Hot Peppers As a Host for the Mexican Fruit Fly Anastrepha Ludens (Diptera: Tephritidae)

Total Page:16

File Type:pdf, Size:1020Kb

Hot Peppers As a Host for the Mexican Fruit Fly Anastrepha Ludens (Diptera: Tephritidae) Scientific Notes 603 HOT PEPPERS AS A HOST FOR THE MEXICAN FRUIT FLY ANASTREPHA LUDENS (DIPTERA: TEPHRITIDAE) DONALD B. THOMAS United States Department of Agriculture, Agricultural Research Service Kika de la Garza Subtropical Agricultural Research Center, 2413 E. Hwy 83, Weslaco, TX 78596 On the 28th of April, 2003, a shipment of man- will breed in rotting vegetable matter including zano chile peppers (Capsicum pubescens Ruis & chile peppers, but these are non-pest species, and Pavon cv Rocoto) entering the United States at this incident involved sound fruit (Fig. 1). No Pharr, Texas, was found to be infested with insect dipterans are listed as economic pests of chile pep- larvae. USDA inspectors first noted maggots pers by English & Lewis (2004). Baker et al. crawling in the bed of the truck underneath the 16 (1944) cited incidents of A. ludens in “bell peppers cardboard boxes (240 Kg) containing the chile pep- and chili peppers” and there are equally ambigu- pers. Further inspection confirmed that the larvae ous reports of another tephritid, Zonosemata vitti- were in, and emerging from, the fleshy pods. Two gera (Coquillet), taken in “peppers” (Cole 1969). of the larvae were immediately preserved in alco- Zonosemata electa (Say) is known as the “pepper hol while 50 more larvae were kept alive. All spec- maggot” (Peterson 1960) and has been reared imens were hand carried to the nearby USDA- from “Capsicum annuum L.” (Smith & Bush ARS laboratory in Weslaco, Texas for identifica- 1999). The latter solanaceous plant species in- tion. Microscopic examination established that cludes both hot and sweet peppers. The usual host the larvae had the morphological characteristics plants for Zonosemata spp. are members of the ge- of the Mexican fruit fly, Anastrepha ludens (Loew), nus Solanum (Norrbom 2002). To confirm the spe- as described by Steck et al. (1990). However, this cific identity of the larvae infesting the manzano identification was tentative because there are ap- peppers, the available live larvae were placed in proximately 200 described species in this genus culture and maintained in the laboratory to obtain (Norrbom et al. 1999) and the larval stages are adults. Larval specimens that died before pupari- known for only thirteen. Several kinds of maggots ation were preserved in alcohol and sent to Bruce Fig. 1. Larvae of Anastrepha ludens infesting a manzano pepper intercepted at the U.S.-Mexico border. Note the black seeds characteristic of Capsicum pubescens. 604 Florida Entomologist 87(4) December 2004 A. McPheron of Pennsylvania State University for Nonetheless, the more intense inspections failed to genetic fingerprinting. Based on sequencing of a result in further interceptions of infested chile pep- fragment of the mitochondrial 16S ribosomal RNA pers of any species. gene, the specimens were indistinguishable from In order to further our understanding of hot sampled populations of A. ludens (Silva et al. peppers as potential hosts of A. ludens, a series of 2001). This gene has been studied and is diagnos- experiments were conducted. To provide material tic for 40 of the most important species of Anas- for these tests, arrangements were made with the trepha (McPheron et al. 1999). International Services branch of USDA-APHIS to A total of 42 larvae pupariated and of these provide fresh manzano peppers from Mexico, inas- eleven eclosed as adults. All were A. ludens, a de- much as these peppers are not commercially culti- termination confirmed by Allen L. Norrbom of the vated in the United States. One box (15 kilos) of USDA-ARS Systematic Entomology Laboratory manzano peppers was acquired at a market in in Washington D.C. At Weslaco, all non-eclosed Mexico City and shipped by air to our satellite lab- puparia were examined and the number of tu- oratory in General Teran, Nuevo Leon, Mexico. On bules on the anterior spiracles did not differ from arrival, technicians discovered that these peppers those in puparia of A. ludens. On the 2nd of May, also were heavily infested with A. ludens larvae. the 16 boxes of embargoed manzano peppers were Questions raised by these incidents include taken to a disposal site for burial. At that time ad- whether other species of hot peppers are suscep- ditional larvae were seen egressing the fruit and tible hosts for oviposition by A. ludens; whether some of these were collected as voucher speci- the host status of chile peppers is determined pri- mens by USDA-APHIS personnel. marily by physiological or ecological factors; Because records indicated that shipments of whether the flies infesting the manzano peppers manzano peppers had cleared customs in the days were adaptively different from other populations immediately previous to the discovered infesta- of A. ludens (host-races); and are flies reared on tion, an effort was made to track these shipments chile peppers reproductively competent. to their destinations. Manzano peppers infested The flies used in these experiments were from with larvae were recovered from Chicago, IL; De- two sources. One line was established from adults troit, MI; Atlanta, GA; Richmond, VA; and at two reared from the initial interception of manzano retail outlets in Pinellas County, FL. Two weeks peppers at Pharr, Texas in April 2003. The second later, on 16 May 2003, an adult A. ludens was source was the research colony of A. ludens main- found in a fruit fly trap in Orlando, FL. Because tained at the USDA-ARS laboratory in Weslaco, the previous detection of this species in Florida Texas. This laboratory colony originated with was in Sarasota in 1972 (Steck 1998) the new de- specimens collected from yellow chapote, Ca- tection was presumed to have originated with the simiroa greggii (S. Wats.) Chiang, in Nuevo Leon, infested manzano pepper shipments. Mexico in 1994. Yellow chapote is a wild Rutaceae Anastrepha ludens is a major pest of citrus and and the primary native host of A. ludens in Mex- mangoes with a wide host range known to include ico (Plummer et al. 1941). at least 60 varieties of fruit (Norrbom & Kim 1988). Two sets of experiments were conducted. In Sweet peppers, cultivars of Capsicum annuum the first set of tests the flies were offered fresh that lack the alkaloid capcaicin, are occasionally fruits in both choice and non-choice configura- infested by A. ludens, but confirmed records of hot tions under laboratory conditions. In the second peppers (cultivars containing capcaicin) as larval set of experiments the flies were released into a hosts have not been reported. According to the in- green house within the Weslaco quarantine facil- spectors who first discovered the infested ship- ity with potted pepper plants to determine the ac- ment, just standing next to the open truck with the ceptability of the living, undehisced pods as manzano peppers caused their eyes to water. On oviposition sites. the Scoville scale manzano peppers (also marketed The Weslaco colony flies were reared on an ar- as “rocoto” or “perón” peppers) are rated at 12-30K tificial larval media described by Spishakoff & (by comparison, jalapeños are rated 2.5-8K Scoville Hernandez-Davila (1968). Because wild flies are Units) (DeWitt & Gerlach 1990). Although man- reticent to lay eggs in the artificial substrate used zano peppers are a low volume specialty item, ac- in mass-rearing colonization, the flies bred from counting for much less than 1% of all peppers the manzano peppers were offered fresh fruit for exported by Mexico (McClure 2003), chile pepper oviposition. Placed in the cage with these adults species in aggregate are a major commodity im- were manzano peppers, bell peppers, grapefruit ported to the United States. Because of its non-host and mangoes. Although the flies were observed status, chile pepper importations had not required “stinging” all of these fruits with the aculeus, only a disinfestation treatment or more than cursory in- the mangoes became infested. spection. In response to this incident, higher than Flies and fruit were distributed among sepa- normal inspection rates were implemented on all rate fine mesh screen cages, 30 × 30 × 30 cm in di- peppers, and a stricter protocol established for mension. The cages were maintained in an shipments destined to citrus producing states. environmental chamber at 24°C, 12:12 DL. Each Scientific Notes 605 cage contained a glass vial filled with distilled wa- alone or in combination with the mango. This test ter plugged by a cotton wick and an open petri was also conducted with the Nuevo Leon strain dish with granulated sugar and torula yeast. All with the same numbers and conditions as the pre- flies were females of 15 d age that had been caged vious test. with males up until the time of the experiment. This test was conducted with progeny of the Females are capable of laying eggs at age 11 d larvae found in the intercepted manzano chile when maintained at 24°C (Liedo et al. 1993). The peppers at Pharr in April 2003. These were test fruits were set in the cage on short wooden reared in mangoes maintained under a constant pegs so that flies could access the bottom side of temperature and light regime. Both sexes of adult the fruit. Aluja et al. (1999) cite field observations flies were maintained together until the flies were that A. ludens always “sting” oranges on the bot- 11 d old. The test was conducted in the ARS quar- tom side. antine security green house with naturally cy- Test 1: This test used the Nuevo Leon strain cling temperatures and light regime. Ten females from the USDA colony. Ten female flies were re- were released into a large screened cage (78 × 48 leased into each cage. In order to approximately × 32 cm) containing three potted chile pepper equalize surface area of fruit, one sour orange plants with mature fruit.
Recommended publications
  • Descriptions of Some Native Trypetid Flies with Notes on Their Habits
    : I ~ ~12B ~ WI2.B Ii: I~ ~II~ 1.0 W ~ IIIII~ ~Iii 2.2 ~W .2 ~ ~ &:.; W &:.; Ii£ :rL\.l W :rL\.l W U M 1.1 ...... 1.1 .......'" M --- - III:! 1.8 111111.25 11111 1.4 111111.6 111111.25 11111 1.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU or SlANOARDS·196J-A NATIONAL BUREAU OF STANDARDS-1963-A ~========~=~=~========~ TI!CHNICAL BJLLETIN No. 401 ~ JANUARY 1934 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D.C. DESCRIPTIONS OF SOME NATIVE TRYPETID FLIES WITH NOTES ON THEIR HABITS By FOSTER H. BENJAMIN, associate entomologist, Dit·ision" of Ident'ijication and Classification of Insects, BurealL of E 107llQlogy CONTENTS Page Page Introduction.•_•.•••••..•••••_.••_._._...... 1 The genus Ntaspilota Osten·Sncken.._..._.. 3~ Relationships and Rtructurul characters...... 2 Neaspilola achilleae Johnson. •. ......... 37 Charneters used in elllSSillcution .•.."""" 3 Ncaspi/o/a alba (Loew)..... ............ 3; Economic importance o( the group ... '''''' 7 lYeaspitota PILllcti.,ligma. n~w specie:,..... 38 Key to the genera and subgenern (ound in Neaspi/o/a dolosa, new species. _......_... 39 Florida................ .......•.••....••• 8 The ~ellus Parru:Ylla Hendel. .............._ 40 The genus Tru:olrvpa11U Gcrstaecker......... 10 ParoxUlla thomae (Curmn).... .......... 41 Tru:olrvpa11U curvicauda Oerstllecker...... II Parru:Yllu pieciola (Big;ot). .............. 42 The genus Rh"gokt~, Loow. .•.. .• . ..•. .•• t2 The genus Xanthaciura fiende!.. __ ...... .... 43 Rhdgoletill cillvulata (Loew). ............. 13 XU7lthacillTU i1lllecta (Lollw).............. 44 Rha()olet~y pomollellu (Walsh)............ 14 ~¥anthaciuHl cOInlaiollis, new spccies_ ___ 45 Rhagokti., zephvria Snow_....... .•.•.•.• 16 Xall/ilaciltTU letraSpill" (Phillips). __ ...__ 46 The genus Zonllllemata, new genus...... ..... 17 The genus Acinia Robinc!lu·Desvoidy.
    [Show full text]
  • Anastrepha Ludens
    EPPO Datasheet: Anastrepha ludens Last updated: 2021-01-08 IDENTITY Preferred name: Anastrepha ludens Authority: (Loew) Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Diptera: Tephritidae Other scientific names: Acrotoxa ludens Loew, Anastrepha lathana Stone, Trypeta ludens (Loew) Common names: Mexican fruit fly view more common names online... EPPO Categorization: A1 list view more categorizations online... more photos... EU Categorization: A1 Quarantine pest (Annex II A) EPPO Code: ANSTLU Notes on taxonomy and nomenclature This species was first described in 1873 by Loew as Trypeta ludens. The current combination was proposed by Wulp (1900). The name Anastrepha lathana Stone is considered a synonym. Name, host plant, and distribution data for this species and other fruit flies are available under Fruit Fly Databases on the USDA Compendium of Fruit Fly Host Information. HOSTS Mango (Mangifera indica) and various species of Citrus, especially grapefruit and oranges, are the most important commercial hosts (Hernandez-Ortiz, 1992) of A. ludens. Peach (Prunus persica) and various other fruit crops are attacked less frequently, but more than 40 plant species are reported as at least occasional field hosts of this polyphagous pest (Norrbom, 2004). Thomas (2004) provides an example of A. ludens adaptive capability to infest new host plants, describing the discovery of the introduced manzano pepper (Capsicum pubescens) as an unexpected new host in Mexico. Nearly all of the commercial hosts of A. ludens are exotic. Baker et al. (1944) considered Casimiroa greggii (Rutaceae) to be the only native wild host, although three other Casimiroa spp. (Jirón et al., 1988) and several other wild native plants could also have been original hosts.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • 13-09-03-Chilli-Manual
    PIP GUIDE TO GOOD CROP PROTECTION PRACTICES FOR CHILLIES (Capsicum frutescens, Capsicum annuum, Capsicum chinense) AND SWEET PEPPERS (Capsicum annuum) COLEACP is an interprofessional network promoting sustainable horticultural trade. The PIP Programme, implemented by COLEACP, has two overriding objectives: to enable ACP companies to comply with European food safety and traceability requirements; and to consolidate the position of small-scale producers in the ACP horticultural export sector. www.coleacp.org/pip PIP is fi nanced by the European Development Fund. Programme PIP COLEACP - UGPIP The present document was produced with the support of the European Development Fund. The opinions expressed herein represent those of COLEACP/PIP and do not portray the offi cial views Rue du Trône, 98 bte 3 - B-1050 Brussels - Belgium of the European Commission. Tel.: +32 (0)2 508 10 90 - Fax: +32 (0)2 514 06 32 1. Main pests and diseases Document drawn up by PIP/MU with the technical collaboration of: The International Centre of Insect Physiology and Ecology (ICIPE), Plant Health Division/ Horticultural Programme The International Centre of Insect Physiology and Ecology. P. O. Box 30772-0100, Nairobi, Kenya. Tel: +254 (0) 20 863 2000 Fax: + 254 (0) 20 863 2001 and 863 2002 Home Page: http//www.icipe.org Pictures credits: - Gilles Delhove - ICIPE : A.M. Varela, B. Nyambo, A.A. Seif Note The Guide to Good Plant Protection Practices details all plant protection practices regarding the production of the fruit or vegetables in question and recommends primarily the active substances supported by pesticides manufacturers in the framework of EU Directive 91/414, which must comply with European standards for pesticide residues.
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]
  • Factors Regulating the Population Dynamics and Damage Potential of Pollen Beetle (Meligethes Aeneus F.) on Crops of Oilseed Rape
    Factors regulating the population dynamics and damage potential of pollen beetle (Meligethes aeneus F.) on crops of oilseed rape Dissertation zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg-August-Universität Göttingen vorgelegt von Marie-Luise Tölle geboren in Gifhorn Göttingen, Mai 2014 D 7 1. Referentin/Referent: Prof. Dr. Stefan Vidal 2. Korreferentin/Korreferent: Prof. Dr. Andreas von Tiedemann Tag der mündlichen Prüfung: 12.05.2011 Contents Table of contents page Chapter I General introduction ........................................................................................................... 1 The pest: Meligethes aeneus ............................................................................................. 2 Factors influencing the population dynamics of pollen beetle ............................................ 3 Possible effects of insecticides on population growth and damage of pollen beetle ........... 4 Parasitoids and parasitisation of pollen beetle ................................................................... 5 Trap cropping in oilseed rape ............................................................................................ 6 References ........................................................................................................................ 7 Chapter II Cultivar and phenology of winter oilseed rape affect the abundance and reproduction of Meligethes aeneus (Fabricius) ......................................................................................11
    [Show full text]
  • [Sic], and Peppers, 1979-April 1991
    f Historic, Archive Document Do not assume content reflects current scientific knowledge, policies, or practices. Inited States m^mm - m The Protection of Tomatoes, Egg Plants, and Peppers, 1979 -April 1991 Citations from AGRICOLA Concerning Diseases and Other Environmental Considerations United States Department of The Protection of Tomatoes, Agriculture National Egg Plants, and Peppers, Agricultural Library 1979- April 1991 United States Environmental Protection Agency Citations from AGRICOLA Office of Pesticide Programs Concerning Diseases and Otiier Bibliographies Environmental Considerations and Literature of Agriculture 110 Compiled and Edited by Charles N. Bebee August 1991 National Agricultural Library United States Department of Agriculture Beltsville, Maryland 20705 and United States Environmental Protection Agency Office of Pesticide Programs Washington, D.C. 20460 National Agricultural Library Beltsvillle, Maryland 1991 National Agricultural Library Cataloging Record: Bebee, Charles N. The protection of tomatoes, egg plants, and peppers, 1979- April 1991 : citations from AGRICOLA concerning diseases and other environmental considerations. (Bibliographies and literature of agriculture ; no. 110) 1. Tomatoes — Diseases and pests — Bibliography. 2. Eggplant — Diseases and pests — Bibliography. 3. Peppers — Diseases and pests — Bibliography. I. Title. aZ5076.AlU54no.110 . FOREWORD This is the 42nd volume in a series of commodity-oriented environmental bibliographies resulting from a memorandum of understanding between the U.S. Department of Agriculture, National Agricultural Library (USDA-NAL) , and the U.S. Environmental Protection Agency, Office of Pesticide Programs (EPA-OPP) This close working relationship between the two agencies will produce a series of bibliographies which will be useful to EPA in the regulation of pesticides, as well as to any researcher in the field of plant or commodity protection.
    [Show full text]
  • Biorational Tree-Fruit Pest Management, an Area That Ron Was So Instrumental in Nurturing
    BIORATIONAL T REE-FRUIT PEST MANAGEMENT This page intentionally left blank BIORATIONAL T REE-FRUIT PEST MANAGEMENT Edited by Martín Aluja Tracy C. Leskey and Charles Vincent CABI is a trading name of CAB International CABI Head Offi ce CABI North American Offi ce Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CAB International 2009. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biorational tree fruit pest management / edited by Martín Aluja, Tracy C. Leskey, and Charles Vincent. p. cm. Includes bibliographical references and index. ISBN 978-1-84593-484-2 (alk. paper) 1. Pests–Integrated control. 2. Fruit–Diseases and pests. I. Aluja, Martin. II. Leskey, Tracy C. III. Vincent, Charles, 1953- IV. Title. SB951.B48 2009 634′.049–dc22 2008045145 ISBN-13: 978 1 84593 484 2 Typeset by AMA Dataset, Preston. Printed and bound in the UK by the MPG Books Group, Bodmin. The paper used for the text pages in this book is FSC certifi ed. The FSC (Forest Stewardship Council) is an international network to promote responsible management of the world’s forests.
    [Show full text]
  • Pepper Pest Management
    Pepper Pest Management Kaushalya Amarasekare Ph.D. Assistant Professor of Entomology Dept. of Agricultural and Environmental Sciences College of Agriculture Tennessee State University University of Maryland Nashville, Tennessee Extension snaped.fns.usda.gov Goal The goal of this training is to educate stakeholders on arthropods (pest insects and mites) that damage peppers and methods to manage them using integrated pest management (IPM) techniques Objectives Upon completion of this training, the participants will be able to 1) teach, 2) demonstrate and 3) guide growers, small farmers, backyard and community gardeners, master gardeners, and other stakeholders on management of pest arthropods in peppers Course Outline 1. Introduction: background information on bell and chili pepper 2. Pests of pepper a) Seedling Pests b) Foliage Feeders c) Pod Feeders 3. Summary 4. References Introduction Bell /sweet pepper Peppers • Family Solanaceae • Capsicum annum L. • Bell/sweet peppers and chili agmrc.org Peppers: consumed as • Fresh • Dried chili pepper • Ground as spices • Processed (canned, pickled, brined or in salsas) 570cjk, Creative Commons wifss.ucdavis.edu Bell Pepper • 2017: U.S. consumption of fresh bell peppers ~ 11.4 lbs./person • High in vitamin C and dietary fiber • Provide small amounts of several vitamins and minerals • Usually sold as fresh produce Maturity Sugar Content Chili Pepper • 2017: U.S. consumption of chili peppers ~ 7.7 lbs./person • High in vitamin C • Small amounts of vitamin A and B-6, iron and magnesium 570cjk, Creative Commons wifss.ucdavis.edu • Sold as fresh produce and dried (whole peppers, crushed or powdered) pepperscale.com Myscha Theriault U.S. green pepper production • U.S.
    [Show full text]
  • Natural Enemies of True Fruit Flies 02/2004-01 PPQ Jeffrey N
    United States Department of Agriculture Natural Enemies of Marketing and Regulatory True Fruit Flies Programs Animal and Plant Health (Tephritidae) Inspection Service Plant Protection Jeffrey N. L. Stibick and Quarantine Psyttalia fletcheri (shown) is the only fruit fly parasitoid introduced into Hawaii capable of parasitizing the melon fly (Bactrocera cucurbitae) United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 4700 River Road Riverdale, MD 20737 February, 2004 Telephone: (301) 734-4406 FAX: (301) 734-8192 e-mail: [email protected] Jeffrey N. L. Stibick Introduction Introduction Fruit flies in the family Tephritidae are high profile insects among commercial fruit and vegetable growers, marketing exporters, government regulatory agencies, and the scientific community. Locally, producers face huge losses without some management scheme to control fruit fly populations. At the national and international level, plant protection agencies strictly regulate the movement of potentially infested products. Consumers throughout the world demand high quality, blemish-free produce. Partly to satisfy these demands, the costs to local, state and national governments are quite high and increasing as world trade, and thus risk, increases. Thus, fruit flies impose a considerable resource tax on participants at every level, from producer to shipper to the importing state and, ultimately, to the consumer. (McPheron & Steck, 1996) Indeed, in the United States alone, the running costs per year to APHIS, Plant Protection and Quarantine (PPQ), (the federal Agency responsible) for maintenance of trapping systems, laboratories, and identification are in excess of US$27 million per year and increasing. This figure only accounts for a fraction of total costs throughout the country, as State, County and local governments put in their share as well as the local industry affected.
    [Show full text]
  • Reporting Service 2001, No
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service Paris, 2001-09-01 Reporting Service 2001, No. 9 CONTENTS 2001/156 - News from the Caribbean 2001/157 - First report of Pepino mosaic potexvirus in Sweden 2001/158 - First report of Pepino mosaic potexvirus in Canada and USA 2001/159 - First report of Pepino mosaic potexvirus in weeds 2001/160 - First report of Tomato yellow leaf curl begomovirus in Puerto Rico 2001/161 - Existence of a recombinant between Tomato yellow leaf curl Sardinia and Tomato yellow leaf curl begomoviruses 2001/162 - New virus of apricot found in France: Apricot latent ringspot nepovirus 2001/163 - Wheat High plains virus can be transmitted by seeds of sweet maize 2001/164 - Genome sequence of Watermelon silver mottle tospovirus completed 2001/165 - New records for dwarf mistletoes in Honduras and Mexico 2001/166 - Situation of grapevine yellows in France in 2001 2001/167 - Xanthomonas vesicatoria occurs in Tanzania 2001/168 - Details on the situation of Xanthomonas axonopodis pv. vesicatoria on capsicum in Turkey 2001/169 - Dig-labelled PCR to detect Clavibacter michiganensis subsp. sepedonicus 2001/170 - EPPO report on notifications of non-compliance (detection of regulated pests) 1, rue Le Nôtre Tel. : 33 1 45 20 77 94 E-mail : [email protected] 75016 Paris Fax : 33 1 42 24 89 43 Web : www.eppo.org EPPO Reporting Service 2001/156 News from the Caribbean The Plant Health Report for 2000 has been prepared by IICA Office in Trinidad and Tobago and compiles replies to a questionnaire on quarantine pests received from several countries in the Caribbean (Antigua & Barbuda, Bahamas, Barbados, Bermuda, British Virgin Islands, Dominica, French Guiana, Grenada, Guyana, Jamaica, Martinique, Netherlands Antilles (Curaçao), St Kitts & Nevis, St Lucia, St Vincent and the Grenadines, Suriname, Trinidad & Tobago).
    [Show full text]
  • A Phylogenetic Study of the Family Tephritidae (Insecta: Diptera) Using a Mitochondrial DNA Sequence
    Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 439–443 A phylogenetic study of the family Tephritidae (Insecta: Diptera) using a mitochondrial DNA sequence P. Fernández, D. Segura, C. Callejas & M.D. Ochando* Departamento de Genética, Facultad de Ciencias Biológicas, Universidad Complutense, 28040 – Madrid, Spain Achievements in tephritid taxonomy have greatly contributed to both basic research and pest management programmes. However, despite the large amount of taxonomic data available, the higher classification of the family Tephritidae is still a matter of debate. A molecular approach could help to provide a more accurate classification. A molecular study was therefore undertaken to gain insight into the phylogenetic relationships within the family Tephritidae. A DNA region of the mitochondrial cytochrome oxidase II gene was compared in species representing six genera of the family, namely Ceratitis, Rhagoletis, Dacus, Bactrocera, Anastrepha and Toxotrypana. A dendrogram was constructed using the neighbour-joining method with Liriomyza huidobrensis and Drosophila yakuba as outgroups. Two main clusters were obtained in the tree, the first grouping being the Ceratitis species, C. capitata, C. rosa, and C. cosyra, and the second showing two main branches, one for Dacus, Bactrocera and Rhagoletis, and the other for Anastrepha and Toxotrypana. The results are discussed in relation to published phylogenies. INTRODUCTION a better understanding of the phylogenetic rela- Among the most devastating of agricultural tionships within the Tephritidae family (Han & pests, the family Tephritidae, commonly known as McPheron 1994, 1997, 2001; Malacrida et al. 1996; fruit flies, includes more than 4000 species in McPheron & Han 1997; Smith & Bush 1997; some 500 genera distributed all around the world Morrow et al.
    [Show full text]