Table S1. Stomatal Sizes (S) and Densities (D) for Species in Figs

Total Page:16

File Type:pdf, Size:1020Kb

Table S1. Stomatal Sizes (S) and Densities (D) for Species in Figs Table S1. Stomatal sizes (S) and densities (D) for species in Figs. 1, 4, and 5. Type codes correspond to the symbol key in Fig. 1. Species Type code Age, Myr S, µm2 D, mm-2 Ref. Aglaophyton major 1 395 14000 4.5 (1) Sawdonia ornata 2 395 1161 4.3 (1) Horneophyton lignieri 2 395 20700 3.0 (1) Aglayophyton major 1 395 14000 1.0 (1) Rhynia gwynne-vaughanii 2 395 8500 1.8 (1) Nothia aphylla 1 395 9975 5.5 (1) Asteroxylon mackiei 2 395 4550 21 (1) Drepanophycus spinaeformis 2 395 1734 16.6 (1) Hsua deflexa 2 395 3149 n/a (2) Sporathylacium salopense 2 395 1190 42 (3) Sporoginites exuberans 2 395 2475 11 (4) Baragwanathia abitibiensis 2 390 n/a 28 (5) Drepanophycus spinaeformis 2 390 3600 13 (6) Cooksonia pertoni 2 390 2250 n/a (6) Unknown 1 2 390 1054 n/a (6) Unknown 2 2 390 900 n/a (6) Huia gracilis 2 390 n/a 13 (7) Archaeopteris macilenta 4 385 3348 32 (8) Archaeopteris macilenta 4 385 2793 37 (8) Archaeopteris sp. 4 365 1184 n/a (9) Hsua robusta 2 355 5400 5 (10) Swillingtonia denticulata 5 310 300 787.8 (11) Blanzyopteris praedentata 3 305 1650 310 (12) Reticulopteris germarii 3 305 300 300 (13) Barthelpteris germarii 3 305 n/a 304 (13) Neuropteris obliqua 3 305 300 113 (14) Laveineopteris loshii 3 305 250 325 (14) Neuralethopteris schlehanii 3 305 360 300 (14) Neuropteris loshii 3 305 206 200 (15) Neuropteris tenuifolia 3 305 206 300 (15) Neuropteris rarinervi 3 305 300 140 (15) Neuropteris ovata var. simonii 3 305 300 90 (15) Neuropteris ovata var. sarana 3 305 360 28 (15) Neuropteris aconiensis 3 305 120 50 (15) Neuropteris flexuosa 3 305 250 120 (15) Neuropteris scheuchzeri 3 305 200 90 (15) Neuropteris macrophylla 3 305 200 65 (15) Neuropteris britannica 3 305 206 130 (15) Neuropteris subariculata 3 305 297 91 (15) Neuropteris sp. 1 3 305 404 180 (15) Neuropteris sp. 2 3 305 206 180 (15) Alethopteris sullivanti 3 305 702 472 (16) Alethopteris lesquereuxi 3 305 616 250 (17) Lepidodendron obovatum 2 305 1575 200 (18) Lepidodendron dichotomum 2 305 1000 450 (18) Lepidodendron loricatum 2 305 1125 200 (18) Senftenbergia plumosa 3 305 200 200 (19) Laveinopteris tenuifolia 3 305 450 370 (20) Cordaites principalis morph. 1 5 305 104 560 (21) Cordaites principalis morph. 2 5 305 510 104 (21) Cordaites principalis morph. 3 5 305 216 150 (21) Cordaites principalis morph. 4 5 305 540 204 (21) Pecopteris nyranensis 3 305 300 n/a (22) 1 Pecopteris aspidioides 3 305 325 n/a (22) Pecopteris polipodioides 3 305 630 n/a (22) Pecopteris miltonii 3 305 800 n/a (22) Neopteris ovata 3 305 150 343 (23) Lescuropteris genuina 3 305 400 91 (24) Schopfiastrum decussatum 3 305 425 28 (25) Karinopteris spp. 3 300 n/a 38 (26) Lebachia frondosa 5 288 n/a 309 (11) Sphenophyllum apiciserratum 6 270 900 38 (27) Sphenophyllum kaboense 6 270 840 34 (27) Callipteris changii 7 270 n/a 384 (27) Psygmophyllum multipartitum 8 270 n/a 296 (28) Gigantonoclea guizhouensis 9 270 2530 70 (28) Gigantonoclea pubescens 9 260 450 184 (28) Notophytum krauselii 5 225 1700 n/a (29) Eoginkgoites sydneyi 9 200 560 n/a (30) Glossophyllum florinii 8 200 3120 48 (31) Pagiophyllum papillatus 5 200 4510 111 (32) Brachyphyllum comancheanum 5 200 900 63 (33) Eoginkgoites davidsonii 9 200 900 30 (34) Aricycas paulae 10 200 3600 60 (35) Williamsonia nizhonia 9 200 n/a 15 (36) Cladophlebis yazzia 7 200 1296 20 (37) Nilsonia sturii 10 200 741 100 (31) Nilsonia riegeri 10 200 741 n/a (31) Nilsonia lunzensis 10 200 1540 42 (31) Nilsonia neuberi 10 200 945 117 (31) Sphenobaiera huangii 8 190 1216 48 (38) Czekanowskia nizhonia 8 175 n/a 50 (37) Brachyphyllum negevensis 5 170 n/a 40 (39) Brachyphyllum pulcher 5 170 n/a 50 (39) Pagiophyllum peregrinum 5 168 n/a 109 (40) Czekanowskia turneri 8 150 3500 24 (41) Czekanowskia nipponica 8 150 n/a 32 (41) Otozamites archangelski 9 140 5092 n/a (42) Otozamites ornatus 9 140 2652 69 (42) Otozamites parviauriculata 9 140 5022 n/a (42) Otozamites parvus 9 140 2046 n/a (42) Otozamites sanctaecrucis 9 140 2080 n/a (42) Otozamites waltonii 9 140 3000 n/a (42) Ptilophyllum antarcticum 9 140 1350 n/a (42) Ptilophyllum ghiense 9 140 1350 n/a (42) Ptilophyllum hislopi 9 140 2880 n/a (42) Ptilophyllum valvatum 9 140 3672 n/a (42) Frenelopsis varians 5 140 n/a 31 (43) Pseudofrenelopsis dalatzensis 5 140 7125 72 (44) Pseudofrenelopsis heishanensis 5 140 10000 61 (44) Pseudofrenelopsis papillosa 5 140 5829 55 (44) Pseudoctenus ornata 10 140 10000 14 (45) Sagenopteris inequilateralis 11 140 1242 40 (46) Gleichenia chaloneri 7 140 864 n/a (47) Glenrosa texensis 5 130 n/a 48 (48) Glenrosa pagiophylloides 5 130 n/a 28 (48) Tarphyderma glabra 5 120 3744 n/a (49) Tomaxellia biforme 5 120 4900 n/a (50) Pseudoctenis ornata 10 120 10000 n/a (45) Pseudofrenelopsis varians 5 110 10000 n/a (51) Pseudofrenelopsis parceramosa 5 110 6400 n/a (51) Pseudofrenelopsis intermedia 5 110 5000 n/a (51) 2 Pseudofrenelopsis nathorstiana 5 110 4526 n/a (51) Mirovia szaferi 5 110 9900 n/a (52) Mirovia gothanii 5 110 9900 n/a (52) Araucaria grandifolia 5 105 1404 40 (53) Araucaria seorsum 5 105 4700 28 (54) Araucaria lanceolatus 5 105 3800 32 (54) Araucaria acutifoliatus 5 105 3350 42 (54) Araucaria falcatus 5 105 1680 67 (54) Araucaria carinatus 5 105 4375 110 (54) Araucaria otwayensis 5 105 2808 n/a (54) Pseudofrenelopsis nathorstiana 5 100 4526 115 (51) Pseudofrenelopsis parceramosa 5 100 6400 42 (51) Watsoniocladus virginiensis 5 100 5200 46 (51) Nilsonia bohemia 10 95 400 n/a (55) Nilsonia orientalis 10 95 75 n/a (55) Jursia jirusii 10 95 759 n/a (55) Nilsoniopteris pecinovensis 9 95 900 n/a (55) Frenelopsis hogeneggeri 5 95 4900 100 (56) Frenelopsis kaneviensis 5 95 2500 30 (56) Frenelopsis veneta 5 95 8100 90 (56) Brachyphyllum patens 5 95 9000 57 (57) Pagiophyllum bladensis 5 80 594 n/a (58) Pandanites trinervis 12 80 250 144 (59) Sabalites longirachis 12 70 100 n/a (59) Decussocarpus brownei 5 50 558 116 (60) Falcatifolium australis 5 50 1080 158 (60) Dacrycarpus eocinica 5 50 972 252 (60) Prumnopitys tasmanica 5 50 1107 178 (60) Prumnopitys lanceolata 5 50 598 200 (60) Ocotea obtusifolia 12 45 616 364 (61) Knightiophyllum wilcoxianum 12 45 336 n/a (62) Knightia excelsa 12 45 616 596 (62) Sequoia chinensis 5 45 3888 60 (63) Lepidozamia hopei 10 40 2753 n/a (64) Lepidozamia peroffskyana 10 40 2394 n/a (64) Lepidozamia hopeites 10 40 2242 n/a (64) Lepidozamia faveolata 10 40 1734 n/a (64) Metasequoia milleri 5 40 600 n/a (63) Rhodophyllum pasekovicum 12 40 750 n/a (65) Rhodophyllum sinuata 12 40 750 n/a (65) Rhodophyllum sinuata var. engelhardti 12 40 1800 n/a (65) Rhodophyllum tristanioides 12 40 625 n/a (65) Rhodophyllum rossmasslerii 12 40 600 n/a (65) Rhodophyllum psidioides 12 40 750 n/a (65) Rhodophyllum sinuatum 12 40 529 n/a (65) Rhodophyllum reticulosum 12 40 1050 n/a (65) Sequoia sempevirens 5 15 3162 85 (63) Unknown Arundinoideae 13 10 26 285 (66) Unknown graminoid 13 0.037 67 155 (67) Unknown graminoid 13 0.036 81 132 (67) Unknown graminoid 13 0.035 70 112 (67) Unknown graminoid 13 0.034 74 116 (67) Unknown graminoid 13 0.032 65 100 (67) Unknown graminoid 13 0.031 54 143 (67) Unknown graminoid 13 0.031 57 109 (67) Unknown graminoid 13 0.029 60 149 (67) Unknown graminoid 13 0.029 59 108 (67) Unknown graminoid 13 0.028 68 149 (67) Unknown graminoid 13 0.027 60 156 (67) 3 Unknown graminoid 13 0.026 71 121 (67) Unknown graminoid 13 0.026 50 174 (67) Unknown graminoid 13 0.025 67 177 (67) Unknown graminoid 13 0.024 65 132 (67) Unknown graminoid 13 0.024 59 113 (67) Unknown graminoid 13 0.024 53 135 (67) Unknown graminoid 13 0.023 59 197 (67) Unknown graminoid 13 0.023 63 120 (67) Unknown graminoid 13 0.023 54 140 (67) Unknown graminoid 13 0.023 59 135 (67) Unknown graminoid 13 0.022 65 172 (67) Unknown graminoid 13 0.022 62 230 (67) Unknown graminoid 13 0.021 72 96 (67) Unknown graminoid 13 0.021 66 124 (67) Unknown graminoid 13 0.021 65 146 (67) Unknown graminoid 13 0.021 70 152 (67) Unknown graminoid 13 0.02 77 162 (67) Unknown graminoid 13 0.02 63 147 (67) Unknown graminoid 13 0.019 64 214 (67) Unknown graminoid 13 0.019 66 160 (67) Unknown graminoid 13 0.018 59 141 (67) Unknown graminoid 13 0.018 58 167 (67) Unknown graminoid 13 0.017 66 151 (67) Unknown graminoid 13 0.017 59 200 (67) Unknown graminoid 13 0.016 59 198 (67) Unknown graminoid 13 0.016 59 163 (67) Unknown graminoid 13 0.016 56 214 (67) Unknown graminoid 13 0.015 55 143 (67) Unknown graminoid 13 0.015 55 163 (67) Unknown graminoid 13 0.015 62 97 (67) Unknown graminoid 13 0.014 66 147 (67) Unknown graminoid 13 0.014 63 121 (67) Unknown graminoid 13 0.014 58 106 (67) Unknown graminoid 13 0.014 56 150 (67) Unknown graminoid 13 0.014 55 114 (67) Unknown graminoid 13 0.013 58 124 (67) Unknown graminoid 13 0.013 62 86 (67) Unknown graminoid 13 0.013 64 107 (67) Unknown graminoid 13 0.013 62 128 (67) Unknown graminoid 13 0.011 65 182 (67) Unknown graminoid 13 0.011 62 135 (67) Unknown graminoid 13 0.01 60 83 (67) Unknown graminoid 13 0.009 62 145 (67) Unknown graminoid 13 0.009 61 123 (67) Unknown graminoid 13 0.008 55 166 (67) Unknown graminoid 13 0.008 56 89 (67) Unknown graminoid 13 0.008 55 167 (67) Unknown graminoid 13 0.007 58 154 (67) Unknown graminoid 13 0.006 61 82 (67) Unknown graminoid 13 0.005 56 95 (67) Unknown graminoid 13 0.005 66 73 (67) Unknown graminoid 13 0.004 71 84 (67) Unknown graminoid 13 0.003 59 125 (67) Unknown graminoid 13 0.002 60 154 (67) Unknown graminoid 13 0.001 62 163 (67) Unknown graminoid 13 0.001 59 117 (67) Abies normanniana 5 0 1372 110 (68) Cedrus deodara 5 0 1178 85 (68) Pinus sylvestris 5 0 784 120 (68) 4 Picea pungens 5 0 2205 39 (68) Larix decidua 5 0 1092 16 (68)
Recommended publications
  • Gymnosperm Foliage from the Upper Triassic of Lunz, Lower Austria: an Annotated Check List and Identification Key
    Geo.Alp, Vol. 7, S. 19–38, 2010 GYMNOSPERM FOLIAGE FROM THE UPPER TRIASSIC OF LUNZ, LOWER AUSTRIA: AN ANNOTATED CHECK LIST AND IDENTIFICATION KEY Christian Pott1 & Michael Krings2 With 7 figures and 1 table 1 Naturhistoriska riksmuseet, Sektionen för paleobotanik, Box 50007, SE-104 05 Stockholm, Sweden; [email protected] 2 Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany; [email protected] Abstract The famous Lunz flora from Lower Austria is one of the richest and most diverse Late Triassic floras of the Northern He- misphere. The historical outcrops (mainly coal mines) are no longer accessible, but showy fossils can still be collected from natural exposures around the town of Lunz-am-See and from several of the old spoil tips. This paper presents an annotated check list with characterisations of all currently recognised gymnosperm foliage taxa in the Lunz flora. The descriptions are exemplified by illustrations of typical specimens and diagnostic features of the leaf morphology and epidermal anatomy. Moreover, a simple identification key for the taxa based on macromorphological features is provided that facilitates identification of newly collected specimens. 1. Introduction The Carnian (Late Triassic) flora from Lunz in Lo- ments (i.e. reproductive structures) among the fossils wer Austria is one of only a few well-preserved flo- (see e.g., Krasser, 1917, 1919; Kräusel, 1948, 1949, ras from the Alpine Triassic (Cleal, 1993; Dobruskina, 1953; Pott et al., 2010), the most striking feature of 1998).
    [Show full text]
  • La Flora Triásica Del Grupo El Tranquilo, Provincia De Santa Cruz, Patagonia
    Asociación Paleontológica Argentina. Publicación Especial 6 ISSN0002-7014 X Simposio Argentino de Paleobotánica y Palinología: 27-32. Buenos Aires, 30-08-99 La flora triásica del Grupo El Tranquilo, provincia de Santa Cruz, Patagonia. Parte VII: Cycadophyta Silvia GNAEDINGER' Abstract. THE TRIASSICFLORAOF THE EL TRANQUILOGROUP, SANTA CRUZ PROVINCE,PATAGONIA.PART VII. CYCADOPHYTA.Plants impressions of the Cycadopsida (sensu lato) from the Upper Triassic El Tranquilo Group are described. This plant group is limited to the genus Pseudocienis and PterophyIlum and comprí- ses: Pseudoctenis fissa Du Toit, Pseudoctenis spaiulata Du Toit and PterophyIlum muliilineaium Shirley from the Cañadon Largo Formation and Pseudoctenis sp. from the Laguna Colorada Formation. They are very scarcely represented in the flora, slightly more abundant in the Cañadón Largo Formation. Key words. Cycadophyta, Impressions, Systematics, Upper Triassic, Santa Cruz, Argentina. Palabras clave. Cycadophyta, Impresiones, Sistemática, Triásico Superior, Santa Cruz, Argentina. Introducción tados como Cycadales en tanto que Pterophyllum Brongniart por datos cuticulares de algunas de sus La presente contribución es parte de una serie de- especies se ubica en las Bennettitales. En este caso las dicada al estudio sistemático de la tafoflora del Gru- formas descriptas carecen de materia orgánica pre- po El Tranquilo, e involucra la descripción de las Cy- servada y como no hay evidencia de caracteres cutí- cadophyta. culares en este trabajo son tratadas como Cycadopsí- En la primera parte de esta serie, [alfin y Herbst da en un sentido amplio. (1995), brindan datos estratigráficos y sedimen- tológicos de las unidades portadoras de las plantas que integran el Grupo El Tranquilo (Triásico Supe- Materiales y métodos rior), provincia de Santa Cruz.
    [Show full text]
  • Embryophytic Sporophytes in the Rhynie and Windyfield Cherts
    Transactions of the Royal Society of Edinburgh: Earth Sciences http://journals.cambridge.org/TRE Additional services for Transactions of the Royal Society of Edinburgh: Earth Sciences: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Embryophytic sporophytes in the Rhynie and Windyeld cherts Dianne Edwards Transactions of the Royal Society of Edinburgh: Earth Sciences / Volume 94 / Issue 04 / December 2003, pp 397 - 410 DOI: 10.1017/S0263593300000778, Published online: 26 July 2007 Link to this article: http://journals.cambridge.org/abstract_S0263593300000778 How to cite this article: Dianne Edwards (2003). Embryophytic sporophytes in the Rhynie and Windyeld cherts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, pp 397-410 doi:10.1017/S0263593300000778 Request Permissions : Click here Downloaded from http://journals.cambridge.org/TRE, IP address: 131.251.254.13 on 25 Feb 2014 Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 397–410, 2004 (for 2003) Embryophytic sporophytes in the Rhynie and Windyfield cherts Dianne Edwards ABSTRACT: Brief descriptions and comments on relationships are given for the seven embryo- phytic sporophytes in the cherts at Rhynie, Aberdeenshire, Scotland. They are Rhynia gwynne- vaughanii Kidston & Lang, Aglaophyton major D. S. Edwards, Horneophyton lignieri Barghoorn & Darrah, Asteroxylon mackiei Kidston & Lang, Nothia aphylla Lyon ex Høeg, Trichopherophyton teuchansii Lyon & Edwards and Ventarura lyonii Powell, Edwards & Trewin. The superb preserva- tion of the silica permineralisations produced in the hot spring environment provides remarkable insights into the anatomy of early land plants which are not available from compression fossils and other modes of permineralisation.
    [Show full text]
  • Additional Observations on Zosterophyllum Yunnanicum Hsü from the Lower Devonian of Yunnan, China
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/77818/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Edwards, Dianne, Yang, Nan, Hueber, Francis M. and Li, Cheng-Sen 2015. Additional observations on Zosterophyllum yunnanicum Hsü from the Lower Devonian of Yunnan, China. Review of Palaeobotany and Palynology 221 , pp. 220-229. 10.1016/j.revpalbo.2015.03.007 file Publishers page: http://dx.doi.org/10.1016/j.revpalbo.2015.03.007 <http://dx.doi.org/10.1016/j.revpalbo.2015.03.007> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. @’ Additional observations on Zosterophyllum yunnanicum Hsü from the Lower Devonian of Yunnan, China Dianne Edwardsa, Nan Yangb, Francis M. Hueberc, Cheng-Sen Lib a*School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK b Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China cNational Museum of Natural History, Smithsonian Institution, Washington D.C. 20560-0121, USA * Corresponding author, Tel.: +44 29208742564, Fax.: +44 2920874326 E-mail address: [email protected] ABSTRACT Investigation of unfigured specimens in the original collection of Zosterophyllum yunnanicum Hsü 1966 from the Lower Devonian (upper Pragian to basal Emsian) Xujiachong Formation, Qujing District, Yunnan, China has provided further data on both sporangial and stem anatomy.
    [Show full text]
  • Coevolution of Cycads and Dinosaurs George E
    Coevolution of cycads and dinosaurs George E. Mustoe* INTRODUCTION TOXICOLOGY OF EXTANT CYCADS cycads suggests that the biosynthesis of ycads were a major component of Illustrations in textbooks commonly these compounds was a trait that C forests during the Mesozoic Era, the depict herbivorous dinosaurs browsing evolved early in the history of the shade of their fronds falling upon the on cycad fronds, but biochemical evi- Cycadales. Brenner et al. (2002) sug- scaly backs of multitudes of dinosaurs dence from extant cycads suggests that gested that macrozamin possibly serves a that roamed the land. Paleontologists these reconstructions are incorrect. regulatory function during cycad have long postulated that cycad foliage Foliage of modern cycads is highly toxic growth, but a strong case can be made provided an important food source for to vertebrates because of the presence that the most important reason for the reptilian herbivores, but the extinction of two powerful neurotoxins and carcin- evolution of cycad toxins was their of dinosaurs and the contemporaneous ogens, cycasin (methylazoxymethanol- usefulness as a defense against foliage precipitous decline in cycad popula- beta-D-glucoside) and macrozamin (beta- predation at a time when dinosaurs were tions at the close of the Cretaceous N-methylamine-L-alanine). Acute symp- the dominant herbivores. The protective have generally been assumed to have toms triggered by cycad foliage inges- role of these toxins is evidenced by the resulted from different causes. Ecologic tion include vomiting, diarrhea, and seed dispersal characteristics of effects triggered by a cosmic impact are abdominal cramps, followed later by loss modern cycads. a widely-accepted explanation for dino- of coordination and paralysis of the saur extinction; cycads are presumed to limbs.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy International Journal of Paleopathology 4 (2014) 1–16 Contents lists available at ScienceDirect International Journal of Paleopathology jo urnal homepage: www.elsevier.com/locate/ijpp Invited Commentary Plant paleopathology and the roles of pathogens and insects a,b,c,d,∗ b,1 Conrad C. Labandeira , Rose Prevec a Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA b Department of Geology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa c College of Life Sciences, Capital Normal University, Beijing, 100048, China d Department of Entomology and BEES Program, University of Maryland, College Park, MD 29742, USA a r t i c l e i n f o a b s t r a c t Article history: Plant pathologies are the consequence of physical and chemical responses by plants to invasive microor- Received 1 June 2013 ganisms or to imbalances in nutritional or environmental conditions.
    [Show full text]
  • Apa 1065.Qxd
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 42 (2): 377-394. Buenos Aires, 30-06-2005 ISSN 0002-7014 Las tafofloras triásicas de la región de los Lagos, Xma Región, Chile Rafael HERBST1, Alejandro TRONCOSO2 y Jorge MUÑOZ3 Abstract. THE TRIASSIC TAPHOFLORAS FROM THE LAKE DISTRICT, XTH REGION, CHILE. A list of the fossil plants, in some cases with their description, from the Panguipulli and Tralcán Formations, from the lo- calities Licán Ray, Punta Peters and Cerro Tralcán, from the Lake District (72º15’ S and 39º30’/39º45’ W), Xth Region, Chile, is presented. The flora is composed of 27 species of the following genera: Hepatica in- det., Neocalamites, Asterotheca, Cladophlebis, Gleichenites, Dicroidium, Johnstonia, Lepidopteris, Pterophyllum, Pseudoctenis, Sphenobaiera, Ginkgoites, Phoenicopsis, Rissikia, Heidiphyllum, Gen. et sp. indet., Linguifolium and Taeniopteris; a new species of Astrerotheca and two new species of Pterophyllum are also described. The quantitative composition of the three localities is analyzed showing that they are quite different, in spite of being of similar age and geographically close to each other; it is suggested that the difference is basically paleoenvironmental. Resumen. Se da a conocer la composición florística y la descripción de algunas especies de tres tafofloras de la región de los Lagos del sur de Chile, provenientes de las localidades de Licán Ray, Punta Peters y cerro Tralcán (72°15’ S - 39°30’/39°45’ O), que forman parte de las Formaciones Panguipulli, las dos pri- meras, y Tralcán, la última. La flora se compone de 27 especies incluidas en los géneros: Hepatica indet., Neocalamites, Asterotheca, Cladophlebis, Gleichenites, Dicroidium, Johnstonia, Lepidopteris, Pterophyllum, Pseudoctenis, Sphenobaiera, Ginkgoites, Phoenicopsis, Rissikia, Heidiphyllum, Gen.
    [Show full text]
  • © in This Web Service Cambridge University
    Cambridge University Press 978-0-521-88715-1 - An Introduction to Plant Fossils Christopher J. Cleal & Barry A. Thomas Index More information Index Abscission 33, 76, 81, 82, 119, Antarctica 25, 26, 93, 117, 150, 153, Baiera 169 150, 191 209, 212 Balme, Basil 24 Acer 195, 198, 216 Antheridia 56, 64, 88 Bamboos 197 Acitheca 49, 119 Antholithus 31 Banks, Harlan P. 28 Acorus 194 Araliaceae 191 Baragwanathia 28, 43, 72, 74 Acrostichum 129, 130 Araliosoides 187 Bark 67 Actinocalyx 190 Araucaria 157, 159, 160, 164, 181 Barsostrobus 76 Adpressions 3, 4, 9, 12, 38 Araucariaceae 163, 212, 214 Barthel, Manfred 21 Agathis 157 Araucarites 163 Bean, William 29 Agavaceae 192 Arber, Agnes 19, 65 Beania 30 Agave 193 Arber, E. A. Newell 18, 19, 30 ReconstructionofBeania-tree169,172 Aglaophyton 64 Arcellites 133 Bear Island 94, 95 Agriculture 220 Archaeanthus 187, 189 Beck, Charles 69 Alethopteris 46, 144, 145 Archaeocalamitaceae 97, 205 Belgium 19, 22, 39, 68, 112, 129 Algae 55 Archaeocalamites 9799, 100, 105 Belize 125 Alismataceae 194 Archaeopteridales 69 Bennettitales 33, 157, 170, 171, Allicospermum 165 Archaeopteris 39, 40, 68, 69, 71, 153 172174, 182, 211214 Allochthonous assemblages 3, 11 Archaeosperma 137, 139 Bennie, James 24 Alnus 24, 179, 216 Archegonia 56, 135, 137 Bentall, R. 24 Aloe 192 Arctic-Alpine flora 219 Bertrand, Paul 18 Alternating generations 1, 5557, 85 Arcto-Tertiary flora 117, 215, 216 Bertrandia 114 Amerosinian Flora 96, 97, 205, Argentina 3, 77, 130, 164 Betulaceae 179, 195, 215 206, 208 Ariadnaesporites 132 Bevhalstia 188 Amber, preservation in 7, 42, 194 Arnold, Chester 28, 29, 67 Binney, Edward 21 Anabathra 81 Arthropitys 97, 101 Biomes 51 Andrews, Henry N.
    [Show full text]
  • <I>Thismia Aurantiaca
    Blumea 63, 2018: 135–139 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2018.63.02.08 Thismia aurantiaca sp. nov. (section Rodwaya, Thismiaceae): First record of the family from Andaman and Nicobar Islands, India with a new species V.S. Hareesh1, J.P. Alappatt 2, M. Sabu1 Key words Abstract Thismia is a mycoheterotrophic genus in the family Thismiaceae. We report a new family record for Andaman and Nicobar Islands and a new species for India. A detailed description along with conservation assess- Andaman Islands ment, colour photos, distribution map, and key to the species from India are provided. new record new species Published on 5 September 2018 Rodwaya Thismia Thismiaceae INTRODUCTION of stamens free from the annulus, but from which it differs in several features. Hence, it is here described as new species Thismia Griff. is a poorly studied mycoheterotrophic genus (Mar in sect. Rodwaya, with colour plates, distribution map, and a & Saunders 2015) belonging to the family Thismiaceae with key to the species from India. 62 taxa (WCSPF 2017) mainly distributed in warm temperate and tropical Asia, eastern and south-eastern Australia, New Thismia aurantiaca Hareesh & M.Sabu, sp. nov. — Fig. 1, 2; Zealand and the neotropics (Govaerts et al. 2007, Kumar et Map 1 al. 2017). The major taxonomic characters used for species delimitation are the mitre, mitral appendages, perianth lobes This species is similar to T. rodwayi but differs from the latter in having and anther morphology, while Merckx & Smets (2014) showed outer perianth lobes 5 times larger than inner perianth lobes (vs sub-equal), that perianth appendages seem to have evolved multiple times broadly triangular recurved outer perianth lobes (vs spathulate, up-curved) independently.
    [Show full text]
  • The Classification of Early Land Plants-Revisited*
    The classification of early land plants-revisited* Harlan P. Banks Banks HP 1992. The c1assificalion of early land plams-revisiled. Palaeohotanist 41 36·50 Three suprageneric calegories applied 10 early land plams-Rhyniophylina, Zoslerophyllophytina, Trimerophytina-proposed by Banks in 1968 are reviewed and found 10 have slill some usefulness. Addilions 10 each are noted, some delelions are made, and some early planls lhal display fealures of more lhan one calegory are Sel aside as Aberram Genera. Key-words-Early land-plams, Rhyniophytina, Zoslerophyllophytina, Trimerophytina, Evolulion. of Plant Biology, Cornell University, Ithaca, New York-5908, U.S.A. 14853. Harlan P Banks, Section ~ ~ ~ <ltm ~ ~-~unR ~ qro ~ ~ ~ f~ 4~1~"llc"'111 ~-'J~f.f3il,!"~, 'i\'1f~()~~<1I'f'I~tl'1l ~ ~1~il~lqo;l~tl'1l, 1968 if ~ -mr lfim;j; <fr'f ~<nftm~~Fmr~%1 ~~ifmm~~-.mtl ~if-.t~m~fuit ciit'!'f.<nftmciit~%1 ~ ~ ~ -.m t ,P1T ~ ~~ lfiu ~ ~ -.t 3!ftrq; ~ ;j; <mol ~ <Rir t ;j; w -.m tl FIRST, may I express my gratitude to the Sahni, to survey briefly the fate of that Palaeobotanical Sociery for the honour it has done reclassification. Several caveats are necessary. I recall me in awarding its International Medal for 1988-89. discussing an intractable problem with the late great May I offer the Sociery sincere thanks for their James M. Schopf. His advice could help many consideration. aspiring young workers-"Survey what you have and Secondly, may I join in celebrating the work and write up that which you understand. The rest will the influence of Professor Birbal Sahni. The one time gradually fall into line." That is precisely what I did I met him was at a meeting where he was displaying in 1968.
    [Show full text]
  • An Alternative Model for the Earliest Evolution of Vascular Plants
    1 1 An alternative model for the earliest evolution of vascular plants 2 3 BORJA CASCALES-MINANA, PHILIPPE STEEMANS, THOMAS SERVAIS, KEVIN LEPOT 4 AND PHILIPPE GERRIENNE 5 6 Land plants comprise the bryophytes and the polysporangiophytes. All extant polysporangiophytes are 7 vascular plants (tracheophytes), but to date, some basalmost polysporangiophytes (also called 8 protracheophytes) are considered non-vascular. Protracheophytes include the Horneophytopsida and 9 Aglaophyton/Teruelia. They are most generally considered phylogenetically intermediate between 10 bryophytes and vascular plants, and are therefore essential to elucidate the origins of current vascular 11 floras. Here, we propose an alternative evolutionary framework for the earliest tracheophytes. The 12 supporting evidence comes from the study of the Rhynie chert historical slides from the Natural History 13 Museum of Lille (France). From this, we emphasize that Horneophyton has a particular type of tracheid 14 characterized by narrow, irregular, annular and/or, possibly spiral wall thickenings of putative secondary 15 origin, and hence that it cannot be considered non-vascular anymore. Accordingly, our phylogenetic 16 analysis resolves Horneophyton and allies (i.e., Horneophytopsida) within tracheophytes, but as sister 17 to eutracheophytes (i.e., extant vascular plants). Together, horneophytes and eutracheophytes form a 18 new clade called herein supereutracheophytes. The thin, irregular, annular to helical thickenings of 19 Horneophyton clearly point to a sequential acquisition of the characters of water-conducting cells. 20 Because of their simple conducting cells and morphology, the horneophytophytes may be seen as the 21 precursors of all extant vascular plant biodiversity. 22 23 Keywords: Rhynie chert, Horneophyton, Tracheophyte, Lower Devonian, Cladistics.
    [Show full text]
  • Devonian As a Time of Major Innovation in Plants and Their Communities
    1 Back to the Beginnings: The Silurian-­ 2 Devonian as a Time of Major Innovation 15 3 in Plants and Their Communities 4 Patricia G. Gensel, Ian Glasspool, Robert A. Gastaldo, 5 Milan Libertin, and Jiří Kvaček 6 Abstract Silurian, with the Early Silurian Cooksonia barrandei 31 7 Massive changes in terrestrial paleoecology occurred dur- from central Europe representing the earliest vascular 32 8 ing the Devonian. This period saw the evolution of both plant known, to date. This plant had minute bifurcating 33 9 seed plants (e.g., Elkinsia and Moresnetia), fully lami- aerial axes terminating in expanded sporangia. Dispersed 34 10 nate∗ leaves and wood. Wood evolved independently in microfossils (spores and phytodebris) in continental and 35AU2 11 different plant groups during the Middle Devonian (arbo- coastal marine sediments provide the earliest evidence for 36 12 rescent lycopsids, cladoxylopsids, and progymnosperms) land plants, which are first reported from the Early 37 13 resulting in the evolution of the tree habit at this time Ordovician. 38 14 (Givetian, Gilboa forest, USA) and of various growth and 15 architectural configurations. By the end of the Devonian, 16 30-m-tall trees were distributed worldwide. Prior to the 17 appearance of a tree canopy habit, other early plant groups 15.1 Introduction 39 18 (trimerophytes) that colonized the planet’s landscapes 19 were of smaller stature attaining heights of a few meters Patricia G. Gensel and Milan Libertin 40 20 with a dense, three-dimensional array of thin lateral 21 branches functioning as “leaves”. Laminate leaves, as we We are now approaching the end of our journey to vegetated 41 AU3 22 now know them today, appeared, independently, at differ- landscapes that certainly are unfamiliar even to paleontolo- 42 23 ent times in the Devonian.
    [Show full text]