Innovation Towards the Sustainability of Mediterranean Blue Economy New Technologies for Marine Aquaculture

Total Page:16

File Type:pdf, Size:1020Kb

Innovation Towards the Sustainability of Mediterranean Blue Economy New Technologies for Marine Aquaculture Innovation towards the sustainability of Mediterranean blue economy New Technologies for Marine Aquaculture Associate Professor Rigers BAKIU Agricultural University of Tirana (Tirana, AL) Albanian Center for Environmental Protection and Sustainable Development (Tirana, AL) • 03: Fishing and Aquaculture (p.104) 03.1: Fishing • 03.11 - Marine fishing • 03.12 - Freshwater fishing 03.2: Aquaculture (p.105) • 03.21 - Marine aquaculture • 03.22 - Freshwater aquaculture Mediterranean Basin • Mediterranean basin is characterized by oligo or ultra-oligo trophic waters with a high environmental variability and steep physical-chemical gradients within a relatively restricted region: salinity, temperature, alkalinity and stratification all tend to increase eastwards (Lacoue-Labarthe et al. 2015). Overall eight species contributed 90 per cent of • The term ‘a miniature ocean’ was coined to describe the Mediterranean Sea (Béthoux et al. 1999) and this Aquaculture has been extended to compare the production: Mediterranean to a giant mesocosm of the world’s oceans (Lejeusne et al. 2010). the European seabass, The Mediterranean basin is an area where different environmental, gilthead seabream, geomorphological, hydrogeological and climate regions meet and allow different trout, aquaculture systems and technologies to develop and succeed. common carp, tilapia, mussels, oysters and Manila clams. Mediterranean Basin • Aquaculture production of marine finfish was dominated by two main species, the European seabass (Dicentrarchus labrax) with 161 058 mt, and gilthead seabream (Sparus aurata) representing with 134 712 mt, in some countries also cultivated in brackish water. • In fact, until 1985, the production of the two main marine species was carried out mainly in land-based systems, such as ponds, and production from floating cages was limited to only 27 mt produced at artisanal level in inshore conditions. • In the early 1990s, the culture in floating cages increased progressively and many farms moved towards the open sea. In 2010 marine aquaculture in floating cages of finfish represented 82.33 per cent of the total production of these two. Marine Aquaculture Production Analyses and Technologies • Spain • Greece • Turkey • Albania Spain • In 2016, a total of 5.105 aquaculture establishments were in operation and producing in Spain. • Of these, 4.782 were marine molluscs aquaculture farms, • 200 were freshwater fish aquaculture farms, • 82 farms were on the coast, beaches, intertidal zones and estuaries, • and 41 were off shore sea cage farms. Spain •The harvest of aquaculture seabass in Spain in 2017 was 21.269 tonnes. •The Region of Murcia has led the production with 6.990 tonnes, followed by Canarias (5.900 tonnes), Comunidad Valenciana 5 (4.972 tonnes) Andalucía (3.261 tonnes) and Cataluña (146 tonnes). 3 1 2 4 Greece • Greece has more than 300 marine aquaculture farms, mostly near the Dodecanese Islands, Ionian Islands and Euboea. • In 2015, the industry raised at least 121,000 tons of sea bream, European bass and mussels. • Marine fish farming holds a dominant position representing 98% of the volume & value of farmed fish in Greece. • Greece ranks 2nd in terms of volume and value among the EU-28 in fish farming (following the UK) Greece Spatial distribution & employment in Marine Fish Farming • Greece 2017 63% of EU supply, 29% of global supply Greece Marine Organic fish farming • Organic production stands for 0,7% of total bass and bream production due to limited market • The initial legislative framework for organic aquaculture in the European Union (EU) was the Directive (EEC) 2092, which was recently replaced by the Directives (EC) 83407 and (EC) 88908 (European Union 1991, 2007, 2008). • At the same time ‘FAO guidelines for the production, processing, labelling and marketing of organically produced foods’ (FAO 2002) and the guidelines in Codex Alimentarius (FAO ⁄WHO 2001) were formulated, as well as general principles for organic production and processing by IFOAM (IFOAM 2007). • Subsequently, governmental bodies and private companies at a national level were formed and produced organic standards for various species in aquaculture (Bergleiter 2001; Brister & Kapuscinski 2001) Greece Marine Organic fish farming • Annual production for 2008 was estimated to be approximately 800–1000 tonnes of sea bass and sea This is because of the extended growing period of 20–24 months compared with 16–18 months for nonorganic fish, and bream (Miliou 2008; Skoufou 2008) (less than 1% of the increased water volumes required for the same level of the total Greek aquaculture production), with mean production, the increased cost of specialized fish feeds and the cost of certification. ex-farm prices at €8–10.5 per kg. The final product is exported to German and UK markets and a • Accordingly, retail prices varied between €15 and small amount is distributed to large supermarket retailers within Greece (Georgiopoulou 2008; Skoufou 2008). €24 per kg for both species; these prices are The European market potential for these species is estimated significantly higher than conventionally raised fish to be approximately 4000–6000 tonnes annually (Proffitt 2005); however, organic sea bass and sea bream are still considered to and similar to the price of ‘wild’ caught specimens. be ultra-niche market products. Turkey • Aquaculture is the fastest growing sector in Turkey by showing a growing volume by over 293% in the past decade. • Problems had been mainly occurred between sea farms and other coastal sectors such as tourism, environmental protection, maritime, recreation etc. in Aegean and Mediterranean coasts which were already established most of seabass and seabream farms. • The first marine aquaculture zones were determined in 1988 and were provided moving of sea farms from the in shore and coastal zones. Turkey • Offshore aquaculture is booming in Turkey Aquaculture is the fastest-growing sector in Turkey, which is now the largest fish-producing country in the Mediterranean Basin and the second-largest fish producer in Europe after Norway. In 2017, Turkey featured 425 marine farms, a large majority of which were located offshore. Of these, most farms are dedicated to sea bass and sea bream (total offshore production in 2016 = 150,000 tons). More than half of marine offshore farms in Turkey are located in Muglia in the Aegean Sea. • Turkey’s offshore sectors can certainly be considered a success story in terms of growth, profitability, and market share; every year, over 50 new facilities are installed and the often vertically integrated producers are celebrating record exports to more than 60 countries globally. An “offshore aquaculture” operation in Turkey is defined as one in waters of >40 meters, which can be found within the first nautical mile from shore. Offshore Finfish Aquaculture - Global Review and U.S. Prospects 2018 Turkey • Turkstat Albania Region of Vlora owns 85% of marine fish farms in Albania, while the remaining marine fish farms are located in Saranda and Shengjin region. • In Vlora and Saranda region there are present fish fattening units of marine fish species (gilthead seabream and European seabass), • Mussel farming activity is exclusively localised in Saranda and Shengjin regions, respectively. Albania • Following approval of the Law on Aquaculture in 2016, the licensing of new aquaculture farms will be allowed only when the plan of allocated zones has been established and approved. – on going study previous to the establishment of AZAs • Albania faces three main barriers to increasing its aquaculture production: high costs of inputs, low internal and external demand for its fish products, and outdated regulation for the aquaculture sector. • Albania does not comply with all the safety requirements of external markets for mussels (M. galoprovinciallis), which would be a guarantee to consumers about the quality of Albanian fish products and a needed step to increase demand and competitiveness for the industry. Albania Marine Fish Farming Albania Production Value and Trend Climate Change Impacts on Aquaculture • Specific measures to reduce aquaculture vulnerability in accordance with the ecosystem approach to aquaculture include: • improved management of farms and choice of farmed species; • improved spatial planning of farms that takes climate-related risks into account; • improved environmental monitoring involving users; • improved local, national and international coordination of prevention and mitigation actions. Climate Change Impacts on Aquaculture Species “The term “technological innovations” is applied here to alternative species and Aquaculture Systems climate adapted strains and aquaculture systems that reduce susceptibility to Monitoring Technologies climate change, as well as to technologies that can inform risks and adaptation.” Tackling Climate Change Impacts on Aquaculture • Macrofaunal communities have not shown deterioration but rather a small, yet statistically significant, improvement in diversity indices and ecological status indicators, and no significant change regarding bioturbation potential. • This indicated that processes involved in nutrient consumption and transfer are highly effective in such an oligotrophic environment. • The potential effects of climate change on the distribution of benthic species commonly used inmarine ecological quality assessment were investigated using a spatial modelling approach. • In this work, the relevance of the ecological groups that macrofaunal molluscs are assigned according
Recommended publications
  • Master's Thesis
    Master’s Thesis - master Innovation Science Aquaponics Development in the Netherlands The Role of the Emerging Aquaponics Technology and the Transition towards Sustainable Agriculture Mascha Wiegand 6307345 Tulpenweg 17 63579 Freigericht Germany [email protected] +49 1607561911 Supervisor: Prof. Dr. Ellen H.M. Moors Copernicus Institute of Sustainable Development [email protected] +31 30 253 7812 Second Reader: Dr. Koen Beumer Summary A sustainability transition in the agri-food regime is urgently required to interrupt the strong reciprocal effect between current food production standards and climate change (Willett et al., 2019). One sustainable innovation in the agri-food sector is aquaponics. Aquaponics is the combination of hydroponics and recirculating aquaculture in one controlled environment (Somerville, Cohen, Pantanella, Stankus & Lovatelli, 2014). At first sight, the water and nutrient-saving character of aquaponics, amongst other features (Somerville et al., 2014), sound promising for a transition towards sustainable agriculture. Therefore, the following research question emerged: How can the emerging aquaponics technology contribute to the sustainability transition in the Dutch agri- food sector based on Dutch aquaponics developments in the period 2008-2018? To answer this overarching research question, three sub-questions were developed. An integrated framework combining the multilevel perspective (MLP) and the technological innovation system (TIS) was used to understand the dynamics between overall structural trends, the current Dutch agri-food sector and the emerging aquaponics innovation. The innovation was also set into a broader European context. The research was of exploratory nature and used a qualitative content analysis to process 23 interviews, scientific articles, practitioner websites, publication, patent and Google Trend statistics, etc.
    [Show full text]
  • Soil Association Organic Aquaculture Standards
    Soil Association Organic aquaculture standards Version 1.3 May 2017 Soil Association organic aquaculture standards Contents OP: Overall principles of organic aquaculture.................................................................... 3 SS: Site selection .............................................................................................................................. 7 OA: Origin of aquaculture animals .......................................................................................... 8 ON: Simultaneous production of organic and non-organic ......................................... 9 AH: Aquaculture husbandry ..................................................................................................... 11 SD: Species-specific production requirements and stocking densities ................. 13 AL: Aquaculture livestock management .............................................................................. 16 AC: Aquatic containment systems ......................................................................................... 19 AM: Antifouling measures and cleaning ............................................................................. 20 FF: Feeding fish, crustaceans and echinoderms ............................................................... 22 FC: Feeding carnivorous aquaculture species ................................................................... 22 FO: Feeding other species .......................................................................................................... 24
    [Show full text]
  • Aquaponics NOMA New Innovations for Sustainable Aquaculture in the Nordic Countries
    NORDIC INNOVATION PUBLICATION 2015:06 // MAY 2015 Aquaponics NOMA New Innovations for Sustainable Aquaculture in the Nordic Countries Aquaponics NOMA (Nordic Marine) New Innovations for Sustainable Aquaculture in the Nordic Countries Author(s): Siv Lene Gangenes Skar, Bioforsk Norway Helge Liltved, NIVA Norway Paul Rye Kledal, IGFF Denmark Rolf Høgberget, NIVA Norway Rannveig Björnsdottir, Matis Iceland Jan Morten Homme, Feedback Aquaculture ANS Norway Sveinbjörn Oddsson, Matorka Iceland Helge Paulsen, DTU-Aqua Denmark Asbjørn Drengstig, AqVisor AS Norway Nick Savidov, AARD, Canada Randi Seljåsen, Bioforsk Norway May 2015 Nordic Innovation publication 2015:06 Aquaponics NOMA (Nordic Marine) – New Innovations for Sustainable Aquaculture in the Nordic Countries Project 11090 Participants Siv Lene Gangenes Skar, Bioforsk/NIBIO Norway, [email protected] Helge Liltved, NIVA/UiA Norway, [email protected] Asbjørn Drengstig, AqVisor AS Norway, [email protected] Jan M. Homme, Feedback Aquaculture Norway, [email protected] Paul Rye Kledal, IGFF Denmark, [email protected] Helge Paulsen, DTU Aqua Denmark, [email protected] Rannveig Björnsdottir, Matis Iceland, [email protected] Sveinbjörn Oddsson, Matorka Iceland, [email protected] Nick Savidov, AARD Canada, [email protected] Key words: aquaponics, bioeconomy, recirculation, nutrients, mass balance, fish nutrition, trout, plant growth, lettuce, herbs, nitrogen, phosphorus, business design, system design, equipment, Nordic, aquaculture, horticulture, RAS. Abstract The main objective of AQUAPONICS NOMA (Nordic Marine) was to establish innovation networks on co-production of plants and fish (aquaponics), and thereby improve Nordic competitiveness in the marine & food sector. To achieve this, aquaponics production units were established in Iceland, Norway and Denmark, adapted to the local needs and regulations.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,380,766 B2 Limcaco (45) Date of Patent: Jul
    USOO9380766B2 (12) United States Patent (10) Patent No.: US 9,380,766 B2 Limcaco (45) Date of Patent: Jul. 5, 2016 (54) AQUACULTURE SYSTEM 5,755,961 A 5/1998 Limcaco 6,117,313 A 9/2000 Goldman et al. 6, 158,386 A 12/2000 Limcaco (71) Applicant: Christopher A. Limcaco, Greenwood, 7,736,508 B2* 6/2010 Limcaco ................. CO2F 3/082 IN (US) 210,602 7,794,590 B2 * 9/2010 Yoshikawa ............. AOK 63/04 (72) Inventor: Christopher A. Limcaco, Greenwood, 119,260 IN (US) 8, 117,992 B2 2/2012 Parsons et al. 2009/01521.92 A1 6/2009 Michaels, II et al. (*) Notice: Subject to any disclaimer, the term of this 2009/0230037 A1 9/2009 Ståhler et al. patent is extended or adjusted under 35 2011/0290189 A1 12/2011 Myers U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 14/663,851 EP 2236 466 A1 6/2010 (22) Filed: Mar. 20, 2015 OTHER PUBLICATIONS (65) Prior Publication Data International Search Report and Written Opinion corresponding to US 2015/0264897 A1 Sep. 24, 2015 PCT/US2015/21698, mailed Jul. 2, 2015 (9 pages). Related U.S. Application Data * cited by examiner (60) Provisional application No. 61/968,432, filed on Mar. 21, 2014. Primary Examiner — Joshua Huson (74) Attorney, Agent, or Firm — Maginot, Moore & Beck, (51) Int. Cl. LLP AOIK 6.3/00 (2006.01) AOIK 6L/00 (2006.01) AOIK 63/04 (2006.01) (57) ABSTRACT (52) U.S. C. CPC ................. A0IK 61/00 (2013.01): A0IK 63/04 A recirculating aquaculture system is configured for growing (2013.01) aquatic animals.
    [Show full text]
  • PNS BAFPS 111: 2012 Orgtanic Aquaculture
    PHILIPPINE NATIONAL STANDARD PNS/BAFS 112:_______ Organic Aquaculture 3rd Draft as of January 16, 2016 1 Scope The Philippine National Standard for Organic Aquaculture establishes the guidelines for the operation of organic aquaculture in different aquatic environments (fresh, brackish and marine) and the production of quality fishery products that are safeguarded from contamination of harmful and toxic chemical substances and use of artificial ingredients, from pre-production to marketing to enhance food safety for human consumption and to provide options to consumers/markets. This Standard focuses on minimum requirements for the management of aquatic animals and plants in order for the product to be labeled as Certified Organic. 2 References The titles of the publications referred to in this Standard are listed in the inside back cover. 3 Definitions For purposes of this Standard, the following definitions shall apply: 3.1 aquaculture1 fishery operation involving the breeding and farming of fish and fishery species in fresh, brackish and marine water areas 3.1.1 freshwater aquaculture fishery operation involving the raising and culturing of fish in a water body originating from lakes, reservoirs, streams and rivers having a salinity from 0 to 0.5 parts per thousand 3.1.2 brackishwater aquaculture farming of aquatic plants and animals in confined waters along the shoreline where the salinity maybe highly variable within each year from near freshwater during rainy season up to seawater or even higher during dry season 3.1.3 mariculture
    [Show full text]
  • New Developments of IMTA in Europe: Focusing on Seaweed
    New developments of IMTA in Europe: focusing on seaweed ABREU MH1 * , BOUVET A2 BRUHN A3 , CHAMPENOIS J 2 , HOLDT SL4 , HUGHES AD5 , MALTA E-J6 , PEREIRA R 1 , REBOURS C7 , SCHIPPER J8 , SOLER-VILA A9 Overview I. First IMTA ini-aves II. European Aquaculture Sector Portugal Norway III. Current drivers IV. Main bo=lenecks France Ireland V. R&D projects VI. Pilot-scale and commercial scale ac-vi-es Denmark Holland UK Spain FED SPECIES INORGANIC ORGANIC DISSOLVED MATTER NUTRIENTS FIRST IMTA APPROACHES q2001-2003: SEAPURA - “Species diversificaon and improvement of aquac produc-on of seaweeds purifying effluents from fish and other waste sources” • Falkenbergia rufolanosa, Palmaria palmata, Ulva spp., Hydropuntea cornea, Gracilaria bursa-pastoris, Chondrus crispus • Reduce environmental impact, bacterial infecons and evaluate poten-al of IMTA seaweed as fish-feed and cosmec ingredients. h=p://www.cbm.ulpgc.es/seapura/ & Aquaculture 252 (2006) Yields Tank volume & Experimental Biomass [g(dw) Culvaon Species in culture NUE (%)f NRG Refs renewal rates period qualityd m-2 factorsh day-1] Ulva rotundata & 1900L 2 ms NW; T ; L ; NW ; 48 TAN: 60 Mata e Santos, 2003 Sparus aurata 0.6 vol h-1 May & Sept NT DC 1 ms Chondrus crispus & 1500L 8.4 & TAN: 14 T; DO; pH; May & NW Matos et al. 2006 MEa 0.1 vol h-1 36.6 & 41 DC;WF; NW Jul Gracilaria 1500L 1 ms 31.2 & TAN: 33 T; DO; pH; vermiculophylla & AB1; FF2 NW Matos et al. 2006 0.1 vol h-1 Jul & Oct 7.3 & 75 DC; WF;NW ME Palmaria palmata * 300L 1 ms T; DO; pH; 40.0 TAN: 41 NW Matos et al.
    [Show full text]
  • European Aquaculture Competitiveness: Limitations and Possible Strategies
    DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT DIRECTORATE-GENERAL FOR INTERNAL POLICIES STRUCTURAL AND COHESION POLICIESB POLICY DEPARTMENT AgricultureAgriculture and Rural and Development Rural Development STRUCTURAL AND COHESION POLICIES B CultureCulture and Education and Education Role The Policy Departments are research units that provide specialised advice Fisheries to committees, inter-parliamentary delegations and other parliamentary bodies. Fisheries RegionalRegional Development Development Policy Areas TransportTransport and andTourism Tourism Agriculture and Rural Development Culture and Education Fisheries Regional Development Transport and Tourism Documents Visit the European Parliament website: http://www.europarl.europa.eu/studies PHOTO CREDIT: iStock International Inc., Photodisk, Phovoir DIRECTORATE GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES FISHERIES EUROPEAN AQUACULTURE COMPETITIVENESS: LIMITATIONS AND POSSIBLE STRATEGIES STUDY This document was requested by the European Parliament's Committee on Fisheries. AUTHOR(S) John Bostock, University of Stirling Institute of Aquaculture (UoS). Francis Murray, University of Stirling Institute of Aquaculture (UoS) James Muir, University of Stirling Institute of Aquaculture (UoS) Trevor Telfer, University of Stirling, Institute of Aquaculture (UoS) Alistair Lane, European Aquaculture Society (EAS) Nikos Papanikos, APC Advanced Planning – Consulting SA (APC S.A) Philippos Papegeorgiou, APC Advanced Planning – Consulting SA (APC S.A) Victoria Alday-Sanz RESPONSIBLE ADMINISTRATOR Jesús Iborra Martín Policy Department Structural and Cohesion Policies European Parliament B-1047 Brussels E-mail: [email protected] LINGUISTIC VERSIONS Original: EN Translation: DE, ES, FR, IT. ABOUT THE EDITOR To contact the Policy Department or to subscribe to its monthly newsletter please write to: [email protected] Manuscript completed in September 2009. Brussels, © European Parliament, 2009.
    [Show full text]
  • Organic Aquaculture EU Regulations (EC) 834/2007, (EC) 889/2008, (EC) 710/2009
    International Federation of Organic Agriculture movements eu group DOSSIER Organic Aquaculture EU regulations (eC) 834/2007, (eC) 889/2008, (eC) 710/2009 BAckgrOund, Assessment, InterpretAtion CO-FiNANCed BY Published by WOrkiNg for OrgANiC food ANd farmiNg iN eurOPe International Federation of Organic Agriculture movements eu group Organic Aquaculture EU regulations (eC) 834/2007, (eC) 889/2008, (eC) 710/2009 BAckgrOund, Assessment, InterpretAtion published by: IFOAm eu group IAmB – Istituto Agronomico mediterraneo di Bari rue du commerce 124 Via ceglie 9 1000 Brussels, Belgium 70010 Valenzano (Bari), Italy phone : +32 2280 1223 Fax : +32 2735 7381 email : [email protected] Web page : www.ifoam-eu.org editors: Andrzej szeremeta (iFOAm eu group), louisa Winkler (iFOAm eu group), Francis blake (soil Association), Pino lembo (COisPA Tecnologia & ricerca, iCeA—institute for ethics and environmental Certification) Brussels, 2010 Printed on Cyclus print paper Printed copies: english version 1000 download electronic version and find further information at: www.ifoam-eu.org/positions/publications/aquaculture/ photography: page 4 - Villy larsen; pages 6, 10 and 24 - Jan-Widar Finden; page 8 – udo Censkowsky; pages 12 and 14 - european Commission, www.organic-farming.europa.eu; page 16, 20, 22 and 30 - Naturland e.V.; page 18 - marc mössmer; pages 26 and 34 - birgir Thordarson / Vottunarstofan Tún; page 28 - Norwegian seafood export Council; page 32 - michael böhm. 4 CurreNT eurOPeAN legislATiON relATiNg TO OrgANiC FOOd ANd FArmiNg referred to
    [Show full text]
  • Naturland Standards for Organic Aquaculture 06/2021 Page 3 of 37
    Version 06/2021 Summary of Naturland’s Standards Part A. General regulations governing production I. Contracts and certification procedures II. General (management) regulations resp. other predominant provisions III. Social responsibility Part B. Regulations for the individual branches of production I. Plant production II. Livestock production III. Market gardening IV. Cultivation of shoots and germ buds V. Mushroom cultivation VI. Cultivation of ornamental plants, herbaceous perennials, shrubs, Christmas trees VII. Fruit cultivation VIII. Viniculture IX. Permanent tropical plantations X. Wild grown products XI. Beekeeping XII. Aquaculture XIII. Organic forest management XIV. Insect breeding Appendices production Part C. General processing standards I. Goals II. Area of application III. Contracts IV. Inspection and certification V. Product identification/labelling VI. General regulations and other predominant (production) provisions VII. Social responsibility Part D. Processing standards for specific groups of products I. Processing standards for meat and meat products II. Processing standards for milk and dairy products III. Processing standards for bread and bakery products IV. Processing standards for cereals, cereal products and noodles V. Processing standards for feed VI. Processing standards for aquaculture products and products from sustainable capture fishery VII. Processing standards for breweries VIII. Processing standards for vegetables and fruit as well as spices and herbs IX. Processing standards for the production of wine, semi-sparkling wine, sparkling wine, fruit wine, wine vinegar, cleared concentrated grape must/sweet reserve, liqueur wine and spirits X. Processing standards for edible fats and oils XI. Processing standards for yeast, yeast products as well as leaven and natural fermentation starter XII. Processing standards for microalgae and microalgae products for human consumption XIII.
    [Show full text]
  • MBA-Seafood Watch US-Farmed Shrimp Report (Pdf)
    Whiteleg Shrimp Litopenaeus vannamei Image © Scandinavian Fishing Yearbook/www.scandfish.com United States Outdoor Ponds, Indoor Raceways, Recirculating Aquaculture Systems August 21, 2014 Granvil Treece, Consulting Researcher Disclaimer Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science and aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch® program or its recommendations on the part of the reviewing scientists. Seafood Watch® is solely responsible for the conclusions reached in this report. 2 About Seafood Watch® The Monterey Bay Aquarium Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the North American marketplace. Seafood Watch defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. The program’s mission is to engage and empower consumers and businesses to purchase environmentally responsible seafood fished or farmed in ways that minimize their impact on the environment or are in a credible improvement project with the same goal. Each sustainability recommendation is supported by a seafood report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s sustainability criteria to arrive at a recommendation of “Best Choice,” “Good Alternative,” or “Avoid.” In producing the seafood reports, Seafood Watch utilizes research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability.
    [Show full text]
  • Evolution of Integrated Open Aquaculture Systemsin
    sustainability Article Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study József Popp 1,László Váradi 2, Emese Békefi 3, András Péteri 3, Gerg˝oGyalog 3, Zoltán Lakner 4 and Judit Oláh 5,* ID 1 Faculty of Economics and Business, Institute of Sectoral Economics and Methodology, University of Debrecen, 4032 Debrecen, Hungary; [email protected] 2 Hungarian Aquaculture and Fisheries Inter-Branch Organisation (MA-HAL), Ballagi Mór u. 8, 1118 Budapest, Hungary; [email protected] 3 Research Institute for Fisheries and Aquaculture (NARIC HAKI), National Agricultural Research and Innovation Centre, 8 Anna-liget, 5540 Szarvas, Hungary; bekefi[email protected] (E.B.); [email protected] (A.P.); [email protected] (G.G.) 4 Szent István University, Faculty of Food Science, 1118 Budapest, Hungary; [email protected] 5 Faculty of Economics and Business, Institute of Applied Informatics and Logistics, University of Debrecen, 4032 Debrecen, Hungary * Correspondence: [email protected]; Tel.: +36-202-869-085 Received: 20 December 2017; Accepted: 9 January 2018; Published: 12 January 2018 Abstract: This article presents the history of integrated farming in aquaculture through a Hungarian case study. The development of Hungarian integrated aquaculture is aligned with global trends. In the previous millennium, the utilization of the nutrients introduced into the system was the main aspect of the integration. In Hungary, technologies that integrated fish production with growing crops and animal husbandry appeared, including for example: large-scale fish-cum-rice production; fish-cum-duck production; and integrated pig-fish farming which were introduced in the second half of the 20th century.
    [Show full text]
  • Seaweed Is the Common Denominator in Exciting Saltwater Aquaponics
    Issue # 36 Aquaponics Journal www.aquaponicsjournal.com 1st Quarter, 2005 SeaweedSeaweed isis thethe commoncommon denominatordenominator inin excitingexciting saltwatersaltwater By aquaponicsaquaponics Geoff Wilson A small but influential number of Australians 12 have been enthused by the common denominator of seaweed in saltwater aquaponics now moving Queensland to speak with fellow scientists. more clearly into view as a significant land-based technology. It also included an industry-based, five-hour “luncheon seminar” on November 2, at Bribie It promises to set in motion some interesting Island Aquaculture Research Centre (BIARC) just saltwater aquaponics research and development in north of the city of Brisbane in Queensland. Australia, which could enlarge upon the brilliant pioneering of saltwater aquaponics (also named The aquaponics study group of the Aquaculture integrated mariculture) in Israel. Association of Queensland (AAQ) organised the event in the interest of showing its members (some The catalyst in this thinking has been a visit to 150 fresh water fish farmers) the potential of land- Australia by an Israeli aquaculture scientist, Dr. based aquaponics in which seaweed is used to Amir Neori. He is one of the world’s leading harvest the wastes of fin fish. advocates of edible seaweed culture in association with the raising of fin fish and invertebrates such The five-hour seminar was mostly financed by the as shrimp, abalone and other edible species. Queensland Department of Primary Industries, which funded the visit to Queensland by Dr. Neori Dr. Neori is a senior scientist at the National after he presented a paper at the ‘Australasian Centre for Mariculture at Eilat, in Israel (see a Aquaculture 2004: Profiting from Sustainability’ report on his saltwater aquaponics work in st conference that attracted 1,350 participants in “Aquaponics Journal,” 1 Quarter 2003).
    [Show full text]