Geological Survey of Alabama Calibration of The

Total Page:16

File Type:pdf, Size:1020Kb

Geological Survey of Alabama Calibration of The GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 1210 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2012 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 2 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 9 IBI sample collection ............................................. 9 Habitat measures............................................... 11 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 16 IBI metrics and scoring criteria..................................... 20 Designation of guilds....................................... 21 Results and discussion................................................ 23 Sampling sites and collection results . 23 Selection and scoring of Southern Plains IBI metrics . 48 Metrics selected for the Southern Plains IBI . 54 1. Number of native species ................................. 54 2. Number of shiner species ................................ 56 3. Number of sucker species................................. 56 4. Number of centrarchid species ............................. 59 5. Number of darter + madtom species . 59 6. Percent as tolerant species................................ 62 7. Percent as Green Sunfish + Yellow Bullheads . 62 8. Percent as insectivorous cyprinids . 65 9. Percent as top carnivores ................................. 65 10. Percent with DELT+hybrids............................... 67 11. Percent as simple lithophilic spawners . 67 12. Percent as manipulative nonlithophilic spawners . 70 IBI development for the Southern Plains ichthyoregion . 70 Conclusions ........................................................ 83 References cited..................................................... 89 Appendix A. Habitat evaluation forms..................................... 94 Appendix B. Reproduction and trophic guild classifications for Alabama fishes . 97 Appendix C. Southern Plains ichthyoregion fish community sampling data ........................................................ 108 TABLES Table 1. IBI sampling sites in the Southern Plains ichthyoregion, 2004-11 ...................................................... 25 Table 2. Fish species collected in the Southern Plains ichthyoregion, 2004-11 . 30 ii Table 3. Rapid habitat assessment scores for sites in the Southern Plains ichthyoregion .................................................. 39 Table 4. Human disturbance metrics for sites in the Southern Plains ichthyoregion .................................................. 42 Table 5. LDI-weighted human disturbance metrics for sites in the Southern Plains ichthyoregion .................................................. 45 Table 6. Correlation coefficients between candidate IBI metrics and glide-pool habitat assessment metrics ....................................... 49 Table 7. Correlation coefficients between candidate IBI metrics and human disturbance metrics ............................................. 50 Table 8. Statistical and responsive measures for candidate IBI metrics . 51 Table 9. Redundancy analysis for Southern Plains ichthyoregion IBI metrics . 53 Table 10. Fish community values for Southern Plains IBI metrics . 73 Table 11. Scores for Southern Plains IBI metrics . 76 Table 12. IBI integrity classes for Alabama ichthyoregions . 80 FIGURES Figure 1. Preliminary ichthyoregion classification for Alabama . 5 Figure 2. Ecoregions and river systems in Alabama . 8 Figure 3. Conceptual model illustrating the relationship between disturbance, stressor, and response. .......................................... 17 Figure 4. Location of IBI sampling sites in the Southern Plains ichthyoregion . 24 Figure 5. Frequency distribution of sampling sites in the Southern Plains ichthyoregion by watershed area and human disturbance . 29 Figure 6. Relationships between the IBI metric number of native species and watershed area, disturbance, and habitat. 55 Figure 7. Relationships between the IBI metric number of shiner species and watershed area, disturbance, and habitat . 57 Figure 8. Relationships between the IBI metric number of sucker species and watershed area, disturbance, and habitat . 58 Figure 9. Relationships between the IBI metric number of centrarchid species and watershed area, disturbance, and habitat . 60 Figure 10. Relationships between the IBI metric number of darter+madtom species and watershed area, disturbance, and habitat . 61 Figure 11. Relationships between the IBI metric percent tolerant species and watershed area, disturbance, and habitat . 63 Figure 12. Relationships between the IBI metric percent Green Sunfish+Yellow Bullheads and watershed area, disturbance, and habitat . 64 Figure 13. Relationships between the IBI metric percent insectivorous cyprinids and watershed area, disturbance, and habitat . 66 iii Figure 14. Relationships between the IBI metric percent top carnivores and watershed area, disturbance, and habitat. 68 Figure 15. Relationships between the IBI metric percent DELT + hybrids and watershed area, disturbance, and habitat . 69 Figure 16. Relationships between the IBI metric percent simple lithophilic spawners and watershed area, disturbance, and habitat . 71 Figure 17. Relationships between the IBI metric percent manipulative nonlithophilic spawners and watershed area, disturbance, and habitat . 72 Figure 18. Frequency distribution of IBI integrity classes for sites in the Southern Plains ichthyoregion............................................. 80 Figure 19. Comparison of the IBI in level IV ecoregions and drainages relative to habitat quality and a comparison of IBI scores for small and large watersheds relative to habitat quality . 81 Figure 20. Comparison of the IBI in level IV ecoregions and drainages relative to human disturbance and a comparison of IBI scores for small and large watersheds relative to human disturbance . 82 Figure 21. Tiered aquatic life use relationships between the IBI, habitat quality, and human disturbance for sites in the Southern Plains ichthyoregion . 84 Figure 22. Biological condition gradient models for the Southern Plains ichthyoregion .................................................. 85 iv ABSTRACT The Southern Plains ichthyoregion in Alabama was sampled from 2004 through 2011 to develop data for creating and calibrating the Index of Biotic Integrity (IBI). One hundred and three sites were selected to represent a range of watershed areas and levels of human disturbance. Watershed areas at sampled sites ranged from 2.9 mi2 up to 435 mi22, with 47 percent of the watersheds <25 mi , 32 percent ranging from 25 to 100 mi22, and 21 percent >100 mi in area. Rapid habitat assessments were completed for each sample and eight measures of human disturbance were derived for each site from a geographic information system (GIS). Thirty-four candidate IBI metrics were screened for inclusion in the IBI by evaluating their relationship to the habitat assessment and human disturbance metrics. Both human disturbance metrics and habitat metrics were correlated with IBI metrics, but habitat metrics were more predictive of biological metrics and the IBI. Twelve metrics were selected for the Southern Plains IBI: number of native species, number of shiner species, number of sucker species, number of centrarchid species, number of darter+madtom species, percent as tolerant species, percent as Green Sunfish+Yellow Bullheads, percent as insectivorous cyprinids, percent as top carnivores, percent with DELT+hybrids (DELT=deformities, eroded fins, lesions, tumors), percent as simple lithophilic spawners, and percent as manipulative nonlithophilic spawners. Only habitat measures were effective in discriminating sites with good biological condition from sites with poor condition, though the degree varied with the individual IBI metric. Thirty-one percent of the sites scored in the poor to very poor range, 35 percent in the fair range, and 34 percent in the good to excellent range. The range of scores for each integrity class of the Southern Plains IBI were similar to those developed for the Plateau, Hills and Coastal Terraces, Ridge and Valley/Piedmont IBI and slightly higher than criteria developed for the Tennessee Valley IBI. The Southern Plains IBI integrity classes were applied to the USEPA biological condition gradient concept for tiered aquatic life uses to model the response of biological condition to ecosystem stress in the region. This model can be used to better assess stream aquatic life use in Southern Plains streams and provide an additional water quality screening tool for locating and defining use- impaired streams. This report is an update of an earlier version of the Southern Plains 1 ichthyoregion IBI (O’Neil and Shepard, 2009) prepared in the first phases of the statewide IBI project. INTRODUCTION The Geological Survey
Recommended publications
  • Shiloh National Military Park Natural Resource Condition Assessment
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Shiloh National Military Park Natural Resource Condition Assessment Natural Resource Report NPS/SHIL/NRR—2017/1387 ON THE COVER Bridge over the Shiloh Branch in SHIL. Photo courtesy of Robert Bird. Shiloh National Military Park Natural Resource Condition Assessment Natural Resource Report NPS/SHIL/NRR—2017/1387 Andy J. Nadeau Kevin Benck Kathy Allen Hannah Hutchins Anna Davis Andrew Robertson GeoSpatial Services Saint Mary’s University of Minnesota 890 Prairie Island Road Winona, Minnesota 55987 February 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received formal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data, and whose background and expertise put them on par technically and scientifically with the authors of the information.
    [Show full text]
  • Percidae: Etheostoma Raneyi) in Disjunct Watersheds of Northern Mississippi
    University of Mississippi eGrove Faculty and Student Publications Biology 1-1-2020 Cryptic diversity among Yazoo Darters (Percidae: Etheostoma raneyi) in disjunct watersheds of northern Mississippi Ken A. Sterling USDA Forest Service Stuart V. Nielsen Florida Museum of Natural History Andrew J. Brown Louisiana Purchase Gardens and Zoo Melvin L. Warren USDA Forest Service Brice P. Noonan University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/biology_facpubs Recommended Citation Sterling KA, Nielsen SV, Brown AJ, Warren, Jr. ML, Noonan BP. 2020. Cryptic diversity among Yazoo Darters (Percidae: Etheostoma raneyi) in disjunct watersheds of northern Mississippi. PeerJ 8:e9014 https://doi.org/10.7717/peerj.9014 This Article is brought to you for free and open access by the Biology at eGrove. It has been accepted for inclusion in Faculty and Student Publications by an authorized administrator of eGrove. For more information, please contact [email protected]. Cryptic diversity among Yazoo Darters (Percidae: Etheostoma raneyi) in disjunct watersheds of northern Mississippi Ken A. Sterling1, Stuart V. Nielsen2, Andrew J. Brown3, Melvin L. Warren, Jr.1 and Brice P. Noonan4 1 USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, Oxford, MS, United States of America 2 Division of Herpetology, Florida Museum of Natural History, Gainesville, FL, United States of America 3 Louisiana Purchase Gardens and Zoo, Monroe, LA, United States of America 4 Department of Biology, University of Mississippi, University, MS, United States of America ABSTRACT The Yazoo Darter, Etheostoma raneyi (Percidae), is an imperiled freshwater fish species endemic to tributaries of the Yocona and Little Tallahatchie rivers of the upper Yazoo River basin, in northern Mississippi, USA.
    [Show full text]
  • A Thesis Entitled Molecular, Morphological, and Biogeographic Resolution of Cryptic Taxa in the Greenside Darter Etheostoma Blen
    A Thesis Entitled Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex By Amanda E. Haponski Submitted as partial fulfillment of the requirements for The Master of Science Degree in Biology (Ecology-track) ____________________________ Advisor: Dr. Carol A. Stepien ____________________________ Committee Member: Dr. Timothy G. Fisher ____________________________ Committee Member: Dr. Johan F. Gottgens ____________________________ College of Graduate Studies The University of Toledo December 2007 Copyright © 2007 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex Amanda E. Haponski Submitted as partial fulfillment of the requirements for The Master of Science Degree in Biology (Ecology-track) The University of Toledo December 2007 DNA sequencing has led to the resolution of many cryptic taxa, which are especially prevalent in the North American darter fishes (Family Percidae). The Greenside Darter Etheostoma blennioides commonly occurs in the lower Great Lakes region, where two putative subspecies, the eastern “Allegheny” type E. b. blennioides and the western “Prairie” type E. b. pholidotum , overlap. The objective of this study was to test the systematic identity and genetic divergence distinguishing the two subspecies in areas of sympatry and allopatry in comparison to other subspecies and close relatives. DNA sequences from the mtDNA cytochrome b gene and control region and the nuclear S7 intron 1 comprising a total of 1,497 bp were compared from 294 individuals across 18 locations, including the Lake Erie basin and the Allegheny, Meramec, Obey, Ohio, Rockcastle, Susquehanna, and Wabash River systems.
    [Show full text]
  • C:\Fish\Eastern Sand Darter Sa.Wpd
    EASTERN SAND DARTER STATUS ASSESSMENT Prepared by: David Grandmaison and Joseph Mayasich Natural Resources Research Institute University of Minnesota 5013 Miller Trunk Highway Duluth, MN 55811-1442 and David Etnier Ecology and Evolutionary Biology University of Tennessee 569 Dabney Hall Knoxville, TN 37996-1610 Prepared for: U.S. Fish and Wildlife Service Region 3 1 Federal Drive Fort Snelling, MN 55111 January 2004 NRRI Technical Report No. NRRI/TR-2003/40 DISCLAIMER This document is a compilation of biological data and a description of past, present, and likely future threats to the eastern sand darter, Ammocrypta pellucida (Agassiz). It does not represent a decision by the U.S. Fish and Wildlife Service (Service) on whether this taxon should be designated as a candidate species for listing as threatened or endangered under the Federal Endangered Species Act. That decision will be made by the Service after reviewing this document; other relevant biological and threat data not included herein; and all relevant laws, regulations, and policies. The result of the decision will be posted on the Service's Region 3 Web site (refer to: http://midwest.fws.gov/eco_serv/endangrd/lists/concern.html). If designated as a candidate species, the taxon will subsequently be added to the Service's candidate species list that is periodically published in the Federal Register and posted on the World Wide Web (refer to: http://endangered.fws.gov/wildlife.html). Even if the taxon does not warrant candidate status it should benefit from the conservation recommendations that are contained in this document. ii TABLE OF CONTENTS DISCLAIMER...................................................................
    [Show full text]
  • Fish Relationships with Large Wood in Small Streams
    Amencan F~sheriesSociety Symposium 37:179-193, 2003 Fish Relationships with Large Wood in Small Streams USDA Forest Service, Southern Research Station, Department ofFisheries and Wildlife Virginia Tech, Blacksburg, Virginia 24060, USA USDA Forest Service, Southern Research Station 1000 Front Street, Oxford, Massachusetts 38655, USA Abstracf.-Many ecological processes are associated with large wood in streams, such as forming habitat critical for fish and a host of other organisms. Wood loading in streams varies with age and species of riparian vegetation, stream size, time since last disturbance, and history of land use. Changes in the landscape resulting from homesteading, agriculture, and logging have altered forest environments, which, in turn, changed the physical and biological characteristics of many streams worldwide. Wood is also important in creating refugia for fish and other aquatic species. Removing wood from streams typically results in loss of pool habitat and overall complexity as well as fewer and smaller individuals of both coldwater and warmwater fish species. The life histories of more than 85 species of fish have some association with large wood for cover, spawning (egg attachment, nest materials), and feeding. Many other aquatic organisms, such as crayfish, certain species of freshwater mus- sels, and turtles, also depend on large wood during at least part of their life cycles. Introduction Because decay rate and probability of displace- ment are a function of size, large pieces have a Large wood can profoundly influence the struc- greater influence on habitat and physical processes ture and function of aquatic habitats from head- than small pieces. In general, rootwads, branches, waters to estuaries.
    [Show full text]
  • Interim Performance Report Endangered Species
    INTERIM PERFORMANCE REPORT ENDANGERED SPECIES PROGRAM GRANT NUMBER F17AP01052 WILDLIFE PROJECTS – ALABAMA PROJECT Reproductive Characteristics and Host Fish Determination of Canoe Creek Clubshell, Pleurobema athearni (Gangloff et al. 2006) in Big Canoe Creek drainage (Etowah and St. Clair Counties), Alabama October 1, 2018 - September 30, 2020 ALABAMA DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES WILDLIFE AND FRESHWATER FISHERIES DIVISION Prepared by: Todd B. Fobian Alabama Division of Wildlife and Freshwater Fisheries PROJECT Reproductive Characteristics and Host Fish Determination of Canoe Creek Clubshell, Pleurobema athearni (Gangloff et al. 2006) in the Big Canoe Creek drainage (Etowah and St. Clair Counties), Alabama Year 1 Interim Report State: Alabama Introduction Pleurobema athearni (Gangloff et al, 2006), Canoe Creek Clubshell is currently a candidate for federally threatened/endangered status by U.S. Fish and Wildlife Service (FWS). It is Coosa Basin endemic, with historical records only known from the Big Canoe Creek (BCC) system in Alabama (Gangloff et al. 2006, Williams et al. 2008). Recent surveys completed by ADCNR and USFWS established the species is extant at six localities in the basin, with two in Upper Little Canoe Creek (ULCC), one in Lower Little Canoe Creek (LLCC), and three in BCC proper. (Fobian et al. 2017). As culture methods improve, propagated P. athearni juveniles could soon be available to support reintroduction/augmentation efforts within historical range. Little is known about Pleurobema athearni reproduction, female brooding period, or glochidial hosts. Female P. athearni are presumed short term-brooders and likely gravid from late spring to early summer (Gangloff et al. 2006, Williams et al. 2008). Glochidial hosts are currently unknown although other Mobile River Basin Pleurobema species often utilize Cyprinidae (shiners) to complete metamorphosis (Haag and Warren 1997, 2003, Weaver et al.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • Part IV: Scoring Criteria for the Index of Biotic Integrity to Monitor
    Part IV: Scoring Criteria for the Index of Biotic Integrity to Monitor Fish Communities in Wadeable Streams in the Coosa and Tennessee Drainage Basins of the Ridge and Valley Ecoregion of Georgia Georgia Department of Natural Resources Wildlife Resources Division Fisheries Management Section 2020 Table of Contents Introduction………………………………………………………………… ……... Pg. 1 Map of Ridge and Valley Ecoregion………………………………..……............... Pg. 3 Table 1. State Listed Fish in the Ridge and Valley Ecoregion……………………. Pg. 4 Table 2. IBI Metrics and Scoring Criteria………………………………………….Pg. 5 References………………………………………………….. ………………………Pg. 7 Appendix 1…………………………………………………………………. ………Pg. 8 Coosa Basin Group (ACT) MSR Graphs..………………………………….Pg. 9 Tennessee Basin Group (TEN) MSR Graphs……………………………….Pg. 17 Ridge and Valley Ecoregion Fish List………………………………………Pg. 25 i Introduction The Ridge and Valley ecoregion is one of the six Level III ecoregions found in Georgia (Part 1, Figure 1). It is drained by two major river basins, the Coosa and the Tennessee, in the northwestern corner of Georgia. The Ridge and Valley ecoregion covers nearly 3,000 square miles (United States Census Bureau 2000) and includes all or portions of 10 counties (Figure 1), bordering the Piedmont ecoregion to the south and the Blue Ridge ecoregion to the east. A small portion of the Southwestern Appalachians ecoregion is located in the upper northwestern corner of the Ridge and Valley ecoregion. The biotic index developed by the GAWRD is based on Level III ecoregion delineations (Griffith et al. 2001). The metrics and scoring criteria adapted to the Ridge and Valley ecoregion were developed from biomonitoring samples collected in the two major river basins that drain the Ridge and Valley ecoregion, the Coosa (ACT) and the Tennessee (TEN).
    [Show full text]
  • Geological Survey of Alabama Biological
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM BIOLOGICAL ASSESSMENT OF THE LITTLE CHOCTAWHATCHEE RIVER WATERSHED IN ALABAMA OPEN-FILE REPORT 1105 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Choctawhatchee, Pea and Yellow Rivers Watershed Management Authority Tuscaloosa, Alabama 2011 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 1 Acknowledgments .................................................... 3 Study area .......................................................... 3 Methods ............................................................ 3 IBI sample collection ............................................. 3 Habitat measures................................................ 8 Habitat metrics ............................................ 9 IBI metrics and scoring criteria..................................... 12 Results and discussion................................................ 17 Sampling sites and collection results . 17 Relationships between habitat and biological condition . 28 Conclusions ........................................................ 31 References cited..................................................... 33 LIST OF TABLES Table 1. Habitat evaluation form......................................... 10 Table 2. Fish community sampling sites in the Little Choctawhatchee River watershed ...................................................
    [Show full text]
  • Putnam County Conservation Element Data & Analysis
    Putnam County COMPREHENSIVE PLAN CONSERVATION ELEMENT EAR-based Amendments Putnam County 2509 Crill Avenue, Suite 300 Palatka, FL 32178 Putnam County Conservation Element Data & Analysis Putnam County Conservation Element Table of Contents Section Page I. Introduction 4 II. Inventory of Natural Resources 5 A. Surface Water Resources 5 1. Lakes and Prairies 5 2. Rivers and Creeks 8 3. Water Quality 10 4. Surface Water Improvement and Management Act (SWIM) 15 5. Analysis of Surface Water Resources 16 B. Groundwater Resources 17 1. Aquifers 17 2. Recharge Areas 18 3. Cones of Influence 18 4. Contaminated Well Sites 18 5. Alternate Sources of Water Supply 19 6. Water Needs and Sources 21 7. Analysis of Groundwater Resources 22 C. Wetlands 23 1. General Description of Wetlands 23 2. Impacts to Wetlands 25 3. Analysis of Wetlands 26 D. Floodplains 26 1. National Flood Insurance Program 26 2. Drainage Basins 26 3. Flooding 29 4. Analysis of Floodplains 30 E. Fisheries, Wildlife, Marine Habitats, and Vegetative Communities 30 1. Fisheries 30 2. Vegetative Communities 30 3. Environmentally Sensitive Lands 35 4. Wildlife Species 55 5. Marine Habitat 57 6. Analysis of Environmentally Sensitive Lands 58 F. Air Resources 58 1. Particulate Matter (PM) 58 2. Sulfur Dioxide 59 3. Nitrogen Oxides 60 4. Total Reduced Sulfur Compounds 60 5. Other Pollutants 61 6. Analysis of Air Resources 61 EAR-based Amendments 10/26/10 E-1 Putnam County Conservation Element Data & Analysis G. Areas Known to Experience Soil Erosion 62 1. Potential for Erosion 62 2. Analysis of Soil Erosion 64 H.
    [Show full text]
  • Kansas Stream Fishes
    A POCKET GUIDE TO Kansas Stream Fishes ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ By Jessica Mounts Illustrations © Joseph Tomelleri Sponsored by Chickadee Checkoff, Westar Energy Green Team, Kansas Department of Wildlife, Parks and Tourism, Kansas Alliance for Wetlands & Streams, and Kansas Chapter of the American Fisheries Society Published by the Friends of the Great Plains Nature Center Table of Contents • Introduction • 2 • Fish Anatomy • 3 • Species Accounts: Sturgeons (Family Acipenseridae) • 4 ■ Shovelnose Sturgeon • 5 ■ Pallid Sturgeon • 6 Minnows (Family Cyprinidae) • 7 ■ Southern Redbelly Dace • 8 ■ Western Blacknose Dace • 9 ©Ryan Waters ■ Bluntface Shiner • 10 ■ Red Shiner • 10 ■ Spotfin Shiner • 11 ■ Central Stoneroller • 12 ■ Creek Chub • 12 ■ Peppered Chub / Shoal Chub • 13 Plains Minnow ■ Silver Chub • 14 ■ Hornyhead Chub / Redspot Chub • 15 ■ Gravel Chub • 16 ■ Brassy Minnow • 17 ■ Plains Minnow / Western Silvery Minnow • 18 ■ Cardinal Shiner • 19 ■ Common Shiner • 20 ■ Bigmouth Shiner • 21 ■ • 21 Redfin Shiner Cover Photo: Photo by Ryan ■ Carmine Shiner • 22 Waters. KDWPT Stream ■ Golden Shiner • 22 Survey and Assessment ■ Program collected these Topeka Shiner • 23 male Orangespotted Sunfish ■ Bluntnose Minnow • 24 from Buckner Creek in Hodgeman County, Kansas. ■ Bigeye Shiner • 25 The fish were catalogued ■ Emerald Shiner • 26 and returned to the stream ■ Sand Shiner • 26 after the photograph. ■ Bullhead Minnow • 27 ■ Fathead Minnow • 27 ■ Slim Minnow • 28 ■ Suckermouth Minnow • 28 Suckers (Family Catostomidae) • 29 ■ River Carpsucker •
    [Show full text]