Cranfield University Thiruchelvam Thanaraj Understanding the Changes in Sri Lankan Mango Fruits During Postharvest Ripening

Total Page:16

File Type:pdf, Size:1020Kb

Cranfield University Thiruchelvam Thanaraj Understanding the Changes in Sri Lankan Mango Fruits During Postharvest Ripening CRANFIELD UNIVERSITY THIRUCHELVAM THANARAJ UNDERSTANDING THE CHANGES IN SRI LANKAN MANGO FRUITS DURING POSTHARVEST RIPENING CRANFIELD HEALTH Plant Science Laboratory Ph.D THESIS 2010 ii CRANFIELD UNIVERSITY Cranfield Health Plant Science Laboratory Ph.D THESIS Academic Years: 2006-2010 THIRUCHELVAM THANARAJ UNDERSTANDING THE CHANGES IN SRI LANKAN MANGO FRUITS DURING POSTHARVEST RIPENING Supervisor: Dr. Leon A. Terry February 2010 This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy © Cranfield University, 2010. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. T.Thanaraj Cranfield University Ph.D Thesis 2010 i ABSTRACT This is the first study to be carried out which describes changes in biochemical profile of both pre- and post-climacteric Sri Lankan mango fruits. Chemometric analysis revealed that spatial distribution of biochemical compounds between peel and pulp was the major discriminatory factor during maturation; whereas fully mature mango fruit contained the highest concentration of starch and lowest concentration of acids. Since these combined variables also responsible for the final quality of ripe fruit, they could be used as important parameters of horticultural maturity to inform growers to harvest Sri Lankan mango fruit at the optimum stage. In further work, mango fruits were ripened at 32oC for 4 days in order to better understand the temporal variation of major biochemical components during postharvest ripening. Mango cv. Malgova contained about three-fold higher organic acids than other cultivars tested, whilst cv. Willard had significantly higher glucose and ascorbic acid levels than cvs. Karutha Colomban and Malgova. In addition to differences in sugars and acids, mango peel had about ten-fold higher total phenolics than pulp, whereas cv. Willard pulp contained comparatively higher total phenolics than cv. Malgova. Therefore, many consumers may prefer both cvs. Willard and Karutha Colomban as being of superior flavour and quality as compared to cv. Malgova since they had comparatively higher sugar/acid ratio, antioxidant capacity and a vibrant yellow-orange colour when ripe. Malgova fruits are less suitable as a dessert mango, but are better suited to be used in pickles. Mangiferin (most abundant flavonoid in the cultivars tested) has a variety of reported health-related properties (antioxidant, antitumor and antiviral) and thus differences in biochemical composition could be used to promote sales. Ascorbic acid, and some carotenoids and phenolic compounds are also antioxidants. T.Thanaraj Cranfield University Ph.D Thesis 2010 ii In order to elucidate the temporal effects of ripening temperature on quality-related target analytes, mango fruits were either ripened at 20oC or 30oC (or a combination of the two). The aim was to identify the best ripening temperature and then potentially advise practitioners to use appropriate temperature in order to attain superior fruit quality. The sugar/acid ratio and total carotenoids increased more in fruits ripened at 30oC than 20oC whilst total phenolics and flavonoids increased in fruits ripened at 20oC, but decreased in fruits ripened at 30oC. Ripening at 20oC enhanced the overall biochemical profile, quality parameters and shelf-life of mango fruit. As a consequence, the implications of this research are that Sri Lankan mango fruit should be ripened at a lower temperature, such that current practices should change. The genotypic composition of volatiles in Sri Lankan mango fruit and the effect of postharvest storage on these volatiles has never been attempted. Using a new extraction and quantification methodology developed as part of this research, the profile of volatiles varied significantly amongst the cultivars studied. Whereas terpinolene was most abundant in cv. Willard, ocimene and myrcene were the prominent compounds measured in cvs. Karutha Colomban and Malgova, respectively. Terpinolene possess a floral, sweet and pine-like aroma, whilst ocimene and myrcene are responsible for the often quoted ‘green’ aroma of some mango fruit. Given these differences it would, therefore, be expected that cv. Willard fruits would be adjudged favourably by more consumers and perhaps be better suited for export. It is evident from the work presented herein that when comparing the biochemical profiles of cvs. Willard and Karutha Colomban to most mainstream commercial cultivars currently available on the global market that these endemic cultivars may be preferred by more consumers. T.Thanaraj Cranfield University Ph.D Thesis 2010 iii ACKNOWLEDGEMENTS I would like to express my gratitude to my supervisor Dr. Leon A. Terry for his support, guidance and advice throughout this programme. I am also grateful to Mr. Allen Hilton, Mrs. Balwinder Cook and Mrs. Rosemary Burns for technical support and Mr. Charles Marshall and Dr. Conrad Bessant for statistical and chemometric analysis. I wish to thank the World Bank aided IRQUE project (IDA Credit No. 3781 CE) of the Faculty of Agriculture, Eastern University, Sri Lanka and Cranfield University for financial support. All colleagues and friends are greatly acknowledged for their help, advice and encouragement. Last, but not least, I would like to thank all of my family members for their encouragement and moral support. My wife (Sharmila), son (Karoll Kaveen) and daughter (Miristhika) are especially thanked for their support, sacrifice and patience. T.Thanaraj Cranfield University Ph.D Thesis 2010 iv LIST OF CONTENTS ABSTRACT ................................................................................................................................ i ACKNOWLEDGEMENT ......................................................................................................... iii LIST OF CONTENTS ............................................................................................................... iv LIST OF FIGURES .................................................................................................................... x LIST OF TABLES .................................................................................................................. xix NOTATION ........................................................................................................................... xxii CHAPTER ONE: INTRODUCTION .................................................................................... 1 1.1 Background ............................................................................................................... 1 1.2 Aim and objectives .................................................................................................. 3 1.2.1 Rationale………………….………………………………………………3 1.2.2 Hypotheses……………………………………………………………….5 1.2.3 Aim ………………………………………………………………………5 1.2.4 Objectives ………………………………………………………….…….6 1.3 Structure of the thesis..…………………...…………….…………………………..6 CHAPTER TWO: LITERATURE REVIEW ....................................................................... 9 2.1 Mango ....................................................................................................................... 9 2.1.1 History, distribution, production and cultivars ........................................... 9 2.1.2 Morphological description of mango ....................................................... 13 2.1.3 Fruit development and harvest maturity ................................................... 16 2.1.4 Mango ripening and the role of ethylene in ripening and development ... 17 T.Thanaraj Cranfield University Ph.D Thesis 2010 v 2.1.4.1 Ethylene…………………………………………............…18 2.1.4.2 Ethylene biosynthesis……………………………….…...…19 2.1.4.3 Climacteric and non-climacteric fruits…………………......21 2.1.4.4 Mango fruit development stages…………………….……..22 2.1.4.5 Ethylene receptors………………………………………….23 2.1.4.6 Ethylene inhibitors………………… ………………….…24 2.1.5 Harvesting and handling of mangoes ....................................................... 25 2.1.6 Grading and packaging ............................................................................. 25 2.1.7 Storage of mango ...................................................................................... 26 2.1.8 Postharvest physiology, disorders, pests and diseases ............................. 29 2.1.9 Marketing and international trade............................................................. 29 2.1.10 Mango trade in Sri Lanka ....................................................................... 31 2.2 Biochemical profile of mango fruit ........................................................................ 34 2.2.1 Non-structural carbohydrates ................................................................... 35 2.2.1.1 Starch ...................................................................................... 35 2.2.1.2 Sugars ..................................................................................... 35 2.2.2 Structural carbohydrates ........................................................................... 37 2.2.3 Phenolic compounds ................................................................................. 38 2.2.4 Non-volatile organic acids ........................................................................ 40 2.2.5 Sugar/acid ratio ......................................................................................... 42 2.2.6 Aroma volatiles .......................................................................................
Recommended publications
  • Interaction of Putative Virulent Isolates Among Commercial Varieties Of
    Journal of Pharmacognosy and Phytochemistry 2020; 9(1): 355-360 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2020; 9(1): 355-360 Interaction of putative virulent isolates among Received: 16-11-2019 Accepted: 18-12-2019 commercial varieties of mango under protected condition Devappa V Department of Plant Pathology, College of Horticulture, UHS Devappa V, Sangeetha CG and Ranjitha N Campus, GKVK Post, Bengaluru, Karnataka, India Abstract Sangeetha CG The present study was undertaken to know the interaction of the putative Colletotrichum gloeosporioides Department of Plant Pathology, isolates from different regions of Karnataka. The cultural characteristics among the 10 isolates studied, College of Horticulture, UHS showed that isolates Cg-1, Cg-2, Cg-4, Cg-5, Cg-6, Cg-7, Cg-8, Cg-10 were circular with smooth margin Campus, GKVK Post, both on 7th and 12th day of inoculation. Excellent sporulation was observed in Cg-8 and Cg-4 isolate, Bengaluru, Karnataka, India good sporulation was observed in Cg-3 and Cg-9 isolates whereas, medium sporulation in Cg-1, Cg-2, Cg-5, Cg-6 and Cg-7 isolates and poor sporulation was observed in Cg-10 isolate. Among the varieties Ranjitha N tested, none of them showed immune and resistant reaction to the disease under shade house condition. Department of Plant Pathology, Dasheri (20%) exhibited moderately resistant reaction, Totapuri (28%) and Himayudhin (29.70%) College of Horticulture, UHS Campus, GKVK Post, exhibited moderately susceptible reaction whereas, Mallika (35%) and Kesar (47.30%) exhibited Bengaluru, Karnataka, India susceptible reaction. Alphanso (62.50%), Neelam (56.20%) and Raspuri (75%) exhibited highly susceptible reaction.
    [Show full text]
  • Analysis of Carbohydrates and Glycoconjugates by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: an Update for 2011–2012
    ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2011–2012 David J. Harvey* Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK Received 19 June 2014; accepted 15 January 2015 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/mas.21471 This review is the seventh update of the original article published text. As the review is designed to complement the earlier work, in 1999 on the application of MALDI mass spectrometry to the structural formulae, etc. that were presented earlier are not analysis of carbohydrates and glycoconjugates and brings repeated. However, a citation to the structure in the earlier work coverage of the literature to the end of 2012. General aspects is indicated by its number with a prefix (i.e., 1/x refers to such as theory of the MALDI process, matrices, derivatization, structure x in the first review and 2/x to structure x the second). MALDI imaging, and fragmentation are covered in the first part Books, general reviews, and review-type articles directly of the review and applications to various structural types concerned with, or including, MALDI analysis of carbohydrates constitute the remainder. The main groups of compound are and glycoconjugates to have been published during the review oligo- and poly-saccharides, glycoproteins, glycolipids, glyco- period are listed in Table 1. Reviews relating to more specific sides, and biopharmaceuticals. Much of this material is presented aspects of MALDI analysis are listed in the appropriate sections. in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and II.
    [Show full text]
  • Road Map for Developing & Strengthening The
    KENYA ROAD MAP FOR DEVELOPING & STRENGTHENING THE PROCESSED MANGO SECTOR DECEMBER 2014 TRADE IMPACT FOR GOOD The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the International Trade Centre concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This document has not formally been edited by the International Trade Centre. ROAD MAP FOR DEVELOPING & STRENGTHENING THE KENYAN PROCESSED MANGO SECTOR Prepared for International Trade Centre Geneva, december 2014 ii This value chain roadmap was developed on the basis of technical assistance of the International Trade Centre ( ITC ). Views expressed herein are those of consultants and do not necessarily coincide with those of ITC, UN or WTO. Mention of firms, products and product brands does not imply the endorsement of ITC. This document has not been formally edited my ITC. The International Trade Centre ( ITC ) is the joint agency of the World Trade Organisation and the United Nations. Digital images on cover : © shutterstock Street address : ITC, 54-56, rue de Montbrillant, 1202 Geneva, Switzerland Postal address : ITC Palais des Nations 1211 Geneva, Switzerland Telephone : + 41- 22 730 0111 Postal address : ITC, Palais des Nations, 1211 Geneva, Switzerland Email : [email protected] Internet : http :// www.intracen.org iii ACRONYMS AND ABBREVIATIONS Unless otherwise specified, all references to dollars ( $ ) are to United States dollars, and all references to tons are to metric tons. The following abbreviations are used : AIJN European Fruit Juice Association BRC British Retail Consortium CPB Community Business Plan DC Developing countries EFTA European Free Trade Association EPC Export Promotion Council EU European Union FPEAK Fresh Produce Exporters Association of Kenya FT Fairtrade G.A.P.
    [Show full text]
  • Economics Analysis of Mango Orchard Production Under Contract Farming in Taluka Tando Adam District Sanghar Sindh, Pakistan
    Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.5, No.11, 2015 Economics Analysis of Mango Orchard Production under Contract Farming in Taluka Tando Adam District Sanghar Sindh, Pakistan Ms. Irfana NoorMmemon *1 Sanaullah Noonari 1 Muhammad Yasir Sidhu 2 Mmuhammad Usman Arain 2 Riaz Hhussain Jamali 2 Aamir Ali Mirani 2 Akbar Khan Khajjak 2 Sajid Ali Sial 2 Rizwan Jamali 2 Abdul Hameed Jamro 2 1. Assistant Professor, Department of Agricultural Economics, Faculty of Agricultural Social Sciences, Sindh Agriculture University, Tandojam Pakistan 2. Student, Department of Agricultural Economics, Faculty of Agricultural Social Sciences,Sindh Agriculture University, Tandojam Pakistan E-mail: [email protected] Abstract The present study has been designed to investigate cost of production, and returns per acre of mango fruit. A sample of 60 mango farmers was taken purposively from various villages in taluka Tando Adam district Sanghar Sindh Pakistan. The objective was to work out benefit cost ratio and net present worth of growing mango orchard. The mango growers in study area on average per farm spent a sum of Rs. 38000.00. This included Rs. 6000.00 for loading, Rs. 16000.00 for transportation and Rs. 6000.00 of unloading respectively in the study area. The mango grower in the study area on average per acre spent a total cost of production of Rs. 203762.00 this included Rs.80000.00, Rs.28847.00, Rs.56915.00 and Rs.38000.00 on fixed cost, labour costs, Capital Inputs and marketing costs respectively in the study area.
    [Show full text]
  • Effect of Potassium Metabisulphite and Temperature on Hot Air Drying of Dasheri Mango Slices
    Science Letters ISSN 2345-5463 – An International Triannually Journal Research article 2019 | Volume 7 | Issue 2 | Pages 91-98 ARTICLE INFO Open Access Received Effect of Potassium Metabisulphite and February 23, 2019 Accepted Temperature on Hot Air Drying of May 14, 2019 Published Dasheri Mango Slices August 15, 2019 Mustapha Muhammad Nasiru1, 2*, John Diamond Raj1, Kailash 1 Chandra Yadav *Corresponding Author 1 Department of Food Process Engineering, Vaugh School of Agricultural Engineering & Mustapha Muhammad Nasiru Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, E-mail Allahabad-211007, Uttar Pradesh, India [email protected] 2 Department of Food Science and Technology, Federal University, Dutsin-Ma, Katsina Phone State, Nigeria +2348035915739 Abstract Food products are pre-treated with chemicals to dry as quick as possible, retain Keywords product quality and minimize energy cost. In this study, the effect of Dasheri mango slices temperature and potassium metabisulphite (KMS) pre-treatment on Dasheri Hot air dryer mango slices dehydrated using hot air oven was studied. Three temperatures Pre-treatment (50ºC, 60ºC and 70ºC) and KMS pre-treatment levels (0.5%, 1% and 1.5%), Potassium metabisulphite as well as control samples, were used for the study. From the dehydrating Rehydration ratio curve, it was observed that the drying of the mango slices occurred on the falling rate stage. Around 5.5%-31.7% of the final moisture was achieved on dry weight basis in the mango slices and the drying time ranges from How to Cite 390-690 min at all the drying temperatures and pre-treatment levels. The Nasiru MM, Raj JD, Yadav rehydration ratio of the mango slices ranged from 2.52 to 3.54 while KC.
    [Show full text]
  • Diversity of a Large Collection of Natural Populations of Mango (Mangifera Indica Linn.) Revealed by Agro-Morphological and Quality Traits
    diversity Article Diversity of a Large Collection of Natural Populations of Mango (Mangifera indica Linn.) Revealed by Agro-Morphological and Quality Traits Cuixian Zhang y, Dehong Xie y, Tianqi Bai, Xinping Luo, Faming Zhang, Zhangguang Ni * and Yufu Chen * Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; [email protected] (C.Z.); [email protected] (D.X.); [email protected] (T.B.); [email protected] (X.L.); [email protected] (F.Z.) * Correspondence: [email protected] (Z.N.); [email protected] or [email protected] (Y.C.) These authors contributed equally to this work. y Received: 11 December 2019; Accepted: 3 January 2020; Published: 11 January 2020 Abstract: Collection, characterization and utilization of genetic resources are crucial for developing varieties to meet current and future needs. Although mango is an economically important fruit tree, its genetic resources are still undocumented and are threatened in their natural habits. In this study, the variability of 452 mango accessions from three regions in China (Nujiang, Lancang river and Honghe) was assessed using 41 descriptors including qualitative and quantitative traits, with the aim to identify mango accessions with excellent agronomic and quality traits. To this end, descriptive and multivariate analyses were performed. Based on Shannon–Weaver diversity index, qualitative traits including pericarp color, fruit aroma, flesh color, and fruit flavor recorded the highest variability in the germplasm. Fruit related traits including pulp weight, peel weight, and fruit weight were the most diverse traits in the germplasm with a high coefficient of variation (CV > 40%). Significant differences (MANOVA test, p < 0.000) were observed among the three regions for most of the quantitative traits.
    [Show full text]
  • Mango Production in Pakistan; Copyright © 1
    MAGO PRODUCTIO I PAKISTA BY M. H. PAHWAR Published by: M. H. Panhwar Trust 157-C Unit No. 2 Latifabad, Hyderabad Mango Production in Pakistan; Copyright © www.panhwar.com 1 Chapter No Description 1. Mango (Magnifera Indica) Origin and Spread of Mango. 4 2. Botany. .. .. .. .. .. .. .. 9 3. Climate .. .. .. .. .. .. .. 13 4. Suitability of Climate of Sindh for Raising Mango Fruit Crop. 25 5. Soils for Commercial Production of Mango .. .. 28 6. Mango Varieties or Cultivars .. .. .. .. 30 7. Breeding of Mango .. .. .. .. .. .. 52 8. How Extend Mango Season From 1 st May To 15 th September in Shortest Possible Time .. .. .. .. .. 58 9. Propagation. .. .. .. .. .. .. .. 61 10. Field Mango Spacing. .. .. .. .. .. 69 11. Field Planting of Mango Seedlings or Grafted Plant .. 73 12. Macronutrients in Mango Production .. .. .. 75 13. Micro-Nutrient in Mango Production .. .. .. 85 14. Foliar Feeding of Nutrients to Mango .. .. .. 92 15. Foliar Feed to Mango, Based on Past 10 Years Experience by Authors’. .. .. .. .. .. 100 16. Growth Regulators and Mango .. .. .. .. 103 17. Irrigation of Mango. .. .. .. .. .. 109 18. Flowering how it takes Place and Flowering Models. .. 118 19. Biennially In Mango .. .. .. .. .. 121 20. How to Change Biennially In Mango .. .. .. 126 Mango Production in Pakistan; Copyright © www.panhwar.com 2 21. Causes of Fruit Drop .. .. .. .. .. 131 22. Wind Breaks .. .. .. .. .. .. 135 23. Training of Tree and Pruning for Maximum Health and Production .. .. .. .. .. 138 24. Weed Control .. .. .. .. .. .. 148 25. Mulching .. .. .. .. .. .. .. 150 26. Bagging of Mango .. .. .. .. .. .. 156 27. Harvesting .. .. .. .. .. .. .. 157 28. Yield .. .. .. .. .. .. .. .. 163 29. Packing of Mango for Market. .. .. .. .. 167 30. Post Harvest Treatments to Mango .. .. .. .. 171 31. Mango Diseases. .. .. .. .. .. .. 186 32. Insects Pests of Mango and their Control .
    [Show full text]
  • Physico-Chemical Attributes and Heavy Metal Content of Mangoes (Mangifera Indica L.) Cultivated in Different Regions of Pakistan
    Pak. J. Bot., 42(4): 2691-2702, 2010. PHYSICO-CHEMICAL ATTRIBUTES AND HEAVY METAL CONTENT OF MANGOES (MANGIFERA INDICA L.) CULTIVATED IN DIFFERENT REGIONS OF PAKISTAN SAEED AKHTAR1*, SAFINA NAZ1 , M.TUSEEF SULTAN1 , SEEMA MAHMOOD2, 3 4 MUHAMMAD NASIR AND ANWAAR AHMAD 1Department of Food and Horticultural Sciences, Bahauddin Zakariya University Multan, Pakistan 2Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Pakistan 3Department of Animal Products Technology, University of Veterinary & Animal Sciences, Lahore, Pakistan Department of Food Technology, University of Arid Agriculture, Rawalpindi, Pakistan Abstract The present study was carried out to evaluate the physico-chemical attributes and heavy metal content of 4 popular mango (Mangifera indica L.) varieties viz., Dusahri, Chaunsa, Ratol and Langra grown in Multan (MUL), Rahim Yar Khan (RYK) and Mir Pur Khas (MPK), three major districts of Pakistan. Ash content, total soluble solid (TSS), pH and titratable acidity significantly (p<0.0.5) varied among these varieties. Langra, collected from MUL showed the highest ash % with relatively lower pH and TSS. The results indicated a substantial build-up of macro (Na, K, Ca, P) and micro (Fe, Zn, Ni, Cr, Cd, and Pb) elements in the selected mango varieties. Mango varieties collected from MUL showed a higher concentration of these metals as compared to other regions which may be attributed to irrigation from industrial effluents and sewage water. This study concludes that the levels of heavy metals in tested Pakistani mango varieties are higher than the safe limits laid down by World Health Organization (WHO) and need regular monitoring both at the farm and the table.
    [Show full text]
  • Changes in the Sensory Characteristics of Mango Cultivars During the Production of Mango Purée and Sorbet
    DIFFERENCES IN SENSORY CHARACTERISTICS AMONG VARIOUS MANGO CULTIVARS IN THE FORM OF FRESH SLICED MANGO, MANGO PURÉE, AND MANGO SORBET by CHRISTIE N. LEDEKER B.S., University of Delaware, 2008 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Interdisciplinary Food Science Graduate Program Department of Human Nutrition KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 Approved by: Major Professor Dr. Delores H. Chambers Abstract Fresh mangoes are highly perishable, and therefore, they are often processed to extend shelf-life and facilitate exportation. Studying the transformation that mango cultivars undergo throughout processing can aid in selecting appropriate varieties for products. In the 1st part of this study, the flavor and texture properties of 4 mango cultivars available in the United States (U.S.) were analyzed. Highly trained descriptive panelists in the U.S. evaluated fresh, purée, and sorbet samples prepared from each cultivar. Purées were made by pulverizing mango flesh, passing it through a china cap, and heating it to 85 °C for 15 s. For the sorbets, purées were diluted with water (1:1), sucrose was added, and the bases were frozen in a batch ice cream freezer. Much of the texture variation among cultivars was lost after fresh samples were transformed into purées, whereas much of the flavor and texture variation among cultivars was lost once fresh mangoes and mango purées were transformed into sorbets. Compared to the other cultivars, Haden and Tommy Atkins underwent greater transformations in flavor throughout sorbet preparation, and processing reduced the intensities of some unpleasant flavors in these cultivars.
    [Show full text]
  • A New Approach for Analyzing and Interpreting Data on Fruit Drop In
    HORTSCIENCE 49(12):1498–1505. 2014. of the physiological fruit drop’’ when fruits have attained 10% or 30% of final fruit size, respectively. The premature fruit drop stages A New Approach for Analyzing and have been named invariably and there is also no common agreement on the number of drop Interpreting Data on Fruit Drop stages as well as the onset and duration of each. Dahshan and Habib (1985) originally in Mango described three distinct stages of premature fruit drop of mango and this classification was Michael H. Hagemann1, Malte G. Roemer, Julian Kofler, also used in the review of Singh et al. (2005). Martin Hegele, and Jens N. Wunsche€ The first stage is referred to as ‘‘post-setting Section of Crop Physiology of Specialty Crops, University of Hohenheim, drop’’ and ceases 60 d after ‘‘fruit set’’ (BBCH-scale 619). The second stage is Emil-Wolff-Str. 25, 70599 Stuttgart, Germany termed ‘‘mid-season drop,’’ characterized by Additional index words. fruit retention, intercropping, irrigation, Mangifera indica, plant a duration of 15 d with lesser intensity than growth regulator during the ‘‘post-setting drop.’’ The third stage is the ‘‘pre-harvest drop’’ with only moderate Abstract. Mango yields are frequently reduced by premature fruit drop, induced by plant losses. stresses during the fruit set period in response to unsuitable climatic or crop management These descriptions of premature fruit drop, conditions. There are varying strategies for assessing premature fruit drop, which render commonly found in the literature, represent the comparison and interpretation of published data difficult to draw general conclu- some considerable limitations.
    [Show full text]
  • Annuaire Officiel De L'union Europøenne
    Donnes à jour au 23 dcembre 2004 Annuaire officiel de l’Union europenne 2005 UNION EUROPÉENNE Avis au lecteur Cette publication parat une fois par an, en trois langues: allemand, anglais et franÅais. Son contenu reprend les organigrammes des institutions, organes, agences et organismes de l’Union europenne jusqu’au niveau des responsables des entits oprationnelles de base. Une version lectronique, actualise rgulirement, peut Þtre consulte sur l’internet via le serveur Europa (http://europa.eu.int/idea). En raison du nombre et de la complexit des intituls des fonctions à grer dans les diffrentes versions linguistiques, il ne nous est pas possible, pour l’instant, de prendre en compte les variantes fminin/masculin de celles-ci. Nous avons donc opt pour une dnomination unique à considrer comme neutre. Europe Direct est un service destin à vous aider à trouver des rponses aux questions que vous vous posez sur l’Union europenne. Un nouveau numro unique gratuit: 000 800 6 7 8 9 10 11 De nombreuses autres informations sur l’Union europenne sont disponibles sur l’internet via le serveur Europa (http://europa.eu.int). Une fiche bibliographique figure à la fin de l’ouvrage. Luxembourg: Office des publications officielles des Communauts europennes, 2005 ISBN 92-78-40259-1 Communauts europennes, 2005 Reproduction autorise, moyennant mention de la source Printed in Luxembourg IMPRIM SUR PAPIER BLANCHI SANS CHLORE Table des matires Prsentation des institutions de l’Union europenne .............................. V Renseignements pratiques ...................................................... XVII ˆ Adresses postales des institutions . ........................................ XIX ˆ Liste des btiments . ........................................................ XXIII ˆ Plans d’accs aux btiments .
    [Show full text]
  • Harmonised Product Code List
    HARMONISED PRODUCT CODE LIST HSCODE PRODUCT DESCRIPTION Head: FLORICULTURE & SEEDS Subhead: FLORICULTURE 06011000 Bulbs, Tubers, Tuberous Roots, Corms, Crowns & Rhizomes, Dormant 06012010 Bulbs Horticultural 06012021 Chicory Plants 06012022 Chicory Roots 06012090 Other Blbs,.Tubrs,Tubrus Roots Etc. 06021000 Unrooted Cuttings And Slips Of Live Plants 06022010 Edible Fruit Or Nut Trees, Grafted Or Not 06022020 Cactus 06022090 Other Trees, Shrubs And Bushes 06023000 Rhododendrons And Azaleas, Grafted Or Not 06024000 Roses, Grafted Or Not 06029010 Mushroom Spawn 06029020 Flowering Plants (Excluding Roses And Rhododendrons) 06029030 Tissue Culture Plants 06029090 Other Live Plants HARMONISED PRODUCT CODE LIST HSCODE PRODUCT DESCRIPTION 06031100 Fresh Cut Flowers And Flower Buds For Bouquets Or For Ornamental Purpose : Roses 06031200 Fresh Cut Flowers And Flower Buds For Bouquets Or For Ornamental Purpose : Carnations 06031300 Fresh Cut Flowers And Flower Buds For Bouquets Or For Ornamental Purpose : Orchids 06031400 Fresh Cut Flowers And Flower Buds For Bouquets Or For Ornamental Purpose : Chrysanthemums 06031500 Fresh Cut Flowers And Flower Buds For Bouquets Or For Ornamental Purpose : Lilies (Lilium spp.) 06031900 Other Fresh Cut Flowers And Flower Buds 06039000 Othr Cut Flwrs & Flower Buds Suitable For Boqets/For Ornmntl Purpses 06042000 Fresh Foliage, Branches And Plants, Nt Hving Flowers / Buds, And Grasses, Mosses And Lichens Fresh, Dried, Dyed 06049000 Other (Excl Fresh) Foliage, Branches And Plants, Without Flowers Buds And Grasses,
    [Show full text]