SAMTEC Automotive Software & Electronics

Total Page:16

File Type:pdf, Size:1020Kb

SAMTEC Automotive Software & Electronics SAMTEC Automotive Software & Electronics PRODUCT CATALOG 2016 AUTOMOTIVE www.samtec.de PUBLICATION DETAILS 2 CONTACT samtec automotive software & electronics gmbh Einhornstr. 10, D-72138 Kirchentellinsfurt - Germany Phone +49-7121-9937-0 Telefax +49-7121-9937-177 Internet www.samtec.de E-mail [email protected] DISCLAIMER The information contained in this catalog corresponds to the technical status at the time of printing and is passed on with the best of our knowledge. The information in this catalog is in no event a basis for warranty claims or contractual agreements concerning the described products and may especially not be deemed as warranty concerning the quality and durability pursuant to Sec. 443 German Civil Code. samtec automotive software & electronics gmbh reserves the right to make any alterations to this catalog without prior notice. The actual design of products may deviate from the information contained in the catalog if technical alterations and product improvements so require. In any cases, only the proposal made by samtec automotive software & electronics gmbh for a concrete application or product will be binding. All mentioned product names are either registered or unregistered trademarks of their respective owners. Errors and omissions excepted. This catalog has been made available to our customers and interested parties free of charge. It may not, in part or in its entirety, be reproduced in any form without our prior consent. All rights reserved. LEGAL NOTICE samtec automotive software & electronics gmbh Managing directors: René von Stillfried, Dr. Wolfgang Trier Registered office: Kirchentellinsfurt Date: March 2016 Commercial register: Stuttgart, HRB 224968 PREFACE Dear readers, 3 Many of you already know us! You deploy electronic control units, we provide you with the diagnostic solutions. Whether for ECU networks in vehicles, for test benches or for ECU production, we offer you the right products and expertise. Our customers are mainly OEM and ECU manufacturers in the automotive industry. They deploy our hard- and software products in development departments, use our residual bus simulations with concurrent diagnostics at engine test benches or assembly inspection lines, but also for holistic WLAN-based production lines and even to a complete aftermarket service tester. Since the merger with the Softing AG, our customers not only appreciate our growth as a company, but mainly our unique innovative product lines and our broad know-how in the automotive segment. With combined forces, together with our parent company, we are currently developing new products in the area of software as well as in a new concerted hardware portfolio. Our main focus here is on our expertise in the commercial vehicle sector but also in the production of vehicles and ECUs. As confirmed by our growth, our customers are confident that our tools and solutions can be holistically applied in all areas for development, production and service departments. The benefits of a single tool chain in the automotive segment of the Softing AG have been expanded through the close cooperation with our sister companies. Especially convincing to our customers and employees are the interlocking solutions of customized software applications, diagnostic run-time systems and optimized hardware products for all diagnostic use cases. We are looking forward to your visit! Yours René von Stillfried Managing director, samtec automotive software & electronics gmbh Kirchentellinsfurt, March 2016 4 TABLE OF CONTENT 5 Product Overview Hardware Features .......................................................................6 Supported Protocols ....................................................................7 Communication Technology VIN|ING 1000 ...............................................................................8 HSC Family ..................................................................................10 HSX Family ..................................................................................12 HSX Modules ..............................................................................14 HSX Heavy Duty ..........................................................................15 Resident Block Sequencer ..........................................................16 samPDU API ................................................................................17 VCF ..............................................................................................18 VCF Features and Modules ........................................................21 Diagnostics DTS .............................................................................................22 samDia ........................................................................................24 Softing TDX .................................................................................26 OTX Studio ..................................................................................28 Test Systems Electric Testing ...........................................................................29 Measurement Technology SMT .............................................................................................30 μ-Series .......................................................................................31 Engineering Services EPTS ...........................................................................................32 samtec expertise ........................................................................33 COMMUNICATION TECHNOLOGY Hardware Features 6 HARDWARE FEATURES VIN|ING 1000 HSC HSX HSX HD FlexRay/Controller - - up to 4 - CAN High-Speed/Channels up to 2 up to 4 up to 8 1 CAN Fault-Tolerant/Channels 1* 1* up to 5 - CAN Single Wire/Channels - - up to 5 - CAN Truck to Trailer/Channels - - up to 3 - K-Line ISO 9141/Channels 2 up to 4 2 2 LIN/Channels 1 - 2 - SAE J1708 / J1587 - - Datalogger - - MVCI PDU-API SAE J2534 Pass-Thru USB Interface Ethernet Interface - - WLAN Interface - - DoIP - - SD Card Slot - - - Internal Storage* - - - Digital I/O up to 2 up to 2 3 3 Analog Inputs up to 2 up to 2 3 3 Firmware Update Rugged Casing Integrated OBD Connector - - - * = optional COMMUNICATION TECHNOLOGY Supported Protocols 7 PROTOKOLLE VIN|ING 1000 HSC HSX HSX HD CAN Analyzer 1 1 1 1 CAN Direct UDS (ISO 14229) T T T/S T/S KWP 2000 on CAN (ISO 14230-3 on ISO 15765-2) T T T/S T/S ISOTP (ISO 15765-2) GMLAN X4400 T T T/S T/S SAE J1939 TP 1.6 T T T/S T/S TP 2.0 T T T/S T/S CCP T T T T XCP on CAN T T T/• T/• FLEXRAY FlexRay Direct UDS on AUTOSAR FrTP T/S UDS on ISO 10681-2 T/S UDS on OEM TP T/S AUTOSAR FrTp ISO 10681-2 XCP on FlexRay T/• K-LINE Analyzer UART Direct T KWP 2000 on K-Line (ISO 14230-3 on ISO 14230-2) T T T/S T KW 500 T T T T KW 71 / KW 1281 T T T/S T CARB T T T/S T DS2 • • • • H99B • • • • FREE • • • • OTHER J1708 / 1587 LIN 1.3 LIN 2.0 LIN 2.1 UDS on LIN UDS on Ethernet (DoIP, ISO 13400) T • XCP on Ethernet • Ethernet UDP BLOCK SEQUENCER Resident • = Feature available • = Feature planned T = Tester (Stimulator) available 1 = The CAN analyzer function is operated S = Simulator available through the CAN direct driver. Software interfaces The standardized D-PDU API (ISO 22900-2) supports the most important communication protocols: UDS (ISO 14229), KWP 2000 (ISO 14230, ISO 15765) and SAE J1939. The VCI can also be used as an alternative Pass-Thru device in accordance with SAE J2534. Together with the diagnostic tool set DTS from Softing, it is possible to implement a complete solution in accordance with MCD-3D standard ISO 22900-3 with ODX technology. COMMUNICATION TECHNOLOGY VIN|ING 1000 Compact base interface (VCI) for vehicle electronics AREAS OF APPLICATION BENEFITS ■ Mobile applications for vehicle development ■ Modern, cost-effective base VCI and service (aftermarket) ■ Multiple independent communication channels: 8 ■ Fast and secure ECU programming CAN, K-Line and LIN ■ Customer specific variants for diagnostic or service ■ Real time execution of vehicle bus protocols directly testers with own branding on the interface guarantees fast reaction time and ■ Designed for automobiles and utility vehicles reliable real time behaviour independent from the PC operating system ■ Wireless diagnostics via Bluetooth and tethered diagnostics via USB ■ Interface power supply via USB (optional) ■ Compact and robust aluminium housing with D-Sub and USB connector ■ Electrical isolation between host and vehicle interfaces The sturdy metal housing of the VIN|ING 1000 VCI is designed SOFTWARE INTERFACES for harsh manufacturing and repair shop environments as The standardized D-PDU API (ISO 22900-2) supports the most well as for customer-specific projects at ECU manufacturers. important communication protocols: UDS (ISO 14229), KWP This VCI is particularly suitable for mobile service applications 2000 (ISO 14230, ISO 15765) and SAE J1939. The VCI can also be thanks to its compact design and the fact that it offers Blue- used as an alternative Pass-Thru device in accordance to SAE tooth or USB as the interface to the PC and CAN and K-Line as J2534. Together with the diagnostic tool set DTS from Softing, the interface to the vehicle. it is possible to implement a complete solution in accordance to MCD-3D standard ISO 22900-3 with ODX technology. DIAGNOSTIC SYSTEM ARCHITECTURE The samtec VCIs are suitable for operation with the standard- MOBILITY ized D-PDU API and with the VCI Communication Framework The Bluetooth interface enables the VIN|ING 1000 for mobile (VCF). These interfaces enable complete
Recommended publications
  • J1939/J1708 to USB Adapter
    5940 South Ernest Drive Terre Haute, IN 47802 812-418-0526 wwww.simmasoftware.com Simma Software Introduces New Low Cost J1939/J1708 to USB Adapter Simma Software, Inc. 5940 South Ernest Drive Terre Haute, IN 47802 Heavy Duty Vehicle Network Adapter (VNA) Release date: November 7, 2011 March 17, 2011, Terre Haute, IN – Simma Software, Inc. announced today that they are introducing a new low cost high-performance J1939/J1708 Adapter for the heavy-duty and commercial vehicle market. The VNA product family supports dual J1939 networks and a single J1587/J1708 network. The VNA product will allow OEMs, fleets, and service providers, for heavy duty and commercial vehicles, to connect in real-time to their vehicle networks, allowing them to instantly gather critical information such as active diagnostic faults and fuel economy metrics. For connections back to the host computer, mobile computing device, or a handheld device, the VNA family supports USB, RS-232, and an Ethernet connection. To learn more, see our J1939 to USB Adapter page. Future devices planned for May of 2011 will support wireless connections such as Bluetooth and WiFi (802.11). "The industry loves our new VNA product line and its low price point. Typically devices of this class sell for around $750, but by using new technology and our proven J1939 software, we are able to reach a 5K price point as low as $74.95 depending on volume and options". said JR Simma, the President of Simma Software. About Simma Software, Inc. Simma Software, Inc. specializes in real-time embedded software for the automotive, military, and industrial automation industry.
    [Show full text]
  • Benefits of a Standardized Diagnostic Framework
    Benefits of a standardized diagnostic framework Hareesh Prakash Development Engineer The copying, distribution and utilization of this document as well as the communication of its contents to other without expressed authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or ornamental design registration. Agenda DiagnosticsDiagnostics withwith standardsstandards –– Motivation Motivation ODXODX –– ODXplorer ODXplorer MCD-3MCD-3 ServerServer –– samMCD3 samMCD3 serverserver MVCI-D-PDU-APIMVCI-D-PDU-API –– HSX HSX samtecsamtec DiagnosticDiagnostic FrameworkFramework The copying, distribution and utilization of this document as well as the communication of its contents to other without expressed authorization is prohibited. ffenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or ornamental design registration. Diagnostics with Standards Motivation 2000 - 2009 New ACC Stop & Go ALC + Navigation Strategies, Heading Control Night Vision Process, AFS I + II X-AGS 1990 - 1999 Internet Tools, … Telematics Navigation system Online Services CD-Changer Bluetooth Bus system Car Office ACC Adaptive Cruise Control Complexity Local Hazard Warning Complexity 1980 - 1989 Airbags Integrated Safety Systems DSC Dynamic Stability Control Electronic Transmission control Break-By-Wire Adaptive Transmission Control Electronic air conditioning control Steer-By-Wire Anti-roll ASR i-Drive Xenon Lights ABS Fuel cells 1970 - 1979 BMW Assist Telephone LH RDS/TMC 2 Electronic Fuel Injection Seat heating Lane change ssistant Emergency calls Electronic Ignition … Personalization Servotronic Check Control Software Update … Idle speed regulator Force Feedback Pedal Central lock … Costs Source: [2] Hudi; [4] Reichert The copying, distribution and utilization of this document as well as the communication of its contents to other without expressed authorization is prohibited.
    [Show full text]
  • SAE J1587 (2002 Standard).Pdf
    SURFACE REV. VEHICLE J1587 FEB2002 RECOMMENDED Issued 1988-01 400 Commonwealth Drive, Warrendale, PA 15096-0001 PRACTICE Revised 2002-02 Superseding J1587 JUL1998 Electronic Data Interchange Between Microcomputer Systems in Heavy-Duty Vehicle Applications 1. Scope—This SAE Recommended Practice defines a document for the format of messages and data that is of general value to modules on the data communications link. Included are field descriptions, size, scale, internal data representation, and position within a message. This document also describes guidelines for the frequency of and circumstances in which messages are transmitted. In order to promote compatibility among all aspects of electronic data used in heavy-duty applications, it is the intention of the SAE Truck and Bus Low Speed Communications Network Subcommittee (formerly Data Format Subcommittee) (in conjunction with other industry groups) to develop recommended message formats for: a. Vehicle and Component Information—This includes all information that pertains to the operation of the vehicle and its components (such as performance, maintenance, and diagnostic data). b. Routing and Scheduling Information—Information related to the planned or actual route of the vehicle. It includes current vehicle location (for example, geographical coordinates) and estimated time of arrival. c. Driver Information—Information related to driver activity. Includes driver identification, logs, (for example, DOT), driver expenses, performance, status, and payroll data. d. Freight Information—Provides data associated with cargo being shipped, picked up, or delivered. Includes freight status, overage, shortage and damage reporting, billing and invoice information as well as customer and consignee data. This document represents the recommended formats for basic vehicle and component identification and performance data.
    [Show full text]
  • SAE International® PROGRESS in TECHNOLOGY SERIES Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015
    Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry Edited by Dr. Andrew Brown, Jr. SAE International® PROGRESS IN TECHNOLOGY SERIES Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Other SAE books of interest: Green Technologies and the Mobility Industry By Dr. Andrew Brown, Jr. (Product Code: PT-146) Active Safety and the Mobility Industry By Dr. Andrew Brown, Jr. (Product Code: PT-147) Automotive 2030 – North America By Bruce Morey (Product Code: T-127) Multiplexed Networks for Embedded Systems By Dominique Paret (Product Code: R-385) For more information or to order a book, contact SAE International at 400 Commonwealth Drive, Warrendale, PA 15096-0001, USA phone 877-606-7323 (U.S. and Canada) or 724-776-4970 (outside U.S. and Canada); fax 724-776-0790; e-mail [email protected]; website http://store.sae.org. Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry By Dr. Andrew Brown, Jr. Warrendale, Pennsylvania, USA Copyright © 2011 SAE International. eISBN: 978-0-7680-7461-1 Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 400 Commonwealth Drive Warrendale, PA 15096-0001 USA E-mail: [email protected] Phone: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA) Fax: 724-776-0790 Copyright © 2011 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, distributed, or transmitted, in any form or by any means without the prior written permission of SAE.
    [Show full text]
  • Efficiently Triggering, Debugging and Decoding Low-Speed Serial Buses
    Efficiently Triggering, Debugging and Decoding Low-Speed Serial Buses Hello, my name is Jerry Mark, I am a Product Marketing Engineer at Tektronix. The following presentation discusses aspects of embedded design techniques for “Efficiently Triggering, Debugging, and Decoding Low-Speed Serial Buses”. 1 Agenda Introduction – Parallel Interconnects – Transition from Parallel to Serial Buses – High-Speed versus Low-Speed Serial Data Buses Low-Speed Serial Data Buses – Challenges – Technology Reviews – Measurement Solutions Summary 2 In this presentation we will begin by taking a glance at the transition from parallel-to-serial data and the challenges this presents to engineers. Then we will briefly review some of the most widely used low-speed serial buses in industry today and some of their key characteristics. We will turn our attention to the key measurements on these buses. Subsequently, we will present by example how the low-speed serial solution from Tektronix addresses these challenges. 2 Parallel Interconnects Traditional way to connect digital devices used parallel buses Advantages – Simple point-to-point connections – All signals are transmitted in parallel, simultaneously – Easy to capture state of bus (if you have enough channels!) – Decoding the bus is relatively easy Disadvantages – Occupies a lot of circuit board space – All high-speed connections must be the same length – Many connections limit reliability – Connectors may be very large 3 Parallel buses present all of the bits in parallel, as shown in the logic analyzer display. A parallel connection between two ICs can be as simple as point-to-point circuit board traces for each of the data lines. If you can physically probe these lines, it is easy to display the bus state on a logic analyzer or mixed signal oscilloscope.
    [Show full text]
  • Fieldbus Communication: Industry Requirements and Future Projection
    MÄLARDALEN UNIVERSITY SCHOOL OF INNOVATION, DESIGN AND ENGINEERING VÄSTERÅS, SWEDEN Thesis for the Degree of Bachelor of Science in Engineering - Computer Network Engineering | 15.0 hp | DVA333 FIELDBUS COMMUNICATION: INDUSTRY REQUIREMENTS AND FUTURE PROJECTION Erik Viking Niklasson [email protected] Examiner: Mats Björkman Mälardalen University, Västerås, Sweden Supervisor: Elisabeth Uhlemann Mälardalen University, Västerås, Sweden 2019-09-04 Erik Viking Niklasson Fieldbus Communication: Industry Requirements and Future Projection Abstract Fieldbuses are defined as a family of communication media specified for industrial applications. They usually interconnect embedded systems. Embedded systems exist everywhere in the modern world, they are included in simple personal technology as well as the most advanced spaceships. They aid in producing a specific task, often with the purpose to generate a greater system functionality. These kinds of implementations put high demands on the communication media. For a medium to be applicable for use in embedded systems, it has to reach certain requirements. Systems in industry practice react on real-time events or depend on consistent timing. All kinds are time sensitive in their way. Failing to complete a task could lead to irritation in slow monitoring tasks, or catastrophic events in failing nuclear reactors. Fieldbuses are optimized for this usage. This thesis aims to research fieldbus theory and connect it to industry practice. Through interviews, requirements put on industry are explored and utilization of specific types of fieldbuses assessed. Based on the interviews, guidelines are put forward into what fieldbus techniques are relevant to study in preparation for future work in the field. A discussion is held, analysing trends in, and synergy between, state of the art and the state of practice.
    [Show full text]
  • CAN-To-Flexray Gateways and Configuration Tools
    CAN-to-Flexray gateways Device and confi guration tools lexray and CAN net- Listing bus data traffic toring channels it is possi- power management func- Fworks will coexists in (tracing) ble to compare timing rela- tionality offers configurable the next generation or pas- Graphic and text displays tionships and identify timing sleep, wake-up conditions, senger cars. Flexray orig- of signal values problems. and hold times. The data inally designed for x-by- Interactive sending of GTI has developed a manipulation functionality wire applications gains mar- pre-defined PDUs und gateway, which provides has been extended in or- ket acceptance particular- frames two CAN and two Flexray der to enable the user to ap- ly in driver assistance sys- Statistics on nodes and ports. It is based on the ply a specific manipulation tems. Nevertheless, Flexray messages with the Clus- MPC5554 micro-controller. function several times. Also applications need informa- ter Monitor The gateway is intended to available for TTXConnexion tion already available in ex- Logging messages for be used for diagnostic pur- is the PC tool TTXAnalyze, isting CAN in-vehicle net- later replay or offline poses, generating start-up/ which allows simultaneous works. Therefore, CAN-to- evaluation sync frames, and it can be viewing of traffic, carried on Flexray gateways are nec- Display of cycle multi- used with existing software the various bus systems. essary. Besides deeply em- plexing, in-cycle rep- tools. The Flexray/CAN bedded micro-controller etition and PDUs in the The TTXConnexion by gateway by Ixxat is a with CAN and Flexray inter- analysis windows TTControl is a gateway tool configurable PC application faces, there is also a need Agilent also provides an combining data manipula- allowing Flexray messag- for gateway devices as in- analyzing tool for Flexray tion, on-line viewing, and es and signals to be trans- terface modules for system and CAN.
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 1 Bus Decode -------------------------------------------------------------- 1 Basic operation --------------------------------------------------------------------------------------------- 1 Add a Bus Decode ----------------------------------------------------------------------------------------------------- 1 Advance channel setting ---------------------------------------------------------------------------------------------- 2 Specially Bus Decode: ------------------------------------------------------------------------------------------------ 4 1-Wire ------------------------------------------------------------------------------------------------------------------- 7 3-Wire ------------------------------------------------------------------------------------------------------------------- 9 7-Segment -------------------------------------------------------------------------------------------------------------- 11 A/D Converter--------------------------------------------------------------------------------------------------------- 14 AcceleroMeter -------------------------------------------------------------------------------------------------------- 17 AD-Mux Flash -------------------------------------------------------------------------------------------------------- 19 Advanced Platform Management Link (APML) ---------------------------------------------------------------- 21 BiSS-C------------------------------------------------------------------------------------------------------------------ 23 BSD ---------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • The Path to Robust Automotive Networking
    The Path to Robust Automotive Networking www.infineon.com/automotive-networking 2 Content Introduction 4 Products Overview 7 Automotive Transceivers 8 System Basis Chips (SBCs) 12 Infineon® Embedded Power ICs 18 Microcontrollers 25 Support Tools 28 System Basis Chips (SBCs) 28 Infineon® Embedded Power ICs 29 Microcontrollers 30 Packages Overview 32 3 Introduction Automotive Networking Automotive networking technology is evolving fast, driven World leader in automotive electronics for over 40 years, by a number of key trends. With an ever-increasing num- we actively engage with many industry, standardization ber of cars on the road and rising fuel costs, demands and research organizations to drive in-vehicle network- for energy efficiency are growing. Worldwide legislation ing innovations capable of meeting today’s demands for is establishing ever-stricter caps on CO2 emissions. The energy efficiency, safety, smooth interfacing and complex- spotlight is also on functional safety. With the ISO 26262 ity management. Our broad portfolio extends from stand- automotive standard increasingly moving into applications alone transceivers through system basis chips to embed- that were not typically safety-relevant, the bar is moving ded power solutions for CAN, LIN and FlexRay protocols. upwards and we are seeing increasingly granular system We also offer microcontrollers with enhanced communica- safety concepts. At the same time, complexity is on the tion capabilities to support multiple protocols. All of our increase. Growing consumer expectations are fuelling new products are designed to deliver the exceptional levels of comfort and safety features also in low-end segments, and ESD and EMC performance required in automotive environ- this, in turn, is placing pressure on semiconductor manu- ments.
    [Show full text]
  • Chapter 1 Introduction ------6
    Table Chapter 1 Introduction ------------------------------------------------------------- 6 1.1 Acute Logic Analyzers ------------------------------------------------------------------------ 7 1.2 Packing Lists ------------------------------------------------------------------------------------ 8 1.3 Specifications ----------------------------------------------------------------------------------11 1.4 System Requirement --------------------------------------------------------------------------14 Chapter 2 Installation ------------------------------------------------------------- 15 2.1 Hardware ----------------------------------------------------------------------------------------16 2.2 Software -----------------------------------------------------------------------------------------18 2.3 Driver --------------------------------------------------------------------------------------------19 2.4 Accessories -------------------------------------------------------------------------------------20 2.5 Questions ---------------------------------------------------------------------------------------21 Chapter 3 Operations ------------------------------------------------------------- 22 3.1 Window -----------------------------------------------------------------------------------------23 3.1.1 Timing Analysis --------------------------------------------------------------------------------------------- 23 3.1.2 State Analysis ------------------------------------------------------------------------------------------------ 24 3.1.3 Mark the invalid
    [Show full text]
  • Of Fieldbus Signals Physical Integrity Testing
    RS 232 Link & MODBUS Protocol Checking the Quality of Fieldbus Signals Physical integrity testing Fieldbuses correspond to a series of electrical wires which convey information in digital form between 2 remote devices. A large number Industry of bus protocols are used in the field, in a wide variety of sectors: industry, automotive, building automation, hospitals, etc. Frequently-encountered bus protocols include KNX, DALI, CAN, LIN, FlexRay™, AS-i, Profibus®, RS 485, RS 232, ETHERNET, etc. Automotive In computer networks, the physical layer is the first layer in the OSI (Open Systems Interconnection) model and it is responsible for effective transmission of the electrical or optical signals between devices. It is useful to measure this electrical physical level in order to optimize communication and draw up a diagnosis: change of Building cable, verification of chassis-earth, termination, etc. Automation We are going to look at the details of a test on an RS232 link between a multimeter and a PC with an oscilloscope offering the physical test in accordance with the applicable standards. LOGO METRIX Checking the Quality of Fieldbus Signals Practical case: Physical integrity test of an RS232 bus between a multimeter and the COM1 port of a PC Equipment used • SCOPIX BUS OX 7204: oscilloscope bus analyser • HX0130 probe: voltage probe • HX0190 DB9 board: RS 232 communication board for training purposes • MTX 3283: 100,000-count on-site digital multimeter • SX DMM: data retrieval software for the MTX 3283 Did you know? The MODBUS protocol is a dialogue protocol based on a hierarchical structure involving several devices. Step 1 Step 2 The MTX Mobile MTX 3283 multimeter is connected using an You plug the HX0190 DB9 RS232 link, set to 9,600 bauds with the MODBUS protocol by connection board into the PC’s using the SX-DMM multimeter data processing software.
    [Show full text]
  • Surface Vehicle Standard
    SURFACE J1939-01 VEHICLE Issued 2000-09 STANDARD Submitted for recognition as an American National Standard Recommended Practice for Control and Communications Network for On-Highway Equipment Foreword—This series of SAE Recommended Practices have been developed by the Truck and Bus Control and Communications Network Subcommittee of the Truck and Bus Electrical and Electronics Committee. The objectives of the subcommittee are to develop information reports, recommended practices and standards concerned with the requirements design and usage of devices which transmit electrical signals and control information among vehicle components. The usage of these recommended practices is not limited to truck and bus applications, other applications may utilize them as long as they adhere to the recommended practices listed herein. These SAE Recommended Practices are intended as a guide toward standard practice and are subject to change so as to keep pace with experience and technical advances. As described in the parent document, SAE J1939, there are a minimum of five documents required to fully define a complete version of this network. This particular document, SAE J1939-01, identifies one such complete network by specifying the particular set of SAE J1939 documents which define the Truck and Bus Control and Communications Vehicle Network as it applies to on-highway equipment. Table of Contents 1 Scope ......................................................................................................................................2 1.1 Degree
    [Show full text]