© in This Web Service Cambridge University

Total Page:16

File Type:pdf, Size:1020Kb

© in This Web Service Cambridge University Cambridge University Press 978-0-521-88715-1 - An Introduction to Plant Fossils Christopher J. Cleal & Barry A. Thomas Index More information Index Abscission 33, 76, 81, 82, 119, Antarctica 25, 26, 93, 117, 150, 153, Baiera 169 150, 191 209, 212 Balme, Basil 24 Acer 195, 198, 216 Antheridia 56, 64, 88 Bamboos 197 Acitheca 49, 119 Antholithus 31 Banks, Harlan P. 28 Acorus 194 Araliaceae 191 Baragwanathia 28, 43, 72, 74 Acrostichum 129, 130 Araliosoides 187 Bark 67 Actinocalyx 190 Araucaria 157, 159, 160, 164, 181 Barsostrobus 76 Adpressions 3, 4, 9, 12, 38 Araucariaceae 163, 212, 214 Barthel, Manfred 21 Agathis 157 Araucarites 163 Bean, William 29 Agavaceae 192 Arber, Agnes 19, 65 Beania 30 Agave 193 Arber, E. A. Newell 18, 19, 30 ReconstructionofBeania-tree169,172 Aglaophyton 64 Arcellites 133 Bear Island 94, 95 Agriculture 220 Archaeanthus 187, 189 Beck, Charles 69 Alethopteris 46, 144, 145 Archaeocalamitaceae 97, 205 Belgium 19, 22, 39, 68, 112, 129 Algae 55 Archaeocalamites 9799, 100, 105 Belize 125 Alismataceae 194 Archaeopteridales 69 Bennettitales 33, 157, 170, 171, Allicospermum 165 Archaeopteris 39, 40, 68, 69, 71, 153 172174, 182, 211214 Allochthonous assemblages 3, 11 Archaeosperma 137, 139 Bennie, James 24 Alnus 24, 179, 216 Archegonia 56, 135, 137 Bentall, R. 24 Aloe 192 Arctic-Alpine flora 219 Bertrand, Paul 18 Alternating generations 1, 5557, 85 Arcto-Tertiary flora 117, 215, 216 Bertrandia 114 Amerosinian Flora 96, 97, 205, Argentina 3, 77, 130, 164 Betulaceae 179, 195, 215 206, 208 Ariadnaesporites 132 Bevhalstia 188 Amber, preservation in 7, 42, 194 Arnold, Chester 28, 29, 67 Binney, Edward 21 Anabathra 81 Arthropitys 97, 101 Biomes 51 Andrews, Henry N. 22 Arthroxylon 97, 101 Biostratigraphy 13, 24, 5052 Androstrobus 172 Artis, Edmund 16, 17, 21 Biozones 50, 81 Anemia 121 Artisia 153, 155 Black Hills, Dakota 33 Aneurophytales 69, 138 Artisophyton 114 Blechnaceae 127, 129 Angara Flora 27, 75, 77, 150, 205, Asphodelacea 192 Botrychium 114, 122 208, 211 Aspidistes 115, 127, 128, 129 Botryopteridaceae 114 Angaraodendron 77 Aspidium 128 Botryopteris 115 Angarophloios 77 Asplenium1181 Bowenia 168 Angiopteris 113, 121 Asteliaceae 192 Bower, Frederick Orpen 1918 Angiosperms 1, 10, 3335, 67, Asterochlaena 108 Bowerbank, James Scott 34 128, 130, 132, 165, 170, Asterophyllites 100, 101, 102, 103, 105 Brachyphyllum 162 174, 175, 178201, 203, Asterothecaceae 112 Bracts 163, 164, 180 213, 214 Asteroxylon 43, 64, 73, 74, 75 Brandon Tertiary lignite 34 Definition of 178180 Atmosphere, composition of 13, 55 Brasilodendron 77 Earliest 184 Australia 25, 26, 28, 43, 74, 93, Brazil 77, 108, 117, 130, 196 Leaves 182, 185 102, 108, 117, 121, 150, British Geological Survey 18 Possible ancestors of 152, 153, 174, 153, 168, 196, 203, 207, British Isles 53, 54, 219 175, 182183 209, 211 British National Coal Board 2425 Anisophylly 77 Austria 173, 174 Brongniart, Adolphe 1516, 25, 48 Ankyropteris 108, 115 Authigenic mineralizations 4, 7, 155 Bryophyta 1, 11, 57, 59, 63, 64 Annularia 99, 101, 102, 103 Autochthonous assemblages 2, 11 Buckland, William 30 Anomozamites 171 Autunia 149 Bulbils 106 Anonaceae 199 Axelrodia 185 Bumbudendron 77 Anonaspermum 199 Azolla 130, 133 Bundle sheaths 196 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88715-1 - An Introduction to Plant Fossils Christopher J. Cleal & Barry A. Thomas Index More information INDEX 231 Buriadiaceae 161 Cedrelospermum 195 Cordyline 192 Butterworth, Mavis 24 Cedrus 160 Cornetipollis 186 Cenozoic 10, 92, 163, 165, 192201 Cortex 58, 63, 85, 144, 148 C4/C3, photosynthesis 197 Central Asia 186 Corylus 200 Calamites3,49,99,100,101,102,104,206 Cereals 197 Corynepteris 114, 120 Calamocarpon 101, 104 Cercidophyllaceae 215 Corystosperms see Umkomasiales Calamodendron 97, 101 Cerro Cuadrado 164 Crane, Peter R. 35 Calamophyton 93, 108, 112 Chandler, Marjory 34 Craspedodromophyllum 202 Calamostachyaceae 99, 101, 102, Charophytes 1, 59 Crepet, William L. 33 104105 Charcoal see Fusian Cretaceous Period 4, 11, 25, 30, 33, Calamostachys 103, 104 Cheilanthes 107 3435, 42, 43, 74, 77, 92, 106, Calder, Mary 33 Cheirolepidiaceae 164, 165, 166, 180, 121, 122, 125, 126, 128, 130, Callipteris 149 211, 212 132, 133, 157, 159, 164, 167, Callistophytales 138, 139, 142, Chibotium 108 169, 173, 174, 183, 186194, 147149, 206 Chile 121 212214, 215 Callistophyton 147 China 7, 20, 22, 26, 37, 77, 90, 98, 117, Cretaceous-Tertiary extinction 35, Callixylon 39, 68, 69 121, 142, 149, 150, 158, 165, 169, 163, 170, 174, 209, 214215 Callospermarion 148 171, 203, 204, 206, 208, 209, 211 Crookall, Robert 18, 19 Cambium 57 Chloranthaceae 189 Cross, Aureal 22 Vascular cambium 67, 180 Chloranthistemon 189 Crossotheca 114 Canada 6, 9, 11, 28, 31, 36, 43, 54, 67, Christensenia 112 Crossothecaceae 114 74, 77, 81, 87, 97, 115, 117, 121, Chromosomes 55 Crossozamia 171 122, 126, 128, 132, 133, 146, 147, Cladophlebis 117 Crow, Francis 34 194, 215 Cladoxylales 93, 95, 97, 100, 106 Croziers of fern fronds 118 Canary Islands 107, 159, 216 Clarno Nut Bed 197, 200 Cryptospores 59 Capitulum 152 Classopollis 164 Culcita 125 Capulisporites 132 Clathropteris 125 Culmitschia 161, 162 Carboniferous Period 6, 7, 1620, 21, Club mosses see Lycophyta Cupressaceae 162, 163, 164, 30, 31, 47, 49, 80, 90, 92, 102, 110, Coal and peat 3, 9, 11, 13, 1620, 26, 213, 215 115, 116, 153, 183, 191, 204208 108, 111, 117, 154, 209, 212, 217 Cupressinocladus 162 Mississippian Subperiod 4, 8, 23, Coal petrology 2324 Cupressus 162 7577, 84, 95, 9799, 106108, Coal Forests 12, 50, 60, 80, 86, 147, Cupules 23, 135, 137, 141, 174, 175 113, 139141, 142, 205, 207 205, 206, 207 Curation and documentation 52 PennsylvanianSubperiod3,4,6,8,9, Coal balls 7, 9, 2122, 41 Cuticles and epidermis 6, 11, 21, 30, 11, 12, 25, 26, 36, 39, 42, 44, 47, 59, Cocos 193 31, 4041, 58, 62, 63, 72, 75, 83, 64, 68, 70, 72, 77, 78, 80, 81, 82, 86, Coleochaete 59 86, 143, 145, 146, 155, 162, 170, 87, 88, 90, 95, 96, 97, 98, 99, 101, Collinson, Margaret E. 34, 36 172, 187, 212 103, 110112, 113, 115, 117, 119, Combreteae 188 Cyathea 126 120, 121, 138, 139, 141149, 152, Compressions 4 Cyatheaceae 126, 212 153154, 155, 158, 163, 205208 Cones 103, 104, 157, 160161, 163, Cyathocarpus 49, 110111, 118, 119 Carboniferous Congresses 20, 36 164, 165, 166, 168, 170, 176, 204 Cycadaceae 169 Carpels 174, 185, 187 Conifers 3, 11, 25, 30, 33, 42, 67, Cycadales 25, 30, 135, 137, 146, 157, Carruthers, William 30 82, 128, 135, 137, 148, 153, 166170, 171, 182, 205, 208, 209, Caryophyllaceae 191 157164, 166, 170, 171, 180, 211213 Castanea 179 181, 183, 191, 194, 205, 206, Cycadeoidea 30 Casts 6, 9 208, 209, 211, 215 Cycadofilices 138 Pith casts 7 Coniopteris 126, 127 Cycadophyte foliage 170 Prepared 4244 Continental drift 26, 35, 150 Cycas 166169 Catalogues 36 Cookson, Isabel 28 Cyclogranisporites 43, 75 Caulopteris 114 Cooksonia 2829, 6063, 85, 86 Cyclopteris 143 Caytonanthus 174 Cordaitanthales 7, 25, 148, 153154, Cyclostigma 45, 77, 79 Caytonia 31, 174, 175 155, 160, 166, 209 Cynepteris 11 Caytoniales 31, 153, 157, 174175, Cordaites 155, 156 Cystosporites 43, 75, 89 182, 214 Cordaitanthus 155 Czech Republic 59, 61, 77, 86, 198 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88715-1 - An Introduction to Plant Fossils Christopher J. Cleal & Barry A. Thomas Index More information 232 INDEX Daber, Rudolf 28 Elatides 163 Fraxinopsis 176 Damage by animals and fungi 10, 11 Elatocladus 162 Friis, Else Marie 35 Danaea 113 Elkinsia 137, 139 Fronds 106, 110, 111, 114, 116, Danaeopteris 113 Elkinsiaceae 139141 119, 123, 138, 139, 142, 143, Darrah, William C. 18, 19, 22 Embryophytes 1 144, 145, 146, 148, 149, 166, Darwin, Charles 3, 10, 16 Embryos 1, 56, 135, 137 169, 171, 173 Davallia 128 Embryo sac 135, 137 Frond architecture 143 Davies, David 18, 19 Emporia 161, 163 Fruits 196, 197, 199, 200, 201 Dawson, John William 28 Eneste 200 Fungi 1 Dechellyia 176 Engelhardia 198 Furcula 185197 Deciduous 191, 215, 216 England 4, 8, 11, 16, 2122, 2324, 31, Fusain 10, 13, 158, 182, 188, 189 Delevoryas, Theodore 33 43, 44, 45, 50, 61, 62, 67, 77, 78, Dennstaedtiaceae 128, 129 79, 80, 82, 84, 85, 86, 88, 101, Galium 96, 97 Dennstaedtiopsis 129 103, 113, 118, 121, 127, 128, 129, Gametes 56, 135, 137 Dernbachia 108 130, 132, 133, 140, 147, 148, 155, Gametophytes 1, 5657, 64, 71, 119, Desert conditions 212 158, 159, 163, 165, 166, 170, 171, 135, 136, 137 Deviacer 200 173, 193, 197, 199, 201 Gangamopteris 152 Devonian Period 7, 8, 10, 19, 27, 28, Eoantha 176 GaspØ, New Brunswick 28 29, 31, 42, 43, 45, 59, 60, 61, Epacridaceae 199 Geinitzia 162 6369, 70, 7274, 75, 76, 77, 79, Ephedra 175, 178 Geoconservation 5254 86, 9396, 106108, 112, 135, Epidermis see Cuticles British Institute for Geological 137, 139, 140, 203204, 205 Equisetaceae 104105 Conservation 54 Diaphorodendron 81 Equisetisporites 186 Geological Conservation Review 53 Dicksonia 108, 126 Equisetites 105 Geoparks 54 Dicksoniaceae 125126 Equisetum 93, 94, 97, 100, 101, 102, 104 GEOSITES 54 Dicksonites 148 Eremopteris 148 World Heritage sites 54 Dicotyledons 180, 194 Erobacia 126 Germany 6, 15, 19, 24, 42, 45, 64, 73, Dicranopteris 125 Escalloniaceae 188 77, 78, 90, 98, 117, 123, 142, 149, Dicroidium 175, 211 Esgueiria 188 161, 163, 167 Dijkstra, Sijben Jan 24 Eskdalia 62, 77, 84, 86 Ghana 107, 193 Dinophyton 176 Estinnophyton 43, 74, 75 Gillespie, William 36 Dioecious 153, 164, 166, 176 Eucommiidites 185 Ginkgo 153, 165, 167, 169, 175 Diphasiatrum 72 Eusphenopteris
Recommended publications
  • Gymnosperm Foliage from the Upper Triassic of Lunz, Lower Austria: an Annotated Check List and Identification Key
    Geo.Alp, Vol. 7, S. 19–38, 2010 GYMNOSPERM FOLIAGE FROM THE UPPER TRIASSIC OF LUNZ, LOWER AUSTRIA: AN ANNOTATED CHECK LIST AND IDENTIFICATION KEY Christian Pott1 & Michael Krings2 With 7 figures and 1 table 1 Naturhistoriska riksmuseet, Sektionen för paleobotanik, Box 50007, SE-104 05 Stockholm, Sweden; [email protected] 2 Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany; [email protected] Abstract The famous Lunz flora from Lower Austria is one of the richest and most diverse Late Triassic floras of the Northern He- misphere. The historical outcrops (mainly coal mines) are no longer accessible, but showy fossils can still be collected from natural exposures around the town of Lunz-am-See and from several of the old spoil tips. This paper presents an annotated check list with characterisations of all currently recognised gymnosperm foliage taxa in the Lunz flora. The descriptions are exemplified by illustrations of typical specimens and diagnostic features of the leaf morphology and epidermal anatomy. Moreover, a simple identification key for the taxa based on macromorphological features is provided that facilitates identification of newly collected specimens. 1. Introduction The Carnian (Late Triassic) flora from Lunz in Lo- ments (i.e. reproductive structures) among the fossils wer Austria is one of only a few well-preserved flo- (see e.g., Krasser, 1917, 1919; Kräusel, 1948, 1949, ras from the Alpine Triassic (Cleal, 1993; Dobruskina, 1953; Pott et al., 2010), the most striking feature of 1998).
    [Show full text]
  • International Organisation of Palaeobotany IOP NEWSLETTER
    INTERNATIONAL UNION OF BIOLOGIC A L S C IENC ES S ECTION FOR P A L A EOBOTANY International Organisation of Palaeobotany IOP NEWSLETTER 110 August 2016 CONTENTS FROM THE SECRETARY/TREASURER IPC XIV/IOPC X 2016 IOPC 2020 IOP MEMBERSHIP IOP EXECUTIVE COMMITTEE ELECTIONS IOP WEBMASTER POSITION WHAT HAPPENED TO THE OUPH COLLECTIONS? THE PALAEOBOTANY OF ITALY UPCOMING MEETINGS CALL FOR NEWS and NOTES The views expressed in the newsletter are those of its correspondents, and do not necessarily reflect the policy of IOP. Please send us your contributions for the next edition of our newsletter (June 2016) by M ay 30th, 2016. President: Johanna Eder-Kovar (G ermany) Vice Presidents: Bob Spicer (Great Britain), Harufumi Nishida (Japan), M ihai Popa (Romania) M embers at Large: Jun W ang (China), Hans Kerp (Germany), Alexej Herman (Russia) Secretary/Treasurer/Newsletter editor: M ike Dunn (USA) Conference/Congress Chair: Francisco de Assis Ribeiro dos Santos IOP Logo: The evolution of plant architecture (© by A. R. Hemsley) I OP 110 2 August 2016 FROM THE In addition, please send any issues that you think need to be addressed at the Business SECRETARY/TREASURER meeting. I will add those to the Agenda. Dear IOP Members, Respectfully, Mike I am happy to report, that IOP seems to be on track and ready for a new Executive Council to take over. The elections are IPC XIV/IOPC X 2016 progressing nicely and I will report the results in the September/October Newsletter. The one area that is still problematic is the webmaster position. We really to talk amongst ourselves, and find someone who is willing and able to do the job.
    [Show full text]
  • La Flora Triásica Del Grupo El Tranquilo, Provincia De Santa Cruz, Patagonia
    Asociación Paleontológica Argentina. Publicación Especial 6 ISSN0002-7014 X Simposio Argentino de Paleobotánica y Palinología: 27-32. Buenos Aires, 30-08-99 La flora triásica del Grupo El Tranquilo, provincia de Santa Cruz, Patagonia. Parte VII: Cycadophyta Silvia GNAEDINGER' Abstract. THE TRIASSICFLORAOF THE EL TRANQUILOGROUP, SANTA CRUZ PROVINCE,PATAGONIA.PART VII. CYCADOPHYTA.Plants impressions of the Cycadopsida (sensu lato) from the Upper Triassic El Tranquilo Group are described. This plant group is limited to the genus Pseudocienis and PterophyIlum and comprí- ses: Pseudoctenis fissa Du Toit, Pseudoctenis spaiulata Du Toit and PterophyIlum muliilineaium Shirley from the Cañadon Largo Formation and Pseudoctenis sp. from the Laguna Colorada Formation. They are very scarcely represented in the flora, slightly more abundant in the Cañadón Largo Formation. Key words. Cycadophyta, Impressions, Systematics, Upper Triassic, Santa Cruz, Argentina. Palabras clave. Cycadophyta, Impresiones, Sistemática, Triásico Superior, Santa Cruz, Argentina. Introducción tados como Cycadales en tanto que Pterophyllum Brongniart por datos cuticulares de algunas de sus La presente contribución es parte de una serie de- especies se ubica en las Bennettitales. En este caso las dicada al estudio sistemático de la tafoflora del Gru- formas descriptas carecen de materia orgánica pre- po El Tranquilo, e involucra la descripción de las Cy- servada y como no hay evidencia de caracteres cutí- cadophyta. culares en este trabajo son tratadas como Cycadopsí- En la primera parte de esta serie, [alfin y Herbst da en un sentido amplio. (1995), brindan datos estratigráficos y sedimen- tológicos de las unidades portadoras de las plantas que integran el Grupo El Tranquilo (Triásico Supe- Materiales y métodos rior), provincia de Santa Cruz.
    [Show full text]
  • Coevolution of Cycads and Dinosaurs George E
    Coevolution of cycads and dinosaurs George E. Mustoe* INTRODUCTION TOXICOLOGY OF EXTANT CYCADS cycads suggests that the biosynthesis of ycads were a major component of Illustrations in textbooks commonly these compounds was a trait that C forests during the Mesozoic Era, the depict herbivorous dinosaurs browsing evolved early in the history of the shade of their fronds falling upon the on cycad fronds, but biochemical evi- Cycadales. Brenner et al. (2002) sug- scaly backs of multitudes of dinosaurs dence from extant cycads suggests that gested that macrozamin possibly serves a that roamed the land. Paleontologists these reconstructions are incorrect. regulatory function during cycad have long postulated that cycad foliage Foliage of modern cycads is highly toxic growth, but a strong case can be made provided an important food source for to vertebrates because of the presence that the most important reason for the reptilian herbivores, but the extinction of two powerful neurotoxins and carcin- evolution of cycad toxins was their of dinosaurs and the contemporaneous ogens, cycasin (methylazoxymethanol- usefulness as a defense against foliage precipitous decline in cycad popula- beta-D-glucoside) and macrozamin (beta- predation at a time when dinosaurs were tions at the close of the Cretaceous N-methylamine-L-alanine). Acute symp- the dominant herbivores. The protective have generally been assumed to have toms triggered by cycad foliage inges- role of these toxins is evidenced by the resulted from different causes. Ecologic tion include vomiting, diarrhea, and seed dispersal characteristics of effects triggered by a cosmic impact are abdominal cramps, followed later by loss modern cycads. a widely-accepted explanation for dino- of coordination and paralysis of the saur extinction; cycads are presumed to limbs.
    [Show full text]
  • Apa 1065.Qxd
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 42 (2): 377-394. Buenos Aires, 30-06-2005 ISSN 0002-7014 Las tafofloras triásicas de la región de los Lagos, Xma Región, Chile Rafael HERBST1, Alejandro TRONCOSO2 y Jorge MUÑOZ3 Abstract. THE TRIASSIC TAPHOFLORAS FROM THE LAKE DISTRICT, XTH REGION, CHILE. A list of the fossil plants, in some cases with their description, from the Panguipulli and Tralcán Formations, from the lo- calities Licán Ray, Punta Peters and Cerro Tralcán, from the Lake District (72º15’ S and 39º30’/39º45’ W), Xth Region, Chile, is presented. The flora is composed of 27 species of the following genera: Hepatica in- det., Neocalamites, Asterotheca, Cladophlebis, Gleichenites, Dicroidium, Johnstonia, Lepidopteris, Pterophyllum, Pseudoctenis, Sphenobaiera, Ginkgoites, Phoenicopsis, Rissikia, Heidiphyllum, Gen. et sp. indet., Linguifolium and Taeniopteris; a new species of Astrerotheca and two new species of Pterophyllum are also described. The quantitative composition of the three localities is analyzed showing that they are quite different, in spite of being of similar age and geographically close to each other; it is suggested that the difference is basically paleoenvironmental. Resumen. Se da a conocer la composición florística y la descripción de algunas especies de tres tafofloras de la región de los Lagos del sur de Chile, provenientes de las localidades de Licán Ray, Punta Peters y cerro Tralcán (72°15’ S - 39°30’/39°45’ O), que forman parte de las Formaciones Panguipulli, las dos pri- meras, y Tralcán, la última. La flora se compone de 27 especies incluidas en los géneros: Hepatica indet., Neocalamites, Asterotheca, Cladophlebis, Gleichenites, Dicroidium, Johnstonia, Lepidopteris, Pterophyllum, Pseudoctenis, Sphenobaiera, Ginkgoites, Phoenicopsis, Rissikia, Heidiphyllum, Gen.
    [Show full text]
  • Retallack 2021 Coal Balls
    Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro­ genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea­ sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.
    [Show full text]
  • Mineralogy of Non-Silicified Fossil Wood
    Article Mineralogy of Non-Silicified Fossil Wood George E. Mustoe Geology Department, Western Washington University, Bellingham, WA 98225, USA; [email protected]; Tel: +1-360-650-3582 Received: 21 December 2017; Accepted: 27 February 2018; Published: 3 March 2018 Abstract: The best-known and most-studied petrified wood specimens are those that are mineralized with polymorphs of silica: opal-A, opal-C, chalcedony, and quartz. Less familiar are fossil woods preserved with non-silica minerals. This report reviews discoveries of woods mineralized with calcium carbonate, calcium phosphate, various iron and copper minerals, manganese oxide, fluorite, barite, natrolite, and smectite clay. Regardless of composition, the processes of mineralization involve the same factors: availability of dissolved elements, pH, Eh, and burial temperature. Permeability of the wood and anatomical features also plays important roles in determining mineralization. When precipitation occurs in several episodes, fossil wood may have complex mineralogy. Keywords: fossil wood; mineralogy; paleobotany; permineralization 1. Introduction Non-silica minerals that cause wood petrifaction include calcite, apatite, iron pyrites, siderite, hematite, manganese oxide, various copper minerals, fluorite, barite, natrolite, and the chromium- rich smectite clay mineral, volkonskoite. This report provides a broad overview of woods fossilized with these minerals, describing specimens from world-wide locations comprising a diverse variety of mineral assemblages. Data from previously-undescribed fossil woods are also presented. The result is a paper that has a somewhat unconventional format, being a combination of literature review and original research. In an attempt for clarity, the information is organized based on mineral composition, rather than in the format of a hypothesis-driven research report.
    [Show full text]
  • University of Birmingham an Anatomically Advanced Species Of
    University of Birmingham An anatomically advanced species of the fern Botryopteris Renault from the Permian of southwestern China He, Xiao-Yuan; Wang, Shi-Jun; Hilton, Jason; Galtier, Jean; Jiang, Hong-Guan DOI: 10.1016/j.revpalbo.2019.104136 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): He, X-Y, Wang, S-J, Hilton, J, Galtier, J & Jiang, H-G 2020, 'An anatomically advanced species of the fern Botryopteris Renault from the Permian of southwestern China', Review of Palaeobotany and Palynology, vol. 273, 104136, pp. 1-13. https://doi.org/10.1016/j.revpalbo.2019.104136 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • La Paleoflora Triásica Del Cerro Cacheuta, Provincia De Mendoza, Argentina
    AMEGHINIANA - 2011 - Tomo 48 (4): 520 – 540 ISSN 0002-7014 LA PALEOFLORA TRIÁSICA DEL CERRO CACHEUTA, PROVINCIA DE MENDOZA, ARGENTINA. PETRIELLALES, CYCADALES, GINKGOALES, VOLTZIALES, CONIFERALES, GNETALES Y GIMNOSPERMAS INCERTAE SEDIS EDUARDO M. MOREL1, 2, ANALÍA E. ARTABE1, 3, DANIEL G. GANUZA1 y ADOLFO ZÚÑIGA1 1División Paleobotánica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Paseo del Bosque s/n, B1900FWA La Plata, Argentina. emorel@museo. fcnym.unlp.edu.ar, [email protected], [email protected], [email protected] 2Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) 3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Resumen. En el Cerro Cacheuta (noroeste de la provincia de Mendoza, Argentina) se relevaron cuatro perfiles de detalle, y en las localidades de Puesto Míguez y Agua de las Avispas se reconocieron siete estratos con plantas fósiles. En este aporte se presenta el estudio sistemático de las plantas fósiles encontradas y se analizan los taxones correspondientes a las Gymnospermopsida: Petriellales, Cycadales, Ginkgoales, Voltziales, Coniferales, Gnetales y Gymnospermophyta incertae sedis. El estudio sistemático incluye 25 taxones identificados como Rochipteris truncata (Frenguelli) comb. nov., Nilssonia taeniopteroides Halle, Kurtziana brandmayri Frenguelli, K. cacheutensis (Kurtz) Frenguelli, Pseudoctenis fal- coneriana (Morris) Bonetti, P. spectabilis Harris, Baiera cuyana Frenguelli, B. rollerii Frenguelli, Ginkgoidium bifidum Frenguelli, Sphenobaiera argentinae (Kurtz) Frenguelli, Heidiphyllum elongatum (Morris) Retallack, Telemachus elongatus Anderson, T. lignosus Retallack, Rissikia me- dia (Tenison-Woods) Townrow, Cordaicarpus sp., Gontriglossa sp., Yabeiella brackebuschiana (Kurtz) Ôishi, Y. mareyesiaca (Geinitz) Ôishi, Y. spathulata Ôishi, Y. wielandi Ôishi, Fraxinopsis andium (Frenguelli) Anderson y Anderson, F.
    [Show full text]
  • Diversity and Evolution of the Megaphyll in Euphyllophytes
    G Model PALEVO-665; No. of Pages 16 ARTICLE IN PRESS C. R. Palevol xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Comptes Rendus Palevol w ww.sciencedirect.com General palaeontology, systematics and evolution (Palaeobotany) Diversity and evolution of the megaphyll in Euphyllophytes: Phylogenetic hypotheses and the problem of foliar organ definition Diversité et évolution de la mégaphylle chez les Euphyllophytes : hypothèses phylogénétiques et le problème de la définition de l’organe foliaire ∗ Adèle Corvez , Véronique Barriel , Jean-Yves Dubuisson UMR 7207 CNRS-MNHN-UPMC, centre de recherches en paléobiodiversité et paléoenvironnements, 57, rue Cuvier, CP 48, 75005 Paris, France a r t i c l e i n f o a b s t r a c t Article history: Recent paleobotanical studies suggest that megaphylls evolved several times in land plant st Received 1 February 2012 evolution, implying that behind the single word “megaphyll” are hidden very differ- Accepted after revision 23 May 2012 ent notions and concepts. We therefore review current knowledge about diverse foliar Available online xxx organs and related characters observed in fossil and living plants, using one phylogenetic hypothesis to infer their origins and evolution. Four foliar organs and one lateral axis are Presented by Philippe Taquet described in detail and differ by the different combination of four main characters: lateral organ symmetry, abdaxity, planation and webbing. Phylogenetic analyses show that the Keywords: “true” megaphyll appeared at least twice in Euphyllophytes, and that the history of the Euphyllophytes Megaphyll four main characters is different in each case. The current definition of the megaphyll is questioned; we propose a clear and accurate terminology in order to remove ambiguities Bilateral symmetry Abdaxity of the current vocabulary.
    [Show full text]
  • Leppe & Philippe Moisan
    CYCADALES Y CYCADEOIDALES DEL TRIÁSICO DELRevista BIOBÍO Chilena de Historia Natural475 76: 475-484, 2003 76: ¿¿-??, 2003 Nuevos registros de Cycadales y Cycadeoidales del Triásico superior del río Biobío, Chile New records of Upper Triassic Cycadales and Cycadeoidales of Biobío river, Chile MARCELO LEPPE & PHILIPPE MOISAN Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; e-mail: [email protected] RESUMEN Se entrega un aporte al conocimiento de las Cycadales y Cycadeoidales presentes en los sedimentos del Triásico superior de la Formación Santa Juana (Cárnico-Rético) de la Región del Biobío, Chile. Los grupos están representados por las especies Pseudoctenis longipinnata Anderson & Anderson, Pseudoctenis spatulata Du Toit y Pterophyllum azcaratei Herbst & Troncoso, y se propone una nueva especie Pseudoctenis truncata nov. sp. Las especies se encuentran junto a otros elementos típicos de las asociaciones paleoflorísticas del borde suroccidental del Gondwana. Palabras clave: Triásico superior, paleobotánica, Cycadales, Cycadeoidales. ABSTRACT A contribution to the knowledge of Cycadales and Cycadeoidales present in the Upper Triassic of the Santa Juana Formation (Carnian-Raetian) in the Bio-Bío Region of Chile is provided. The groups are represented by the species Pseudoctenis longipinnata Anderson & Anderson, Pseudoctenis spatulata Du Toit and Pterophyllum azcaratei Herbst & Troncoso. A new species Pseudoctenis truncata nov. sp. is described. They appear to be related to other typical elements of the paleofloristic assamblages from the south-occidental border of Gondwanaland. Key words: Upper Triassic, paleobotany, Cycadales, Cycadeoidales. INTRODUCCIÓN vasculares (Stewart & Rothwell 1993, Taylor & Taylor 1993). Sin embargo, se reconoce la exis- Frecuentemente se ha tratado a las Cycadeoida- tencia de una brecha morfológica entre ambos les (Bennettitales) y a las Cycadales como parte grupos, ya que a diferencia de las Medullosa- de las Cycadophyta.
    [Show full text]
  • Petrified Wood: the Anatomy of Arborescent Plant Life Through Time
    The Anatomy of Arborescent Plant Life Through Time Mike Viney Collectors of petrified wood focus on permineralized plant material related to arborescent (tree-like) plant life. Evidence for the first fossil forest occurs in the Devonian. Fossil forest composition changes through geologic time, reflecting variety in evolutionary strategies for constructing a tree form. It is helpful and informative to study the anatomy of various trunk designs. Evolutionary adaptations for trunk structure can be recognized by the arrangement of tissues and organs. A quick survey of plant organs and tissues will enhance our discussion of the various evolutionary strategies for constructing a tree form. Plants are made of four types of organs: roots, stems, leaves, and reproductive structures. In turn, these organs are composed of three basic tissue systems: the ground tissue system, the vascular tissue system, and the dermal tissue system. Ground tissues including parenchyma, collenchyma and sclerenchyma are involved in photosynthesis, storage, secretion, transport, and structure. Parenchyma tissue produces all other tissues. Living parenchyma cells are involved in photosynthesis, storage, secretion, regeneration and in the movement of water and food. Parenchyma cells are typically spherical to cube shaped. Collenchyma tissue provides structural support for young growing organs. Living collenchyma cells are elongated cylinders and help to make up the familiar string-like material in celery stalks and leaf petioles. Sclerenchyma tissue provides support for primary and secondary plant bodies. Sclerenchyma cells often have lignified secondary walls and lack protoplasm at maturity. Elongated slender sclerenchyma cells known as fibers make up well known fibrous material such as hemp, jute, and flax.
    [Show full text]