Suitable Fish Hosts for Glochidia of Four Freshwater Mussels Mark C

Total Page:16

File Type:pdf, Size:1020Kb

Suitable Fish Hosts for Glochidia of Four Freshwater Mussels Mark C Suitable Fish Hosts for Glochidia of Four Freshwater Mussels Mark C. Hove, Robin A. Engelking, Margaret E. Peteler, Eric M. Peterson, Anne R. Kapuscinski, Laurie A. Sovell, and Elaine R. Evers University of Minnesota, Department of Fisheries and Wildlife, St. Paul, Minnesota Abstract. Management of rare freshwater mussels frequently demands knowledge of their fish host(s). We conducted studies during 1993-1995 to determine suitable fish hosts for purple wartyback {Cyclonaias tuberculata), round pigtoe {Pleurobema coccineinu), cylindrical papershell (Anodontoidesferussaciamis), and squawfoot {Strophitiis undulatus). Suitable hosts were determined by artificially exposing glochidia to fish and observing if they developed into juveniles. Of 11 fish species infested with C. tuberculata glochidia, only the yellow bullhead and channel catfish served as hosts. Three cyprinids of eight fish species tested were hosts for P. coccmcum glochidia. Juvenile A. ferussaciamis were collected from aquaria holding spotfin shiner and black crappie. Six of eleven species tested were hosts for S. undulatus glochidia. These trials identified several previ ously unknown suitable hosts. Introduction Materials and Methods Conservation of North American freshwater mussel Laboratory experiments were conducted during (unionid) diversity is an increasing concern among 1993-1995 to identify suitable hosts for Cyclonaias natural resource managers. The American Fisheries tuberculata, Pleurobema coccineum, Anodontoides Society's (APS) Endangered Species Committee has ferussaciamis, and Strophitus undulatus. Unionid and announced that 72% of North America's freshwater fish nomenclature follows Turgeon et al. (1988) and mussel fauna is either endangered, threatened, or of Robins et al. (1991), respectively. Test fish were special concern (Williams et al. 1993). Freshwater collected from streams and lakes believed not to mussels are distributed throughout the world but hold the unionids under investigation in order to the greatest diversity occurs in North America. avoid testing fish that had acquired immunity from Many rare unionids are found in the north- prior exposure to glochidia (Neves et al. 1985). central United States (Cummings and Mayer 1992). Fishes were collected with a seine, trap net, or Cyclonaias tuberculata (Rafinesque, 1820) is listed as electrofishing equipment. Fishes were held in endangered in Wisconsin, threatened in Iowa, holding tanks (40 1 or 4001) 2-20 days prior to special concern in Michigan, and of special interest glochidia infestation, at temperatures between 18 in Ohio. Cyclonaias tuberculata is also given the and 23°C. conservation status of "special concern" by the AFS Mature glochidia were obtained from gravid Endangered Species Committee (Williams et al. female unionids collected from the St. Croix 1993). Pleurobema coccineum (Conrad, 1834) is listed (Chisago County) and Sandy (Aitkin County) rivers, as endangered in Iowa and of special interest in Minnesota. Females released glochidia while held in Ohio. Anodontoides ferussaciamis (I. Lea, 1834) is beakers in aquaria. After completion of experi listed as endangered in Missouri and threatened in ments, we returned female C. tuberculata and P. Iowa. Strophitus undulatus (Say, 1817) is listed as coccineum to the collection site. Other unionids were threatened in Iowa. deposited at the Bell Museum of Natural History, In most unionids, the larvae must briefly attach University of Minnesota. Glochidia were separated to a fish in order to transform into a juvenile. from conglutinates by gently drawing a conglutinate Management of rare unionids frequently requires in and out of a pipette tube. We retained glochidia knowledge of their fish host requirements. The for host tests if > 70% of individuals closed when purpose of this study was to determine suitable fish- exposed to a 0.1-1% NaCl solution. host(s) for glochidia of purple wartyback {Cyclonaias We attempted to infest fish with glochidia tuberculata), round pigtoe {Pleurobema coccineum), by one of two techniques. All fish species that were cylindrical papershell {Anodontoides ferussaciamis), exposed to P. coccineum, A. ferussaciamis, S. undulatus and squawfoot {Strophitus undulatus). glochidia, and Ictaluriis punctatus, Cyprinus carpio. 22 Conservation and Management of Freshwater Mussels II: Proceedings of a UMRCC Symposium and Aplodinotus grunniens that were exposed to ids, etheostomids, and catostomids were held in C. tuberculata glochidia were infested by placing suspended nets to prevent them from eating juvenile them in a 1-2 1 bath with several hundred to several mussels on the aquarium floor. Aquaria were thousand glochidia under vigorous aeration. Fish usually siphoned and siphonate checked for pres were exposed to glochidia for 15 minutes to 24 ence of glochidia and juveniles three times a week. hours, depending on the species' susceptibility to A given search for juveniles was usually terminated infestation. Fish species (excluding Ictalurus after three consecutive searches failed to reveal a punctatiis, Cyprimis carpio, and Aplodinotus grunniens) glochidium or juvenile mussel. At this termination exposed to C. tuberculata glochidia were infested by point, each fish was anesthetized and searched for directly pipetting glochidia onto one set of fish gill attached glochidia using a dissecting microscope. demibranchs. After direct infestation, fish were held When we found glochidia, the fish was revived and out of the water for 10 to 20 seconds to allow time the experiment continued imtil we no longer ob for glochidia to attach to lamellae. Every two to four served glochidia attached to the fish. A mussel hours after infestation, we checked gills with a was considered a juvenile if foot movement was dissecting microscope and fins by naked eye to observed. A fish was considered a suitable host if determine if infestation was successful. we observed glochidia encystment and metamor After infestation, fish were held in aquaria at phosis to the juvenile stage. 18° ± 2°C and fed frozen brine shrimp or worms at least three times a week. Fathead minnows {Pimephales promelas) were fed to piscivorous fish Results once a week and removed from aquaria 5-10 min utes after introduction to minimize the possibility of We found two or more suitable host species for each their consuming glochidia or juvenile mussels lying mussel species examined. Our laboratory experi on the aquarium floor. Except for one group of ments identified several previously unknown Cyprinella spiloptera (see footnote in Table 1), cyprin- suitable hosts (Tables 1 and 2). Table 1. Suitable fish hosts for glochidia of Cyclouaias tuberculata, Pleurobema coccineum, Anodontoides ferussaciamis, and Strophitus undulatus. Fishes are arranged phylogenetically according to Nelson (1994). N u m b e r D a y s t o N u m b e r o f Species Tested Metamorphosis Juveniles Cyclouaias tuberculata A m e i u r u s n a t a l i s I 2 2 2 - 2 5 8 A m e i u r u s n a t a l i s I I 2 2 5 - 2 7 4 I c t a l u r u s p u n c t a t u s 2 3 0 - 3 1 7 Pleurobema coccineum Cyprinella spiloptera 5 16-25 66 P i m e p h a l e s n o t a t u s 6 1 8 - 2 5 1 9 Phoxinuseos 8 18-29 4 Anodontoides ferussaciamis Cyprinella spiloptera 6 12-20 39 Pomoxis nigromaculatus 6 12-15 9 Strophitus undulatus P i m e p h a l e s p r o m e l a s 5 1 4 5 Cyprinella spiloptera 6 11-13 55 Cyprinella spiloptera' 5 10 11 A m e i u r u s m e l a s 3 1 8 - 2 0 3 A m e i u r u s n a t a l i s 2 1 4 - 2 2 6 0 Lepomis macrochiriis 3 10-19 13 Micropterus salmoides 1 13-15 4 Stizostedion vitreum 4 10-29 415 - Not held in suspended net; able to feed off aquarium bottom. Hove et al.: Suitable Fish Hosts for Glochidia of Four Freshwater Mussels 23 Cyclonaias tuberculata (Rafinesque, 1820) Cyprinella spiloptera than from Pomoxis Two of eleven fish species tested were found to be nigromaculatus. No juveniles were collected from suitable hosts for C. tuberculata glochidia. Roughly Pimephales promelas. the same number of juveniles was collected from Ictalurus punctatus and Ameiurus natalis. Ictalurus Strophitus undulatus (Say, 1817) punctatus succumbed to the parasite "Ich" Strophitus undulatus glochidia completed metamor {Ichthyophthirius multifilis) after 31 days. Inspection phosis on a wide variety of fish species. Suitable of their gills soon after expiration revealed heav)' hosts included two cyprinids, two ictalurids, two glochidia infestation. centrarchids, and a percid. Roughly ten times as many juveniles were collected from walleye than Pleurobema coccineum (Conrad, 1834) from any other species tested. Four species were Pleurobema coccineum glochidia successfully trans unsuitable hosts. formed on each cyprinid tested. The greatest number of juveniles was collected from Cyprinella Eleven Cyprinella spiloptera were divided into spiloptera, followed by Pimephales notatus and two groups to determine if preventing fish from Phoxinus eos. Glochidia were sloughed off by the accessing the bottom of the aquarium would in other five species tested. crease the number of juveniles recovered. Eleven juveniles were recovered from the aquarium holding Anodontoides ferussacianus (Lea, 1834) five unrestricted shiners, while fifty-five juveniles Two of three fish species tested facilitated metamor were collected from the aquarium where six shiners phosis of A. ferussacianus glochidia. Roughly four were prevented access to the bottom of the times as many juveniles were collected from aquarium by a plastic screen. We therefore suspect Table 2. Unsuitable fish hosts for glochidia of
Recommended publications
  • Biodiversity Work Group Report: Appendices
    Biodiversity Work Group Report: Appendices A: Initial List of Important Sites..................................................................................................... 2 B: An Annotated List of the Mammals of Albemarle County........................................................ 5 C: Birds ......................................................................................................................................... 18 An Annotated List of the Birds of Albemarle County.............................................................. 18 Bird Species Status Tables and Charts...................................................................................... 28 Species of Concern in Albemarle County............................................................................ 28 Trends in Observations of Species of Concern..................................................................... 30 D. Fish of Albemarle County........................................................................................................ 37 E. An Annotated Checklist of the Amphibians of Albemarle County.......................................... 41 F. An Annotated Checklist of the Reptiles of Albemarle County, Virginia................................. 45 G. Invertebrate Lists...................................................................................................................... 51 H. Flora of Albemarle County ...................................................................................................... 69 I. Rare
    [Show full text]
  • Kansas Stream Fishes
    A POCKET GUIDE TO Kansas Stream Fishes ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ By Jessica Mounts Illustrations © Joseph Tomelleri Sponsored by Chickadee Checkoff, Westar Energy Green Team, Kansas Department of Wildlife, Parks and Tourism, Kansas Alliance for Wetlands & Streams, and Kansas Chapter of the American Fisheries Society Published by the Friends of the Great Plains Nature Center Table of Contents • Introduction • 2 • Fish Anatomy • 3 • Species Accounts: Sturgeons (Family Acipenseridae) • 4 ■ Shovelnose Sturgeon • 5 ■ Pallid Sturgeon • 6 Minnows (Family Cyprinidae) • 7 ■ Southern Redbelly Dace • 8 ■ Western Blacknose Dace • 9 ©Ryan Waters ■ Bluntface Shiner • 10 ■ Red Shiner • 10 ■ Spotfin Shiner • 11 ■ Central Stoneroller • 12 ■ Creek Chub • 12 ■ Peppered Chub / Shoal Chub • 13 Plains Minnow ■ Silver Chub • 14 ■ Hornyhead Chub / Redspot Chub • 15 ■ Gravel Chub • 16 ■ Brassy Minnow • 17 ■ Plains Minnow / Western Silvery Minnow • 18 ■ Cardinal Shiner • 19 ■ Common Shiner • 20 ■ Bigmouth Shiner • 21 ■ • 21 Redfin Shiner Cover Photo: Photo by Ryan ■ Carmine Shiner • 22 Waters. KDWPT Stream ■ Golden Shiner • 22 Survey and Assessment ■ Program collected these Topeka Shiner • 23 male Orangespotted Sunfish ■ Bluntnose Minnow • 24 from Buckner Creek in Hodgeman County, Kansas. ■ Bigeye Shiner • 25 The fish were catalogued ■ Emerald Shiner • 26 and returned to the stream ■ Sand Shiner • 26 after the photograph. ■ Bullhead Minnow • 27 ■ Fathead Minnow • 27 ■ Slim Minnow • 28 ■ Suckermouth Minnow • 28 Suckers (Family Catostomidae) • 29 ■ River Carpsucker •
    [Show full text]
  • COPEIA February 1
    2000, No. 1COPEIA February 1 Copeia, 2000(1), pp. 1±10 Phylogenetic Relationships in the North American Cyprinid Genus Cyprinella (Actinopterygii: Cyprinidae) Based on Sequences of the Mitochondrial ND2 and ND4L Genes RICHARD E. BROUGHTON AND JOHN R. GOLD Shiners of the cyprinid genus Cyprinella are abundant and broadly distributed in eastern and central North America. Thirty species are currently placed in the genus: these include six species restricted to Mexico and three barbeled forms formerly placed in different cyprinid genera (primarily Hybopsis). We conducted a molecular phylogenetic analysis of all species of Cyprinella found in the United States, using complete nucleotide sequences of the mitochondrial, protein-coding genes ND2 and ND4L. Maximum-parsimony analysis recovered a single most-parsimonious tree for Cyprinella. Among historically recognized, nonbarbeled Cyprinella, the mitochondrial (mt) DNA tree indicated that basal lineages in Cyprinella are comprised largely of species with linear breeding tubercles and that are endemic to Atlantic and/or Gulf slope drainages, whereas derived lineages are comprised of species broadly distrib- uted in the Mississippi basin and the American Southwest. The Alabama Shiner, C. callistia, was basal in the mtDNA tree, although a monophyletic Cyprinella that in- cluded C. callistia was not supported in more than 50% of bootstrap replicates. There was strong bootstrap support (89%) for a clade that included all species of nonbarbeled Cyprinella (except C. callistia) and two barbeled species, C. labrosa and C. zanema. The third barbeled species, C. monacha, fell outside of Cyprinella sister to a species of Hybopsis. Within Cyprinella were a series of well-supported species groups, although in some cases bootstrap support for relationships among groups was below 50%.
    [Show full text]
  • Spatial Organization of Fish Communities in the St. Lawrence
    Hydrobiologia (2018) 809:155–173 https://doi.org/10.1007/s10750-017-3457-z PRIMARY RESEARCH PAPER Spatial organisation of fish communities in the St. Lawrence River: a test for longitudinal gradients and spatial heterogeneities in a large river system Aline Foubert . Fre´de´ric Lecomte . Pierre Legendre . Mathieu Cusson Received: 15 February 2017 / Revised: 8 November 2017 / Accepted: 28 November 2017 / Published online: 6 December 2017 Ó Springer International Publishing AG, part of Springer Nature 2017 Abstract Typified by heterogeneous habitats, large 299,662 individuals from 76 fish species captured in rivers host diversified communities throughout their 1,051 sites. Results from diversity indices and multi- course. As the spatial organisation of fish communities variate analysis revealed a gradual downstream within these ecosystems remains little studied, longi- increase in taxonomic diversity, and a gradual change tudinal gradients and spatial heterogeneities of fish of the community structure along the river. In addition, diversity were analysed in the large temperate St. we observed different fish communities within fluvial Lawrence River, Canada. We used two distinct lakes and corridors and found significant differences in datasets obtained from either seine nets or gillnets fish community structure between opposite shores. from governmental standardised fish surveys The fish communities described along the river using (1995–2012) consisting of a total of seine nets are spatially more heterogeneous than when described using gillnets. This discrepancy is likely resulting both from the more mobile species targeted Handling editor: Fernando M. Pelicice by gillnets and sampling sites located farther from the Contribution to the ‘‘Chaire de recherche sur les espe`ces shallower shoreline habitat targeted by seine nets.
    [Show full text]
  • Underwater Observation and Habitat Utilization of Three Rare Darters
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2010 Underwater observation and habitat utilization of three rare darters (Etheostoma cinereum, Percina burtoni, and Percina williamsi) in the Little River, Blount County, Tennessee Robert Trenton Jett University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Natural Resources and Conservation Commons Recommended Citation Jett, Robert Trenton, "Underwater observation and habitat utilization of three rare darters (Etheostoma cinereum, Percina burtoni, and Percina williamsi) in the Little River, Blount County, Tennessee. " Master's Thesis, University of Tennessee, 2010. https://trace.tennessee.edu/utk_gradthes/636 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Robert Trenton Jett entitled "Underwater observation and habitat utilization of three rare darters (Etheostoma cinereum, Percina burtoni, and Percina williamsi) in the Little River, Blount County, Tennessee." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Wildlife and Fisheries Science. James L. Wilson, Major Professor We have read this thesis and recommend its acceptance: David A. Etnier, Jason G.
    [Show full text]
  • Biological Resources
    BIOLOGICAL RESOURCES Wildlife The French Creek watershed contains a wealth of wildlife resources, both aquatic and terrestrial. There is an abundance of species of special concern, considered rare, threatened, or endangered in the state and in the nation, and also numerous game and non-game species. This amazing biodiversity leads to an enormous array of wildlife viewing and outdoor recreation opportunities. Perhaps more importantly, is the significance and importance this exceptional biodiversity places on conservation initiatives in the French Creek watershed. Terrestrial Mammals There are 63 extant species of mammals in the Commonwealth with another 10 species considered either uncertain or extirpated within Pennsylvania (Merritt, 1987). Fifty species of mammals have ranges that overlap with the French Creek watershed (Appendix F). No rare, threatened, or endangered mammals are listed for the French Creek watershed, although a few have general ranges that include the watershed. There have been unconfirmed reports of river otters (Lutra canadensis) seen on French Creek. These individuals, once common in the watershed, may be making their way back to French Creek due to reintroduction efforts in western New York and on the Allegheny River in Pennsylvania. Many of the mammals once common in the watershed and in other areas of the state have been lost due to the decline of large expanses of forested areas, these include the marten (Martes americana), fisher (Martes pennanti), and mountain lion (Felis concolor). The white-tailed deer (Odocoileus virginianus), eastern chipmunk (Tamias striatus), woodchuck (Marmota monax), striped skunk (Mephitis mephitis), porcupine (Erethizon dorsatum), eastern cottontail rabbit (Sylvilagus floridanus), short-tailed shrew (Blarina brevicauda), little brown bat (Myotis lucifugus), raccoon (Procyon lotor), muskrat (Ondatra zibethica), opossum (Didelphis marsupialis), and beaver (Castor canadensis), are some of the more common mammals found in the French Creek watershed (French Creek Project, web).
    [Show full text]
  • Post-Drought Evaluation of Freshwater Mussel Communities
    Post-drought evaluation of freshwater mussel communities in the upper Saline and Smoky Hill rivers with emphasis on the status of the Cylindrical Papershell (Anodontoides ferussacianus) Submitted to the Kansas Department of Wildlife, Parks and Tourism by Andrew T. Karlin, Kaden R. Buer, and William J. Stark Department of Biological Sciences Fort Hays State University Hays, Kansas 67601 February 2017 1 Abstract The distribution of the Cylindrical Papershell (Anodontoides ferussacianus) in Kansas historically included a large portion of the state but is now seemingly restricted to the upper Smoky Hill-Saline River Basin in western Kansas. The species is listed as a “Species in Need of Conservation” within Kansas, and a survey conducted in 2011 emphasizing the status of the Cylindrical Papershell detected the species at low densities and relative abundances. Drought since the completion of the 2011 survey raised questions regarding the current status of the Cylindrical Papershell. The primary objectives of this study were to evaluate the conservation status of the Cylindrical Papershell in Kansas and evaluate possible post-drought changes in the composition of freshwater mussel communities in the Saline and Smoky Hill rivers. Nineteen sites on the Saline River and 21 sites on the Smoky Hill River were qualitatively surveyed. Two and 5 of these sites on the Saline and Smoky Hill rivers, respectively, were also sampled quantitatively. Eighteen live Cylindrical Papershell, 7 in the Saline River and 11 in the Smoky Hill River, were collected. At qualitative sites surveyed in 2011 and 2015, significant decreases in species richness at each site and live Cylindrical Papershell abundance were documented, though overall abundance of live mussels per site remained similar.
    [Show full text]
  • Geological Survey of Alabama Calibration of The
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 1210 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2012 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 2 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 9 IBI sample collection ............................................. 9 Habitat measures............................................... 11 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 16 IBI metrics and scoring criteria..................................... 20 Designation of guilds....................................... 21 Results and discussion................................................ 23 Sampling sites and collection results . 23 Selection and scoring of Southern Plains IBI metrics . 48 Metrics selected for the
    [Show full text]
  • Aquatic Habitat and Fish Report Baseline Conditions
    Interprovincial Crossings Environmental Assessment Study Aquatic Habitat and Fish Report Baseline Conditions Final Report November 18, 2008 AQUATIC HABITAT AND FISH REPORT BASELINE CONDITIONS REPORT NOVEMBER 2008 F INAL REPORT AQUATIC HABITAT AND FISH (BASELINE CONDITIONS) Table of Contents GLOSSARY OF TECHNICAL TERMS..................... 1-1 1.0 INTRODUCTION........................................... 1-1 1.1 Methodology ........................................................................... 1-1 1.1.1 Baseline Environmental Conditions ........................... 1-1 1.1.2 Study Area .................................................................. 1-4 1.1.3 Assessment of Environmental Constraints ................. 1-4 2.0 OTTAWA RIVER GENERAL CHARACTERISTICS..................................... 2-1 2.1 Hydrography – General Description ....................................... 2-1 2.2 Natural environment, recreation and tourism.......................... 2-2 2.3 Water quality........................................................................... 2-3 2.4 Variations between corridors................................................... 2-3 3.0 CHARACTERIZATION OF FISH SPECIES ...... 3-1 3.1 Fish species found in the Ottawa River................................... 3-1 3.2 Characterization of spawning sites.......................................... 3-8 4.0 SPECIES WITH SPECIAL STATUS ................. 4-1 4.1 The Channel Darter ................................................................. 4-2 4.2 The River Redhorse................................................................
    [Show full text]
  • The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina
    SRQ-NERp·3 The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina by Joseph C. Britton and Samuel L. H. Fuller A Publication of the Savannah River Plant National Environmental Research Park Program United States Department of Energy ...---------NOTICE ---------, This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Depart­ mentof Energy.nor any of theircontractors, subcontractors,or theiremploy­ ees, makes any warranty. express or implied or assumes any legalliabilityor responsibilityfor the accuracy, completenessor usefulnessofanyinformation, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. A PUBLICATION OF DOE'S SAVANNAH RIVER PLANT NATIONAL ENVIRONMENT RESEARCH PARK Copies may be obtained from NOVEMBER 1980 Savannah River Ecology Laboratory SRO-NERP-3 THE FRESHWATER BIVALVE MOLLUSCA (UNIONIDAE, SPHAERIIDAE, CORBICULIDAEj OF THE SAVANNAH RIVER PLANT, SOUTH CAROLINA by JOSEPH C. BRITTON Department of Biology Texas Christian University Fort Worth, Texas 76129 and SAMUEL L. H. FULLER Academy of Natural Sciences at Philadelphia Philadelphia, Pennsylvania Prepared Under the Auspices of The Savannah River Ecology Laboratory and Edited by Michael H. Smith and I. Lehr Brisbin, Jr. 1979 TABLE OF CONTENTS Page INTRODUCTION 1 STUDY AREA " 1 LIST OF BIVALVE MOLLUSKS AT THE SAVANNAH RIVER PLANT............................................ 1 ECOLOGICAL
    [Show full text]
  • Assessment and Public Outreach of Low Water Level Impacts on Fish
    2 St. Lawrence Drive Cornwall, Ontario K6H 4Z1 (613) 936-6620 Assessment and public outreach of low water level impacts on fish community and aquatic habitat in Lake St. Lawrence Authors Project Supervisor: March 29, 2019 Matt Windle Aquatic Biologist E: [email protected] Project Lead: Jesse St John Environmental Field/GIS Technician E: [email protected] 1 Contents INTRODUCTION ............................................................................................................................... 3 METHODS ........................................................................................................................................ 4 Study Area ................................................................................................................................... 4 Fish Community Data .................................................................................................................. 4 Critical habitat requirements of life history stages ..................................................................... 6 Water Level Data ......................................................................................................................... 6 RESULTS & DISCUSSION ................................................................................................................... 7 ACKNOWLEDGEMENTS ................................................................................................................. 10 REFERENCES .................................................................................................................................
    [Show full text]
  • Manual to the Freshwater Mussels of MD
    MMAANNUUAALL OOFF TTHHEE FFRREESSHHWWAATTEERR BBIIVVAALLVVEESS OOFF MMAARRYYLLAANNDD CHESAPEAKE BAY AND WATERSHED PROGRAMS MONITORING AND NON-TIDAL ASSESSMENT CBWP-MANTA- EA-96-03 MANUAL OF THE FRESHWATER BIVALVES OF MARYLAND Prepared By: Arthur Bogan1 and Matthew Ashton2 1North Carolina Museum of Natural Science 11 West Jones Street Raleigh, NC 27601 2 Maryland Department of Natural Resources 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 Prepared For: Maryland Department of Natural Resources Resource Assessment Service Monitoring and Non-Tidal Assessment Division Aquatic Inventory and Monitoring Program 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 February 2016 Table of Contents I. List of maps .................................................................................................................................... 1 Il. List of figures ................................................................................................................................. 1 III. Introduction ...................................................................................................................................... 3 IV. Acknowledgments ............................................................................................................................ 4 V. Figure of bivalve shell landmarks (fig. 1) .......................................................................................... 5 VI. Glossary of bivalve terms ................................................................................................................
    [Show full text]