An Alternative Model for the Earliest Evolution of Vascular Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History and Philosophy of Systematic Biology
History and Philosophy of Systematic Biology Bock, W. J. (1973) Philosophical foundations of classical evolutionary classification Systematic Zoology 22: 375-392 Part of a general symposium on "Contemporary Systematic Philosophies," there are some other interesting papers here. Brower, A. V. Z. (2000) Evolution Is Not a Necessary Assumption of Cladistics Cladistics 16: 143- 154 Dayrat, Benoit (2005) Ancestor-descendant relationships and the reconstruction of the Tree of Lif Paleobiology 31: 347-353 Donoghue, M.J. and J.W. Kadereit (1992) Walter Zimmermann and the growth of phylogenetic theory Systematic Biology 41: 74-84 Faith, D. P. and J. W. H. Trueman (2001) Towards an inclusive philosophy for phylogenetic inference Systematic Biology 50: 331-350 Gaffney, E. S. (1979) An introduction to the logic of phylogeny reconstruction, pp. 79-111 in Cracraft, J. and N. Eldredge (eds.) Phylogenetic Analysis and Paleontology Columbia University Press, New York. Gilmour, J. S. L. (1940) Taxonomy and philosophy, pp. 461-474 in J. Huxley (ed.) The New Systematics Oxford Hull, D. L. (1978) A matter of individuality Phil. of Science 45: 335-360 Hull, D. L. (1978) The principles of biological classification: the use and abuse of philosophy Hull, D. L. (1984) Cladistic theory: hypotheses that blur and grow, pp. 5-23 in T. Duncan and T. F. Stuessy (eds.) Cladistics: Perspectives on the Reconstruction of Evolutionary History Columbia University Press, New York * Hull, D. L. (1988) Science as a process: an evolutionary account of the social and conceptual development of science University of Chicago Press. An already classic work on the recent, violent history of systematics; used as data for Hull's general theories about scientific change. -
Diversity Patterns of the Vascular Plant Group Zosterophyllopsida in Relation to Devonian Paleogeography Borja Cascales-Miñana, Brigitte Meyer-Berthaud
Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography Borja Cascales-Miñana, Brigitte Meyer-Berthaud To cite this version: Borja Cascales-Miñana, Brigitte Meyer-Berthaud. Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier, 2015, 423, pp.53-61. 10.1016/j.palaeo.2015.01.024. hal-01140840 HAL Id: hal-01140840 https://hal-sde.archives-ouvertes.fr/hal-01140840 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Palaeogeography, Palaeoclimatology, Palaeoecology 423 (2015) 53–61 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography Borja Cascales-Miñana a,b,⁎, Brigitte Meyer-Berthaud a a CNRS, Université de Montpellier, UMR Botanique et bioinformatique de l'architecture des plantes et des végétations (AMAP), F-34398 Montpellier Cedex 5, France b PPP, Département de Géologie, Université de Liège, Allée du 6 Août, B18 Sart Tilman, B-4000 Liège, Belgium article info abstract Article history: The Zosterophyllopsida originated in the Silurian and became prominent vascular components of Early Devonian Received 11 April 2014 floras worldwide. -
Fossil Microorganisms and Land Plants: Associations and Interactions ·
SYMBIOSIS (2005) 40, 119-135 ©2005 Balaban, Philadelphia/Rehovot ISSN 0334-5114 Review article. Fossil microorganisms and land plants: Associations and interactions · Thomas N. Taylor! * and Michael K.rings2 I Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Research Center, The University of Kansas, Lawrence, KS 66045-7534, USA, Tel. +1-785-864-3625, Fax. +1-785-864-5321, Email. [email protected]; 2Bayerische Staatssammlung fur Palaontologie und Geologie und GeoBio-CenterLMU, Richard-Wagner-Strasse 10, 80333 Munich, Germany, Tel. +49-89-2180-6546, Fax. +49-89-2180-6601, Email. [email protected] (Received November 30, 2005; Accepted December 25, 2005) Abstract Microorganisms are critical in the bio- and geosphere today, and certainly performed similar functions in ancient ecosystems. Bacteria, cyanobacteria, microalgae, and various fungi and fungi-like organisms constitute a substantial component of these ancient communities, and have been responsible for the evolution and sustainability of the ecosystems in functions ranging from decomposition of metabolites to catalyzation of nutrient cycles. This review provides examples of associations and interactions between microorganisms and land plants, principally from the Devonian and Carboniferous. During this time span of approximately 150 myr, most of the vascular plant lineages evolved and radiated into new terrestrial niches. Several exceptionally well-preserved fossil communities are used to demonstrate a wide range of biological interactions. Although none of the land plant partners exist today, many of the microorganisms involved appear morphologically little changed. Moreover, some interactions suggest that the genetic code and biochemical pathways necessary for the associations and interactions to be successful evolved early in the lineages of microorganisms involved, and have seemingly remained unchanged to the present. -
Embryophytic Sporophytes in the Rhynie and Windyfield Cherts
Transactions of the Royal Society of Edinburgh: Earth Sciences http://journals.cambridge.org/TRE Additional services for Transactions of the Royal Society of Edinburgh: Earth Sciences: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Embryophytic sporophytes in the Rhynie and Windyeld cherts Dianne Edwards Transactions of the Royal Society of Edinburgh: Earth Sciences / Volume 94 / Issue 04 / December 2003, pp 397 - 410 DOI: 10.1017/S0263593300000778, Published online: 26 July 2007 Link to this article: http://journals.cambridge.org/abstract_S0263593300000778 How to cite this article: Dianne Edwards (2003). Embryophytic sporophytes in the Rhynie and Windyeld cherts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, pp 397-410 doi:10.1017/S0263593300000778 Request Permissions : Click here Downloaded from http://journals.cambridge.org/TRE, IP address: 131.251.254.13 on 25 Feb 2014 Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 397–410, 2004 (for 2003) Embryophytic sporophytes in the Rhynie and Windyfield cherts Dianne Edwards ABSTRACT: Brief descriptions and comments on relationships are given for the seven embryo- phytic sporophytes in the cherts at Rhynie, Aberdeenshire, Scotland. They are Rhynia gwynne- vaughanii Kidston & Lang, Aglaophyton major D. S. Edwards, Horneophyton lignieri Barghoorn & Darrah, Asteroxylon mackiei Kidston & Lang, Nothia aphylla Lyon ex Høeg, Trichopherophyton teuchansii Lyon & Edwards and Ventarura lyonii Powell, Edwards & Trewin. The superb preserva- tion of the silica permineralisations produced in the hot spring environment provides remarkable insights into the anatomy of early land plants which are not available from compression fossils and other modes of permineralisation. -
THE EVOLUTION of XYLEM ANATOMY in EARLY TRACHEOPHYTES by ELISABETH ANNE BERGMAN
Conquering the terrestrial environment: the evolution of xylem anatomy in early tracheophytes Item Type text; Electronic Thesis Authors Bergman, Elisabeth Anne Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 03:01:29 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/626731 CONQUERING THE TERRESTRIAL ENVIRONMENT: THE EVOLUTION OF XYLEM ANATOMY IN EARLY TRACHEOPHYTES By ELISABETH ANNE BERGMAN ____________________ A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelors Degree With Honors in Biology with an Emphasis in Biomedical Sciences THE UNIVERSITY OF ARIZONA D E C E M B E R 2 0 1 7 Approved by: ____________________________ Dr. Brian Enquist Department of Ecology and Evolutionary Biology Acknowledgements Many thanks go to all of those who made contributions, big and small, to my honors thesis, and more notably, my education. Foremost, I thank Dr. Brian Enquist for accepting me into his lab and serving as my mentor for two years. I appreciate all of the time he put in to meet with me and help me to develop my honors thesis. Additional thanks go to Dr. Sean Michaletz who first introduced me to the work that would eventually become my honors thesis. From the University of Santa Cruz, California, I thank Dr. -
Additional Observations on Zosterophyllum Yunnanicum Hsü from the Lower Devonian of Yunnan, China
This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/77818/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Edwards, Dianne, Yang, Nan, Hueber, Francis M. and Li, Cheng-Sen 2015. Additional observations on Zosterophyllum yunnanicum Hsü from the Lower Devonian of Yunnan, China. Review of Palaeobotany and Palynology 221 , pp. 220-229. 10.1016/j.revpalbo.2015.03.007 file Publishers page: http://dx.doi.org/10.1016/j.revpalbo.2015.03.007 <http://dx.doi.org/10.1016/j.revpalbo.2015.03.007> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. @’ Additional observations on Zosterophyllum yunnanicum Hsü from the Lower Devonian of Yunnan, China Dianne Edwardsa, Nan Yangb, Francis M. Hueberc, Cheng-Sen Lib a*School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK b Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China cNational Museum of Natural History, Smithsonian Institution, Washington D.C. 20560-0121, USA * Corresponding author, Tel.: +44 29208742564, Fax.: +44 2920874326 E-mail address: [email protected] ABSTRACT Investigation of unfigured specimens in the original collection of Zosterophyllum yunnanicum Hsü 1966 from the Lower Devonian (upper Pragian to basal Emsian) Xujiachong Formation, Qujing District, Yunnan, China has provided further data on both sporangial and stem anatomy. -
Attractant, Acting As a Homing Device for the Swimming Sperm. Sperm
r 62 CHAPTER 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS UN[T 11 EVOLUTION AND DIVERSITY OF PLANTS 63 gemmae propagules 2 rows of 1 row of sperm cells dorsal leaves ventral leaves (sterile “jacket” layer) neck sperm cells “ ‘fl gemmae cup I / pore dorsal (upper) ventral (lower) A B view view thalloid liverwort leafy liverwort FIGURE 3.10 A. Antheridia. B. Archegonia. Both are apomorphies of land plants. 4 (,, ••1• attractant, acting as a homing device for the swimming sperm. of the liverworts, mosses, and hornworts is relatively small, Sperm cells enter the neck of the archegonium and fertilize ephemeral, and attached to and nutritionally dependent upon the egg cell to form a diploid (2n) zygote. In addition to the gametophyte (see later discussion). effecting fertilization, the archegonium serves as a site for The relationships of the liverworts, mosses, and hornworts embryo/sporophyte development and the establishment of a to one another and to the vascular plants remain unclear. nutritional dependence of the sporophyte upon gametophytic Many different relationships among the three lineages have archegonium tissue. been proposed, one recent of which is seen in Figure 3.6. (n) The land plants share other possible apomorphies: the presence of various ultrastructural modifications of the sperm LIVERWORTS cells, fiavonoid chemical compounds, and a proliferation of Liverworts, also traditionally called the Hepaticae, are one of archegoniophore (n) archegoniophore (n) (longitudinal-section) heat shock proteins. These are not discussed here. the monophyletic groups that are descendents of some of the (longitudinal-section) first land plants. Today, liverworts are relatively minor com ponents of the land plant flora, growing mostly in moist, fertilization DIVERSITY OF NONVASCULAR LAND PLANTS shaded areas (although some are adapted to periodically dry, hot habitats). -
This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy International Journal of Paleopathology 4 (2014) 1–16 Contents lists available at ScienceDirect International Journal of Paleopathology jo urnal homepage: www.elsevier.com/locate/ijpp Invited Commentary Plant paleopathology and the roles of pathogens and insects a,b,c,d,∗ b,1 Conrad C. Labandeira , Rose Prevec a Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA b Department of Geology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa c College of Life Sciences, Capital Normal University, Beijing, 100048, China d Department of Entomology and BEES Program, University of Maryland, College Park, MD 29742, USA a r t i c l e i n f o a b s t r a c t Article history: Plant pathologies are the consequence of physical and chemical responses by plants to invasive microor- Received 1 June 2013 ganisms or to imbalances in nutritional or environmental conditions. -
The Origin of Alternation of Generations in Land Plants
Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular -
JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups. -
The Taxonomic Position of the Psilotales in the Light of Our Knowledge of Devonian Plant Life*
THE TAXONOMIC POSITION OF THE PSILOTALES IN THE LIGHT OF OUR KNOWLEDGE OF DEVONIAN PLANT LIFE* F. P. JONKER Laboratory of Palaeobotany and Palynology, Utrecht, The Netherlands ABSTRACT exclusively Devonian Psilophytales and of the latter the Rhyniaceae are regarded The order Psilotales, containing the two recent genera Psilatum and Tnzesiptel'is only, is usually usually as the closest relatives. Among classified by taxonomists and palaeo botanists those who take this st?nd I mention G. M. in the phylum Psiiophyta. This concept is, Smith (1955), Magdefra.u in Strasburger in spite of the synangia, based on the primitive (1971) and Lcmoigne (1968c). The concept general appearance reminding one of that of the of the last mentioned author will be dis• Devonian Rhyniaceae. Numerous attempts have been made to derive both genera, including their cussed further on. Darrah (1960) states synangia, from either the Rhvniaceae or from other that the status of the putative primitive Psilophyta. These attempts' sometimes led to the nature of the plant body in the Psilotaceae acceptance of a series of missing Jinks but this concept is, however, not supported bv palaeo· is controversial although there is a strong botanical data. tendency to accept the family as a pel'sis• In the opinion of the present reporter the order tent remnant of the Psilopsida. Andrews has kept a primitive general appearance of its (1961) states that Psilatum has been reaarded Devonian ancestors but in its synangia and in its monolete spores it is more advanced. by some botanists as a very simpl~ land In its anatomy, its microphyllous leaves, and in its plant, possibly a very ancient type that gametophyte perhaps, it shows more affiinity to the has managed to survive for several hundreds phylum Lycopodiophyta. -
Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation
i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.