30 ul/cm2 140 EO 10 8 8 4) O O FIGURE 2B Patent Application Publication Aug.
    [Show full text]
  • Aggressive Imaging in Young Children on Antithrombotic Therapy With
    American Journal of Emergency Medicine 37 (2019) 972–1004 Contents lists available at ScienceDirect American Journal of Emergency Medicine journal homepage: www.elsevier.com/locate/ajem Correspondence Aggressive imaging in young children on Low molecular weight heparin (LMWH) is the most commonly used antithrombotic therapy with minor traumatic drug for acute VTE in pediatric patients [12,13]. A review reported of head injury 308 children receiving therapeutic doses LMWH for the treated of VTE, nine (2.9%) had a major bleeding, and 72 (23.4%) a minor bleeding Clinical decision rules have been developed to guide clinicians to [14]. In 133 children receiving prophylactic doses of LMWH, one (0.8%) perform or to omit a CT scan in children with minor traumatic head in- had a major bleeding, and four (3.0%) a minor bleeding. These bleedings jury (MTHI) [1-3]. These guidelines do not define the use of antithrom- occurred all spontaneously without a traumatic cause. Vitamin K antag- botic therapy as a major risk factor for intracranial pathology in young onists (VKA) include warfarin, acenocoumarol and phenprocoumon. children, in contrast to children of six years and older and adults, The most common VKA used in the pediatric setting is warfarin [13]. where this is an indication to perform a CT scan. Risk of major bleeding varies including 0.5% per patient year reported A two-year-old boy on antithrombotic treatment fell on the back of in a large cohort study versus 12.2% in a randomized controlled trial of his head from a one-meter high slide.
    [Show full text]
  • Effect of Prostanoids on Human Platelet Function: an Overview
    International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1).
    [Show full text]
  • Activation of the Murine EP3 Receptor for PGE2 Inhibits Camp Production and Promotes Platelet Aggregation
    Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation Jean-Etienne Fabre, … , Thomas M. Coffman, Beverly H. Koller J Clin Invest. 2001;107(5):603-610. https://doi.org/10.1172/JCI10881. Article The importance of arachidonic acid metabolites (termed eicosanoids), particularly those derived from the COX-1 and COX-2 pathways (termed prostanoids), in platelet homeostasis has long been recognized. Thromboxane is a potent agonist, whereas prostacyclin is an inhibitor of platelet aggregation. In contrast, the effect of prostaglandin E2 (PGE2) on platelet aggregation varies significantly depending on its concentration. Low concentrations of PGE2 enhance platelet aggregation, whereas high PGE2 levels inhibit aggregation. The mechanism for this dual action of PGE2 is not clear. This study shows that among the four PGE2 receptors (EP1–EP4), activation of EP3 is sufficient to mediate the proaggregatory actions of low PGE2 concentration. In contrast, the prostacyclin receptor (IP) mediates the inhibitory effect of higher PGE2 concentrations. Furthermore, the relative activation of these two receptors, EP3 and IP, regulates the intracellular level of cAMP and in this way conditions the response of the platelet to aggregating agents. Consistent with these findings, loss of the EP3 receptor in a model of venous inflammation protects against formation of intravascular clots. Our results suggest that local production of PGE2 during an inflammatory process can modulate ensuing platelet responses. Find the latest version: https://jci.me/10881/pdf Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation Jean-Etienne Fabre,1 MyTrang Nguyen,1 Krairek Athirakul,2 Kenneth Coggins,1 John D.
    [Show full text]
  • Statistical Analysis Plan – Part 1
    NCT03251482 Janssen Research & Development Statistical Analysis Plan – Part 1 A Randomized, Double-blind, Double-dummy, Multicenter, Adaptive Design, Dose Escalation (Part 1) and Dose-Response (Part 2) Study to Evaluate the Safety and Efficacy of Intravenous JNJ-64179375 Versus Oral Apixaban in Subjects Undergoing Elective Total Knee Replacement Surgery Protocol 64179375THR2001; Phase 2 JNJ-64179375 Status: Approved Date: 18 October 2017 Prepared by: Janssen Research & Development, LLC Document No.: EDMS-ERI-148215770 Compliance: The study described in this report was performed according to the principles of Good Clinical Practice (GCP). Confidentiality Statement The information in this document contains trade secrets and commercial information that are privileged or confidential and may not be disclosed unless such disclosure is required by applicable law or regulations. In any event, persons to whom the information is disclosed must be informed that the information is privileged or confidential and may not be further disclosed by them. These restrictions on disclosure will apply equally to all future information supplied to you that is indicated as privileged or confidential. 1 Approved, Date: 18 October 2017 JNJ-64179375 NCT03251482 Statistical Analysis Plan - Part 1 64179375THR2001 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................... 2 LIST OF IN-TEXT TABLES AND FIGURES ...............................................................................................
    [Show full text]