Seaweed Is the Common Denominator in Exciting Saltwater Aquaponics

Total Page:16

File Type:pdf, Size:1020Kb

Seaweed Is the Common Denominator in Exciting Saltwater Aquaponics Issue # 36 Aquaponics Journal www.aquaponicsjournal.com 1st Quarter, 2005 SeaweedSeaweed isis thethe commoncommon denominatordenominator inin excitingexciting saltwatersaltwater By aquaponicsaquaponics Geoff Wilson A small but influential number of Australians 12 have been enthused by the common denominator of seaweed in saltwater aquaponics now moving Queensland to speak with fellow scientists. more clearly into view as a significant land-based technology. It also included an industry-based, five-hour “luncheon seminar” on November 2, at Bribie It promises to set in motion some interesting Island Aquaculture Research Centre (BIARC) just saltwater aquaponics research and development in north of the city of Brisbane in Queensland. Australia, which could enlarge upon the brilliant pioneering of saltwater aquaponics (also named The aquaponics study group of the Aquaculture integrated mariculture) in Israel. Association of Queensland (AAQ) organised the event in the interest of showing its members (some The catalyst in this thinking has been a visit to 150 fresh water fish farmers) the potential of land- Australia by an Israeli aquaculture scientist, Dr. based aquaponics in which seaweed is used to Amir Neori. He is one of the world’s leading harvest the wastes of fin fish. advocates of edible seaweed culture in association with the raising of fin fish and invertebrates such The five-hour seminar was mostly financed by the as shrimp, abalone and other edible species. Queensland Department of Primary Industries, which funded the visit to Queensland by Dr. Neori Dr. Neori is a senior scientist at the National after he presented a paper at the ‘Australasian Centre for Mariculture at Eilat, in Israel (see a Aquaculture 2004: Profiting from Sustainability’ report on his saltwater aquaponics work in st conference that attracted 1,350 participants in “Aquaponics Journal,” 1 Quarter 2003). Sydney in late September 2004. The event that triggered much Australian The title of his Sydney conference paper was “The enthusiasm for saltwater aquaponics was a week- Blue Green Revolution: the role of seaweed long visit by Dr. Neori to the Australian state of Issue # 36 Aquaponics Journal www.aquaponicsjournal.com 1st Quarter, 2005 the production of 10 tons of fin fish in seawater cultivation in a sustainable seafood industry.” He piped from the sea to shore-based operations were enlarged considerably upon this theme at BIARC now producing 40 to 80 tons of edible seaweed on November 2 – pointing out seaweed culture in from the fish wastes which, in turn, was growing 4 some parts of the world was already considerable. to 8 tons of abalone. In China, for example, some seven millions ton of That edible seaweed could then be used to grow edible seaweed was produced along its coasts for molluscs or other valuable food crops (one ton of human food, livestock fodder and for soil fertiliser. abalone for every two tons of fin fish producing the wastes) or the seaweed could be used for either “Most people do not realize that seaweed and human foods that replaced salad vegetables or for shellfish, not fin fish, are by far the biggest domestic livestock fodders and soil fertilisers. elements of the world’s marine Dr. Neori aquaculture explained that a industry,” he big advantage of said. such an aquaponic An important system was that point was that many seaweeds an edible produce the seaweed crop most valuable for whatever omega-3 oil. It is use, could be probable that 13 grown for sale seaweeds can in six weeks therefore replace instead of six fish oil in diets months or more At the Sydney conference in September, from left, Dale Young, from GHD, Aus- for fish and tralia’s largest professional services company involved in many aquaculture pro- for fin fish and humans to better crustaceans and jects, Dr. Amir Neori, from Israel’s National Center for Mariculture and Profes- sor Rocky de Nys, a marine biologist from James Cook University in Queensland. balance with the up to six years Dr. Neori visited James Cook University in early November to see its work with omega-6 oil for abalone. prawn and reef fish aquaculture. content that has become out of But of very real commercial interest is that many balance with the needs of human nutrition. It is successive cash crops of seaweed could be grown now dawning on the world’s nutritionists that in conjunction with the farming of fin fish, omega-3 oils from sea vegetables and fish will crustaceans and molluscs in one farm. The role of play a vital role in future human health. the seaweed in commercial aquaculture was the same as in nature – the uptake of organic wastes This simple fact has enormous implications for the that would otherwise pollute water. Seaweed is global change to aquaponic food production nature’s nutrient capture system. systems that are not only kinder to the environment but are also healthier for humans. Dr. Neori said the wastes of every ton of fin fish could produce up to seven tons of plant material Will we see aquaponic farms in the future based such as lettuce in fresh water aquaponics and on seaweed production? The answer appears to be edible seaweed in salt water aquaponics. a resounding ”yes” because it makes such economic, environmental and human health sense. In pilot commercial operations in Israel “Seaweed is nature’s nutrient capture system.” Issue # 36 Aquaponics Journal www.aquaponicsjournal.com 1st Quarter, 2005 In Australia, Dr. Neori’s But worse is to come. By technological advances 2050, Dr Allen said, the come at a crucial time. area of Australia affected by salt water problems Another notable scientist, was estimated to rise to Dr. Geoff Allen, past some 12 million hectares. president of the World Aquaculture Society, is Sadly, rising saline leading the inland saltwater groundwater would project that involves five adversely affect 74 rural state governments and the and metropolitan towns Australian federal and cities in Australia. government. He and a most Dr. Allen said that the impressive team of other inland saline water project Australian aquaculture had already identified 11 Harvesting algae by hand. In some parts of the world the potential sites where researchers are currently major livelihood of some hundreds of thousands families completing research and is seaweed cultivation. salted waters had potential development that promises for sustainable to make Australia a world aquaculture investment. leader in environmentally- Such investment could be friendly land-based “industrial-scale” aquaculture and aquaponics. aquaculture that allowed 14 economical infrastructure Dr. Allen told the Sydney development in aquaculture conference last processing and marketing. September that currently about 2.5 million hectares of Mulloway and snapper, Australia’s cultivated land two popular Australian was badly affected by salt sea fish species, have been problems caused by poor tested successfully on irrigation drainage and Acadian Sea Plants, Nova Scotia, Canada, land-based these inland waters. So increased cyclic salt salinity seaplant cultivation. All natural pink, green and bright have prawns. caused by over-clearing of yellow algae are produced and sold to Japanese market. trees in a fragile The promise of edible environment. seaweed in the equation has yet to be tested. But if Algal culture allows Dr. Neori’s successful the sustained saltwater aquaponics work development of in Israel (and his possible aquaculture, because work at BIARC) it is friendly to: influences the research budgets of Australia’s Fisheries Research and Marine Eco-Systems Development Corporation Coastal Eco-Systems (FRDC), then Australia Society could take a world lead in Health commercial saltwater Integrated abalone and seaweed farms in South Africa aquaponics. Economy Issue # 36 Aquaponics Journal www.aquaponicsjournal.com 1st Quarter, 2005 Dr. Allen said that the challenge in Australia was 1. Many of Australia’s aquifers of to develop a scale of aquaculture investment based ancient seawater that could be tapped on inland saline waters that would make it for surface ponding and the growing economic and sustainable. of sea species of fish, crustaceans and molluscs. The challenge that now appears to be just as 2. Saline farm dams and waterways that important is the aquaponics that could have floating units takes the fin fish and prawn “I believe expanding that keep fish in flexible wastes from inland saline plastic containers from aquaculture investment and does use of such a non- which wastes can be something with them in providing polluting aquaponic harvested for land-based other revenue streams – in edible system using perhaps production of halophytic seaweeds and other crustaceans crops. and molluscs. the world’s most plenti- 3. The Australian long ful resource – seawater coastline with access to However, there are problems to – is likely to be the ma- seawater that can be brought solve in aquaponics for a to shore-based aquaponics predicted massive expansion of jor paradigm shift in of the Israeli style. An Australia’s inland saline humankind’s food pro- estimated 20,000 kilometres aquaculture. duction this century.” of coastal seawater await tapping by on-shore One pointed out by scientist Dr. aquaponic investors. Stewart Fielder to the Sydney conference in 15 September was that Australian saline waters from Like many other countries, Australia has had irrigation and land clearing problems was variable problems with protests about sea cage aquaculture. in quality and pond operations using it faced great temperature variation – from 10 degrees Celsius It can be intrusive into tourist and fishing recreation overnight to 30 degrees Celsius during the day. areas and is not allowed in offshore national parks, such as Australia’s massive Great Barrier Reef. But this was not so for some inland saltwater Rightly or wrongly, pollution of the seabed by fish resources, notably: wastes from sea cages is also criticised by environmentalists.
Recommended publications
  • Master's Thesis
    Master’s Thesis - master Innovation Science Aquaponics Development in the Netherlands The Role of the Emerging Aquaponics Technology and the Transition towards Sustainable Agriculture Mascha Wiegand 6307345 Tulpenweg 17 63579 Freigericht Germany [email protected] +49 1607561911 Supervisor: Prof. Dr. Ellen H.M. Moors Copernicus Institute of Sustainable Development [email protected] +31 30 253 7812 Second Reader: Dr. Koen Beumer Summary A sustainability transition in the agri-food regime is urgently required to interrupt the strong reciprocal effect between current food production standards and climate change (Willett et al., 2019). One sustainable innovation in the agri-food sector is aquaponics. Aquaponics is the combination of hydroponics and recirculating aquaculture in one controlled environment (Somerville, Cohen, Pantanella, Stankus & Lovatelli, 2014). At first sight, the water and nutrient-saving character of aquaponics, amongst other features (Somerville et al., 2014), sound promising for a transition towards sustainable agriculture. Therefore, the following research question emerged: How can the emerging aquaponics technology contribute to the sustainability transition in the Dutch agri- food sector based on Dutch aquaponics developments in the period 2008-2018? To answer this overarching research question, three sub-questions were developed. An integrated framework combining the multilevel perspective (MLP) and the technological innovation system (TIS) was used to understand the dynamics between overall structural trends, the current Dutch agri-food sector and the emerging aquaponics innovation. The innovation was also set into a broader European context. The research was of exploratory nature and used a qualitative content analysis to process 23 interviews, scientific articles, practitioner websites, publication, patent and Google Trend statistics, etc.
    [Show full text]
  • Nutrition, Feeds and Feed Technology for Mariculture in India Vijayagopal P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Course Manual Nutrition, Feeds and Feed Technology for Mariculture in India Vijayagopal P. [email protected] Central Marine Fisheries Research Institute, Kochi - 18 Mariculture of finfish on a commercial scale is non-existent in India. CMFRI, RGCA of MPEDA, CIBA are the Institutions promoting finfish mariculture with demonstrated seed production capabilities of Asian seabass (Lates calcarifer), cobia (Rachycentron canadum) and silver pompano (Trachynotus blochii). Seed production is not sufficient enough togo in for commercial scale investment. Requisite private investment has not flown into this segment of aquabusiness and Public Private Partnerships (PPP) are yet to take off. The scenario being this in the case of one (seed) of the two major inputs in this food production system, feeds and feeding, which is the other is the subject of elaboration here. Quality marine fish like king seer, pomfrets and tuna retails at more than Rs.400/- per kg in domestic markets. In metro cities it Rs.1000/- per kg is not surprising. With this purchasing power in the domestic market, most of the farmed marine fish is sold to such a clientele which is ever increasing in India. Therefore, without any assurance of a sustainable supply of such fish from capture fisheries, there is no doubt that we have to farm quality marine fish. With as deficit in seed supply at present, let us examine nutrition, feeds and feed technology required for this farming system in India. Farming sites, technologies of cage fabrication and launch, day-to-day management, social issues, policy, economics and health management, harvest and marketing, development of value chains, traceability and certification are all equally important and may or may not be dealt with in this training programme.
    [Show full text]
  • Can Sustainable Mariculture Match Agriculture's Output?
    10/30/2018 Can sustainable mariculture match agriculture’s output? « Global Aquaculture Advocate ENVIRONMENTAL & SOCIAL RESPONSIBILITY (/ADVOCATE/CATEGORY/ENVIRONMENTAL-SOCIAL- RESPONSIBILITY) Can sustainable mariculture match agriculture’s output? Thursday, 18 August 2016 By Amir Neori, Ph.D. A global focus on macroalgae and marine plants will result in many jobs and increased food security A seaweed farmer in Nusa Lembongan gathers edible seaweed that has grown on a rope. Photo by Jean-Marie Hullot. https://www.aquaculturealliance.org/advocate/can-sustainable-mariculture-match-agricultures-output/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA 10/30/2018 Can sustainable mariculture match agriculture’s output? « Global Aquaculture Advocate Currently, there is a signicant production difference between agriculture and aquaculture (an imbalance of around 100 to 1). Improving this relationship represents a signicant challenge to the aquaculture industry. A quantum leap in the scale of global food production is imperative to support increasing food needs on a global scale, as the human population continues to grow along with the additional demand for food. Climate change and its possible impacts on traditional food production practices must also be considered, and mariculture presents a unique opportunity. Agriculture produces about 10 billion tons annually of various products, most of which are plants. However, it is hard to imagine how this gure can grow much further, considering the toll of this production on diminishing resources of arable land, fertilizers and irrigation water. Strikingly, aquaculture production is a mere 1 percent of agriculture production, or about 100 million tons per year (according to FAO reports). This is astonishing in a world whose surface is 70 percent water, most of it an oceanic area that receives most of the world’s solar irradiation and that contains huge amounts of nutrients (e.g., 1011 tons of phosphorus), especially in the Pacic Ocean.
    [Show full text]
  • Aquaponics As an Emerging Production System for Sustainable Production
    Horticulture International Journal Mini review Open Access Aquaponics as an emerging production system for sustainable production Abstract Volume 4 Issue 5 - 2020 With the increase in the consumption of vegetables due to the increase in the population Thaís da Silva Oliveira,1 Letícia Fernanda and the tendency to change the consumer’s eating habits, the demand for water in the 2 1 production process of these foods also grows, requiring the production systems more Baptiston, Jéssica Pacheco de Lima 1Aquaculture Center of University of São Paulo (CAUNESP), efficient in terms of space utilization and natural resources. Aquaponics has gained University of State of São Paulo, Brazil attention for being considered a sustainable system that uses the residues of the creation of 2College of zootechnics and food engineering (USP-FZEA), aquatic organisms for the cultivation of plants, thus having a water and nutrients recycling, University of São Paulo (USP), Brazil in addition to the possibility of having a vertical distribution, optimizing the space. This production system is very interesting due to the possibility of being implemented in homes, Correspondence: Thaís da Silva Oliveira, Aquaculture Center serving as a complement to a family’s diet, and the surplus can be sold in nearby markets, of University of São Paulo (Caunesp), Access Road Prof. Paulo contributing to the local microeconomics, in addition to issues involving human health and Donato Castellane, Jaboticabal, São Paulo, Brazil, nutrition, valuing local culture and environmental education. Following the Sustainable Tel (16)3209-7477, Email Development Goals (SDGs) established by the UN, this food production technique fits into the “Zero Hunger and Sustainable Agriculture” objective, as it provides quality food, Received: August 27, 2020 | Published: September 28, 2020 closer to the consumer and produced with low inclusion of industrial fertilizers, in addition to recognized by FAO as a potential alternative to Smart Agriculture for the climate (Climate-smart agriculture-CSA).
    [Show full text]
  • Seaweed Products on the Swedish Market As a Source of Omega-3 Fatty Acids
    Faculty of Natural Resources and Agricultural Sciences Department of Food Science Seaweed products on the Swedish market as a source of omega-3 fatty acids Sjögräsprodukter på den svenska marknaden som en källa till omega-3 fettsyror Helena Martinsson Independent Project in Food Science• Master Thesis • 30 hec • Advanced A2E Publikation/Sveriges lantbruksuniversitet, Institutionen för livsmedelsvetenskap, no 430 Uppsala, 2016 Seaweed products on the Swedish market as a source of omega-3 fatty acids Sjögräsprodukter på den svenska marknaden som en källa till omega-3 fettsyror Helena Martinsson Supervisor: Jana Pickova, Department of food science Examiner: Kristine Koch, Department of food science Credits: 30 hec Level: Advanced A2E Course title: Independent Project in Food Science – Master Thesis Course code: EX0425 Programme/education: Agronomy in Food Science Place of publication: Uppsala Year of publication: 2016 Title of series: Publikation/Sveriges lantbruksuniversitet, Institutionen för livsmedelsvetenskap Serie no: 430 Online publication: http://stud.epsilon.slu.se Keywords: macroalgae, rhodophyta, phaeophyta, ω-3 fatty acids, polyunsaturated fatty acds Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Food Science Abstract To know if seaweed products on the Swedish markets could contribute to a better ω3 polyunsaturated fatty acid (PUFA) nutritional status a selection of eight dried red and brown macroalgae were chosen for this study. The fat content was deter- mined in all the algae and the fatty acid composition was examined by gas chroma- tography. Overall the seaweeds displayed a low fat content with 0.24 and 3.28g/100g dry weight (DW). The red algae Porphyra yezoensis had the highest content of PUFAs with 58.7% and also the highest content of eicosapentaenoic acid (EPA) with 49.8%, while Undaria pinnatifida displayed the second highest levels with 44.4% PUFA and 13.3% EPA.
    [Show full text]
  • 12Things You Need to Know to Garden Successfully with Aquaponics
    12Things You Need to Know to Garden Successfully With Aquaponics CONTACT US [email protected] Website Blog Facebook Twitter Community YouTube Introduction Aquaponics is an exciting new way to grow your favorite fruits, vegetables, and ornamental plants by combining the best of aquaculture and hydroponics to create a completely organic, sustainable and productive growing method. This method can be used both inside and out, it is dirt- free, weed-free, chemical-free, and it uses less than 1/10 the water needed by traditional, soil-based gardening. In aquaponic gardening water is pumped from the fish tank into a grow bed that is filled with an inert growing medium. The medium is home to colonies of beneficial bacteria and composting red worms. The bacteria converts the toxic ammonia from the fish waste first into nitrites then into nitrates, and the worms convert the solid waste into vermicomost. At this point the fish waste has become a near-perfect food for the plants. The plants now filter the water by absorbing the converted fish waste, making a healthier environement for the fish. This symbiotic relationship between the plants, fish, and bacteria / worms creates an environment where all the living elements thrive. This article is a guide to some of what you need to know to grow plants and fish successfully in a media-based aquaponic system. It is not intended to be comprehensive, but rather is a high level overview of some of the basic things you need to know in order to start an aquaponics system of your own. We will go into more depth on each of these subject in upcoming newsletters, so watch for them in your inbox! We are passionate about aquaponic gardening here at The Aquaponic Source™, and we hope that you will find a passion for aquaponic gardening gardening as well.
    [Show full text]
  • Kappaphycus Alvarezii) in Malaysian Food Products
    International Food Research Journal 26(6): 1677-1687 (December 2019) Journal homepage: http://www.ifrj.upm.edu.my Application of seaweed (Kappaphycus alvarezii) in Malaysian food products Mohammad, S. M., Mohd Razali, S. F., Mohamad Rozaiman, N. H. N., Laizani, A. N. and *Zawawi, N. Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia Article history Abstract Received: 15 August, 2018 Kappaphycus alvarezii is a species of red algae, and one of the most important carrageenan Received in revised form: sources for food, cosmetic, and pharmaceutical industries. It is commercially cultivated in the 24 May, 2019 eastern part of Malaysia. Although K. alvarezii is rich in nutrients, it is limited in its integration Accepted: 25 September, 2019 into Malaysian food products. Therefore, the present work was conducted to investigate the quality characteristics, sensorial attributes, and antioxidant activity of K. alvarezii in Malaysian food products. Seaweed puree (SP) from K. alvarezii at 10%, 20% and 30% concentrations were Keywords prepared in the formulations of fish sausages, flat rice noodles and yellow alkaline noodles. Seaweed, Kappaphycus Proximate analysis, physicochemical analysis, microbial count, total phenolic content (TPC), Alvarezii, Fish sausages, sensory evaluation, and consumer acceptance survey of the formulated food were conducted. Noodle, Physicochemical The incorporation of K. alvarezii significantly increased the fibre, moisture, and ash content in properties, Consumer formulated foods. In addition, the TPC content of K. alvarezii food also significantly increased acceptance up to 42 mg GAE/100 g. The presence of SP in food at higher concentration decreased the microbial counts. Sensory analysis confirmed that only fish sausages added with SP was overall acceptable as compared to control.
    [Show full text]
  • Edible Seaweed from Wikipedia, the Free Encyclopedia
    Edible seaweed From Wikipedia, the free encyclopedia Edible seaweed are algae that can be eaten and used in the preparation of food. They typically contain high amounts of fiber.[1] They may belong to one of several groups of multicellular algae: the red algae, green algae, and brown algae. Seaweeds are also harvested or cultivated for the extraction of alginate, agar and carrageenan, gelatinous substances collectively known as hydrocolloids or phycocolloids. Hydrocolloids have attained commercial significance, especially in food production as food A dish of pickled spicy seaweed additives.[2] The food industry exploits the gelling, water-retention, emulsifying and other physical properties of these hydrocolloids. Most edible seaweeds are marine algae whereas most freshwater algae are toxic. Some marine algae contain acids that irritate the digestion canal, while some others can have a laxative and electrolyte-balancing effect.[3] The dish often served in western Chinese restaurants as 'Crispy Seaweed' is not seaweed but cabbage that has been dried and then fried.[4] Contents 1 Distribution 2 Nutrition and uses 3 Common edible seaweeds 3.1 Red algae (Rhodophyta) 3.2 Green algae 3.3 Brown algae (Phaeophyceae) 3.3.1 Kelp (Laminariales) 3.3.2 Fucales 3.3.3 Ectocarpales 4 See also 5 References 6 External links Distribution Seaweeds are used extensively as food in coastal cuisines around the world. Seaweed has been a part of diets in China, Japan, and Korea since prehistoric times.[5] Seaweed is also consumed in many traditional European societies, in Iceland and western Norway, the Atlantic coast of France, northern and western Ireland, Wales and some coastal parts of South West England,[6] as well as Nova Scotia and Newfoundland.
    [Show full text]
  • Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation
    Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation Recommended Citation J. Honculada Primavera, "Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation", trade and environment, September 25, 1994, https://nautilus.org/trade-an- -environment/shrimp-farming-in-the-asia-pacific-environmental-and-trade-issues-- nd-regional-cooperation-4/ J. Honculada Primavera Aquaculture Department Southeast Asian Fisheries Development Center Tigbauan, Iloilo, Philippines 5021 Tel 63-33-271009 Fax 63-33-271008 Presented at the Nautilus Institute Workshop on Trade and Environment in Asia-Pacific: Prospects for Regional Cooperation 23-25 September 1994 East-West Center, Honolulu Abstract Production of farmed shrimp has grown at the phenomenal rate of 20-30% per year in the last two decades. The leading shrimp producers are in the Asia-Pacific region while the major markets are in Japan, the U.S.A. and Europe. The dramatic failures of shrimp farms in Taiwan, Thailand, Indonesia and China within the last five years have raised concerns about the sustainability of shrimp aquaculture, in particular intensive farming. After a brief background on shrimp farming, this paper reviews its environmental impacts and recommends measures that can be undertaken on the farm, 1 country and regional levels to promote long-term sustainability of the industry. Among the environmental effects of shrimp culture are the loss of mangrove goods and services as a result of conversion, salinization of soil and water, discharge of effluents resulting in pollution of the pond system itself and receiving waters, and overuse or misuse of chemicals. Recommendations include the protection and restoration of mangrove habitats and wild shrimp stocks, management of pond effluents, regulation of chemical use and species introductions, and an integrated coastal area management approach.
    [Show full text]
  • Suitability of Seaweed Meal Incorporated with Rhodovulum Sp
    BORNEO SCIENCE 30: MARCH 2012 SUITABILITY OF SEAWEED MEAL INCORPORATED WITH RHODOVULUM SP. BACTERIUM AS FEED SUPPLEMENT FOR FINFISH LARVAE Sujjat Al Azad & Teo Zhi Xiang Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia. ABSTRACT. The proximate compositions of three Chlorophyta (Caulerpa sp., Halimeda macroloba, and Halimeda opuntia), three Phaeophyta (Sargassum sp., Padina minor, and Dictyota sp.), and one Rhodophyta (Laurencia sp.) were determined in order to evaluate their suitability for feed supplement. The evaluated seaweed showed variable protein content between 4 to 14% (dry weight). The highest protein level of 14% dry weight (lDW) was determined in Sargassum sp., but this species also recorded the lowest level (0.2-0.5%) of lipid. On the other hand, the highest content of 4% (DW) lipid and 11% (DW) protein level was observed in the species Dictyota. Of the other species, Padina minor from the same group, shows 10% (DW) and 1% (DW) levels of protein and lipid respectively. Seaweed meal of these three species was prepared and mixed separately with 2% of Rhodovulum sp. Thus, three types of supplementary diet were prepared for Tilapia fry feeding trials. Rhodovulum sp. bacterium biomass alone was used as control diet. The preliminary feeding trial showed that the growth and survival of fin fish larvae were improved with the supplemented diet made from Dictyota meal mixed with 2% of Rhodovulum sp. Thus, indigenous self-flocculated phototrophic bacterium Rhodovulum sp. is improved when used as a feed additive enhanced with this seaweed meal in Tilapia (Oreochromis niloticus) fry rearing period. KEYWORDS.
    [Show full text]
  • Common Edible Seaweeds in the Gulf of Alaska
    eliciousor millennia, Alaska edible Natives have seaweedssubsisted COMMON EDIBLE Don the wild edibles—plants, animals, and F seaweeds—found in abundance along Alaska’s shores. In this book, Dr. Dolly Garza, a Haida-Tlingit Indian, shows you how to look for, identify, harvest, preserve, and prepare several species of seaweeds SEAWEEDS and one plant for tasty snacks or for the dinner table. IN THE GULF OF ALASKA A University of Alaska Fairbanks professor emerita, Dolly was raised in southeast Alaska Second Edition where her family routinely harvested seaweeds as a diet staple, a practice they continue today. Dolly enjoys sharing her traditional Native knowledge through presentations to Elderhostel groups, youth groups, and others. In this book she shares with you her lifetime of first-hand knowledge about the pleasures of harvesting, preparing, and eating some of the most common and delectable wild edibles found along Gulf of Alaska shores. US $10.00 CAN $10.00 DOLLY GARZA Seaweeds book cover.indd 1 3/28/12 9:30 AM COMMON EDIBLE SEAWEEDS IN THE GULF OF ALASKA Second Edition DOLLY GARZA Published by Alaska Sea Grant, University of Alaska Fairbanks SG-ED-46 Elmer E. Rasmuson Library Cataloging in Publication Data Garza, Dolly A. Common edible seaweeds in the Gulf of Alaska / Dolly Garza. — Fair- banks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks. p. : ill. ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46) 1. Marine algae as food—Alaska—Alaska, Gulf of. 2. Cookery (Marine algae) I. Title. II. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46.
    [Show full text]
  • An Investigation of Impediments to Commercial Shellfish Mariculture in Virginia
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1990 An Investigation of Impediments to Commercial Shellfish Mariculture in Virginia Robert Charles Neikirk College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, and the Oceanography Commons Recommended Citation Neikirk, Robert Charles, "An Investigation of Impediments to Commercial Shellfish Mariculture in Virginia" (1990). Dissertations, Theses, and Masters Projects. Paper 1539617609. https://dx.doi.org/doi:10.25773/v5-k2ra-fn95 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. AN INVESTIGATION OF IMPEDIMENTS TO COMMERCIAL SHELLFISH MARICULTURE IN VIRGINIA A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts by ROBERT CHARLES NEIKIRK 1990 This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Approved August 1990 N. Bartlett Theberge, Jr., LL.M. Committee Chairman Carl H. Hobbs, III Walter I. Priest, III ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS . iv LIST OF TABLES. v ABSTRACT. vi INTRODUCTION. ... 2 LITERATURE REVIEW . 7 METHODS . 13 RESULTS ... 19 DISCUSSION . 28 Regulatory Impediments ....................................... 29 Impediments Associated with multiple use of the Coastal Zone .
    [Show full text]