A Phylogenetic Study of the Family Tephritidae (Insecta: Diptera) Using a Mitochondrial DNA Sequence

Total Page:16

File Type:pdf, Size:1020Kb

A Phylogenetic Study of the Family Tephritidae (Insecta: Diptera) Using a Mitochondrial DNA Sequence Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 439–443 A phylogenetic study of the family Tephritidae (Insecta: Diptera) using a mitochondrial DNA sequence P. Fernández, D. Segura, C. Callejas & M.D. Ochando* Departamento de Genética, Facultad de Ciencias Biológicas, Universidad Complutense, 28040 – Madrid, Spain Achievements in tephritid taxonomy have greatly contributed to both basic research and pest management programmes. However, despite the large amount of taxonomic data available, the higher classification of the family Tephritidae is still a matter of debate. A molecular approach could help to provide a more accurate classification. A molecular study was therefore undertaken to gain insight into the phylogenetic relationships within the family Tephritidae. A DNA region of the mitochondrial cytochrome oxidase II gene was compared in species representing six genera of the family, namely Ceratitis, Rhagoletis, Dacus, Bactrocera, Anastrepha and Toxotrypana. A dendrogram was constructed using the neighbour-joining method with Liriomyza huidobrensis and Drosophila yakuba as outgroups. Two main clusters were obtained in the tree, the first grouping being the Ceratitis species, C. capitata, C. rosa, and C. cosyra, and the second showing two main branches, one for Dacus, Bactrocera and Rhagoletis, and the other for Anastrepha and Toxotrypana. The results are discussed in relation to published phylogenies. INTRODUCTION a better understanding of the phylogenetic rela- Among the most devastating of agricultural tionships within the Tephritidae family (Han & pests, the family Tephritidae, commonly known as McPheron 1994, 1997, 2001; Malacrida et al. 1996; fruit flies, includes more than 4000 species in McPheron & Han 1997; Smith & Bush 1997; some 500 genera distributed all around the world Morrow et al. 2000; Han 2000). (White & Elson-Harris 1994). The enormous eco- Specifically, mitochondrial DNA is a powerful nomic effort required in eradication programmes, material for phylogenetic studies. Its small size, together with great crop losses that these flies different rates of evolutionary change, lack of cause in fruit production, explains the increasing recombination, and maternal inheritance make it interest in the study of their biology. suitable material for systematic studies at a wide Taxonomy is an essential foundation of biologi- variety of taxonomic levels (Simon et al. 1994; Han cal research. Developments in tephritid taxon- & McPheron 2001). Among the mitochondrial omy have greatly contributed to progress in genes, cytochrome oxidase II, usedbydifferent areas of pure research and to pest management authors to infer relationships within insect species programmes. However, despite the large number (Sperling & Hickey 1994; Caterino & Sperling of taxonomic data available, the higher classifica- 1999; Gómez-Zurita et al. 2000, Durando et al. tion of the family Tephritidae, based primarily on 2000), is particularly useful. morphological data, is still a matter of debate A molecular study was therefore undertaken to (White 1996; Korneyev 2001). Many characters compare a DNA region of the mitochondrial are difficult to interpret, and disagreements in cytochrome oxidase II gene from different tephritid the definition of groups have arisen owing to the species belonging to six different genera, in or- relative importance that researchers place on der to obtain an estimate of the phylogenetic rela- these characters (Drew 1989). tionships within some members of this dipteran In the last two decades the development of family. molecular techniques, based mostly on PCR and/ or sequencing, has provided new and powerful MATERIALS AND METHODS tools to address the most diverse of biological problems. Taxonomy has profited much from Samples and DNA isolation them. A more accurate classification of the Insect samples included 16 species representing Tephritidae might be gained through the use of six genera in the family Tephritidae, namely, molecular techniques. Indeed, a number of recent Ceratitis, Rhagoletis, Dacus, Bactrocera, Anastrepha studies using molecular data have contributed to and Toxotrypana, from representative areas of each taxon distribution (Table 1). *To whom correspondence should be addressed. E-mail: [email protected] Total DNA from individual adults or pupae was 440 Proceedings of the 6th International Fruit Fly Symposium Table 1. Species used and origin of the samples. were analysed using an ABIPRISM 377 DNA sequencer (Applied Biosystems). Species Origin Sequence alignment and phylogenetic analysis Anastrepha obliqua Mexico Alignment of the sequences and the estimation Anastrepha striata Mexico of interspecific pairwise percentage sequence Anastrepha suspensa U.S.A. (Florida) divergence was performed by the clustal method Bactrocera cacuminata Australia using the MegAlign programme included in the Bactrocera cucurbitae U.S.A. (Hawaii) DNASTAR package (Lasergene System 1994). Bactrocera dorsalis U.S.A. (Hawaii) A neighbour-joining (NJ) tree (Saitou & Nei Bactrocera latifrons U.S.A. (Hawaii) 1987) was generated from the Jukes-Cantor Bactrocera oleae Spain distances (Jukes & Cantor 1969) using Drosophila Bactrocera zonata Mauritius Island yakuba and Liriomyza huidobrensis as outgroups Ceratitis capitata Spain (accession numbers 12918 and AF327292, Gene- Ceratitis cosyra South Africa Bank database). Dacus ciliatus Réunion Island Dacus demmerezi Réunion Island The reliability of the tree was evaluated using Rhagoletis cerasi Switzerland 1000 bootstrap replicates (Felsenstein 1985), Rhagoletis pomonella U.S.A. (New York) and by constructing a consensus tree from the Toxotrypana curvicauda U.S.A. (Florida) 1000 bootstrapped trees obtained. Phylogenetic analysis was performed using the PHYLIP software package (Felsenstein 1993). isolated applying a method specific for small samples, using SDS dissolution, phenol-chloro- RESULTS AND DISCUSSION form extraction and ethanol precipitation (Reyes Nucleotide sequences of 259 bp were obtained et al. 1997). for the cytochrome oxidase II region studied. Interspecific pairwise percentage sequence DNA amplification and sequencing differences ranged from 0.8 to 22.8% (Table 2), The polymerase chain reaction (PCR) was used to with a mean of 16%. The lowest value observed amplify a 259 bp segment of the mitochondrial was for comparisons between Bactrocera dorsalis cytochrome oxidase II gene. The primers used were and Bactrocera cacuminata (0.8%). The highest CO2A (5’-GGACTACAAGATAGAGCCTC-3’) and interspecific divergence was found between CO2B (5’-CTTCAGTATCATTGATGACC-3’), provided Anastrepha suspensa and Bactrocera latifrons by C. Fleming (The Queen’s University of Belfast, (22.8%). The mean of 16% for the interspecific U.K.). The amplified fragment corresponds to posi- sequence differences is close to the 11% found tions 3124-3382 of the mitochondrial genome of by Han & McPheron (1997) in representative Drosophila yakuba (Clary & Wolstenholme 1985). species of the family Tephritidae (based on the Amplifications were performed in a PTC-100 analysis of a fragment of mitochondrial 16S MJ research thermocycler, in 100 µl reactions ribosomal DNA). The sequence divergence values containing 1 µl of genomic DNA, 1 µM of each obtained in the present work were generally low primer, 0.2 mM of each dNTP,2 mM of MgCl2,10µl (20% or less). Comparisons of these results with of 10 × Eco Taq buffer (Ecogen), and 2.5 units of those reported by others authors show that Eco Taq polymerase (Ecogen). PCR conditions in- they would normally be thought to correspond to volved a initial cycle of 5 min at 94°C, 30 cycles of related species. In the case of Bactrocera dorsalis 30 s at 94°C, 1 min at 55°C or 57°C (Bactrocera and Bactrocera cacuminata, a divergence of dorsalis), and 1 min 30 s at 72°C. The final cycle 0.8% falls in the range of values generally found had an additional step of 6 min at 72°C. Nega- at the intraspecific levels. This close relationship tive controls were always included. PCR prod- between these species agrees with recent classifi- ucts were purified using a PCR purification kit cations which place them both in the ‘Bactrocera (Boehringer). dorsalis complex’ (White & Elson-Harris 1994). Nucleotide sequences were determined directly This is a group of morphologically inseparable but from PCR fragments using the dideoxy chain biologically distinct species whose members may termination method (Sanger et al. 1977) with be referred to as sibling species (White 1996). fluorescently-labelled dideoxynucleotide termina- In the genus Rhagoletis, comparisons among tors (Applied Biosystems). Sequencing reactions members of the pomonella and cingulata groups Fernandez et al.: A phylogenetic study of the family Tephritidae using mitochondrial DNA 441 Table 2. Percentage sequence divergence in the cytochrome oxidase II gene between tephritid species. A. obliqua * A. suspensa 1.5 * A. striata 5.8 6.2 * B. cucurbitae 18.1 17.8 18.5 * B. cacuminata 18.9 19.7 17.4 13.9 * B. dorsalis 18.1 18.9 17.4 13.9 0.8 * B. latifrons 22.4 22.8 19.7 16.6 13.9 13.5 * B. oleae 19.3 19.3 20.1 16.6 15.4 15.8 17.0 * B. zonata 18.9 19.3 18.1 12.4 6.9 6.6 11.2 15.1 * C. cosyra 15.1 15.1 17.0 16.6 15.8 15.4 19.7 18.9 16.6 * C. capitata 13.1 13.1 14.7 17.4 15.4 15.1 20.8 17.4 16.6 6.6 * D. ciliatus 14.3 13.5 15.1 14.7 18.1 17.4 18.5 17.0 15.4 17.0 15.1 * D. demmerezi 18.1 18.9 19.7 16.6 14.3 13.9 16.2 16.2 15.8 16.6 17.0 10.8 * R. cerasi 16.6 16.2 15.8 18.1 17.0 17.4 21.2 21.2 18.9 18.5 17.0 17.4 20.5 * R. pomonella 13.5 13.9 15.4 17.0 15.8 15.4 19.7 17.4 16.6 15.1 11.6 15.1 17.8 14.3 * T. curvicauda 14.3 14.7 13.5 18.1 15.8 15.8 20.8 19.3 18.1 13.1 13.1 19.3 17.8 18.1 15.8 * 123456789 10111213141516 showed sequence divergences below 0.5% species of the genera Dacus, Bactrocera and (McPheron & Han 1997).
Recommended publications
  • Polymorphism and Divergence of Novel Gene Expression Patterns in Drosophila Melanogaster
    HIGHLIGHTED ARTICLE | INVESTIGATION Polymorphism and Divergence of Novel Gene Expression Patterns in Drosophila melanogaster Julie M. Cridland,1 Alex C. Majane, Hayley K. Sheehy, and David J. Begun Department of Evolution and Ecology, University of California, Davis, California 95616 ABSTRACT Transcriptomes may evolve by multiple mechanisms, including the evolution of novel genes, the evolution of transcript abundance, and the evolution of cell, tissue, or organ expression patterns. Here, we focus on the last of these mechanisms in an investigation of tissue and organ shifts in gene expression in Drosophila melanogaster. In contrast to most investigations of expression evolution, we seek to provide a framework for understanding the mechanisms of novel expression patterns on a short population genetic timescale. To do so, we generated population samples of D. melanogaster transcriptomes from five tissues: accessory gland, testis, larval salivary gland, female head, and first-instar larva. We combined these data with comparable data from two outgroups to characterize gains and losses of expression, both polymorphic and fixed, in D. melanogaster. We observed a large number of gain- or loss-of-expression phenotypes, most of which were polymorphic within D. melanogaster. Several polymorphic, novel expression phenotypes were strongly influenced by segregating cis-acting variants. In support of previous literature on the evolution of novelties functioning in male reproduction, we observed many more novel expression phenotypes in the testis and accessory gland than in other tissues. Additionally, genes showing novel expression phenotypes tend to exhibit greater tissue-specific expression. Finally, in addition to qualitatively novel expression phenotypes, we identified genes exhibiting major quantitative expression divergence in the D.
    [Show full text]
  • Overwintering Strategies of Insects in Northern Climates
    Overwintering Strategies of Insects in Northern Climates Joe Nelsen Challenges in winter ● Small ectotherms ● Lack of insulation ● Food shortages (for both herbivores and predators) General strategies - energetic benefits/tradeoffs ● Diapause/dormancy ● Spatial avoidance (migration) Diapause ● Pause in development ○ various life stages ● Strategy for handling all kinds of environmental stressors ● Similar to hibernation in other animals ● Very beneficial for insects who employ this strategy - maximizes fitness ○ Conserving during the “off season” more energy for productive season Diapause - Goldenrod Gall Fly ● Egg laid in stalk of Goldenrod plant ○ Larvae hatch and stimulate gall formation ○ Larvae diapause over winter ○ Larvae pupates and adult emerges in spring ● Gall provides food and protection, but little insulation… ● Larvae produce cryoprotectants to depress freezing point, and nucleators to nucleate ice away from cells… ● Larvae can survive down to -35℃ Ice Nucleation in Gall Flies ● Employs two types of ice nucleators: ○ Fat body cells and calcium phosphate spherules - heterogeneous ice nucleation ● Calcium phosphate spherules ○ Small spheres of crystalline compound that line malpighian tubules of larvae, and nucleate ice in extracellular fluid of tubules ● Fat body cells = rare case of intracellular ice nucleation Calcium phosphate spherules (Mugnano, 1996) Supercooling in Gall Flies ● Gall Fly larvae supercool their tissues using - polyols (sugar alcohols) ○ Sorbitol and Glycerol - primary cryoprotectants ● Lower freezing point
    [Show full text]
  • Fruit Flies (Diptera: Tephritidae) on Vegetable Crops in Reunion Island (Indian Ocean): State of Knowledge, Control Methods and Prospects for Management
    Review Fruit flies (Diptera: Tephritidae) on vegetable crops in Reunion Island (Indian Ocean): state of knowledge, control methods and prospects for management 1 2 3 4 Philippe RYCKEWAERT *, Jean-Philippe DEGUINE , Thierry BRÉVAULT , Jean-François VAYSSIÈRES 1 Cirad, UPR HortSys, Fruit flies (Diptera: Tephritidae) on vegetable crops in Reunion Island (Indian TA B-103/L, CSIRO, Ocean): state of knowledge, control methods and prospects for management. Campus Int. Baillarguet, Abstract –– Significance of fruit flies in vegetable crops. Vegetable crops hold a key position in agri- F-34398 Montpellier, France cultural production in Reunion (Indian Ocean); however, many pests and diseases threaten the profitability [email protected] of this agricultural sector. Fruit flies (Diptera: Tephritidae) figure among the main pests for solanaceous crops and cucurbits (cucumber, zucchini, melon, etc.). Losses of as much as 80% of tomato and 100% of 2 Cirad, UMR PVBMT, Stn. cucurbit crop harvests have been frequently observed. Inventory and distribution. Four fruit fly species Ligne-Paradis, Pôle 3P, belonging to the Tephritidae family cause major damage to vegetable crops in Reunion: Bactrocera cucur- bitae (Coquillet), Dacus ciliatus Loew and D. demmerezi (Bezzi) on Cucurbitaceae, and Neoceratitis cya- 7 chemin de l'IRAT, nescens (Bezzi) on Solanaceae (primarily the tomato). Distribution of each of them is presented. Biology F-97410 Saint-Pierre, La and behavior. A few studies on the biology and behavior of the four fruit flies were conducted in Reunion Réunion, France in the late 1990s. Their main biological characteristics are summarized. Population control methods used in Reunion. Various methods such as chemical control, preventive measures (sanitation), physical 3 Cirad, UR SCA, Univ.
    [Show full text]
  • Hot Peppers As a Host for the Mexican Fruit Fly Anastrepha Ludens (Diptera: Tephritidae)
    Scientific Notes 603 HOT PEPPERS AS A HOST FOR THE MEXICAN FRUIT FLY ANASTREPHA LUDENS (DIPTERA: TEPHRITIDAE) DONALD B. THOMAS United States Department of Agriculture, Agricultural Research Service Kika de la Garza Subtropical Agricultural Research Center, 2413 E. Hwy 83, Weslaco, TX 78596 On the 28th of April, 2003, a shipment of man- will breed in rotting vegetable matter including zano chile peppers (Capsicum pubescens Ruis & chile peppers, but these are non-pest species, and Pavon cv Rocoto) entering the United States at this incident involved sound fruit (Fig. 1). No Pharr, Texas, was found to be infested with insect dipterans are listed as economic pests of chile pep- larvae. USDA inspectors first noted maggots pers by English & Lewis (2004). Baker et al. crawling in the bed of the truck underneath the 16 (1944) cited incidents of A. ludens in “bell peppers cardboard boxes (240 Kg) containing the chile pep- and chili peppers” and there are equally ambigu- pers. Further inspection confirmed that the larvae ous reports of another tephritid, Zonosemata vitti- were in, and emerging from, the fleshy pods. Two gera (Coquillet), taken in “peppers” (Cole 1969). of the larvae were immediately preserved in alco- Zonosemata electa (Say) is known as the “pepper hol while 50 more larvae were kept alive. All spec- maggot” (Peterson 1960) and has been reared imens were hand carried to the nearby USDA- from “Capsicum annuum L.” (Smith & Bush ARS laboratory in Weslaco, Texas for identifica- 1999). The latter solanaceous plant species in- tion. Microscopic examination established that cludes both hot and sweet peppers.
    [Show full text]
  • Anastrepha Ludens
    EPPO Datasheet: Anastrepha ludens Last updated: 2021-01-08 IDENTITY Preferred name: Anastrepha ludens Authority: (Loew) Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Diptera: Tephritidae Other scientific names: Acrotoxa ludens Loew, Anastrepha lathana Stone, Trypeta ludens (Loew) Common names: Mexican fruit fly view more common names online... EPPO Categorization: A1 list view more categorizations online... more photos... EU Categorization: A1 Quarantine pest (Annex II A) EPPO Code: ANSTLU Notes on taxonomy and nomenclature This species was first described in 1873 by Loew as Trypeta ludens. The current combination was proposed by Wulp (1900). The name Anastrepha lathana Stone is considered a synonym. Name, host plant, and distribution data for this species and other fruit flies are available under Fruit Fly Databases on the USDA Compendium of Fruit Fly Host Information. HOSTS Mango (Mangifera indica) and various species of Citrus, especially grapefruit and oranges, are the most important commercial hosts (Hernandez-Ortiz, 1992) of A. ludens. Peach (Prunus persica) and various other fruit crops are attacked less frequently, but more than 40 plant species are reported as at least occasional field hosts of this polyphagous pest (Norrbom, 2004). Thomas (2004) provides an example of A. ludens adaptive capability to infest new host plants, describing the discovery of the introduced manzano pepper (Capsicum pubescens) as an unexpected new host in Mexico. Nearly all of the commercial hosts of A. ludens are exotic. Baker et al. (1944) considered Casimiroa greggii (Rutaceae) to be the only native wild host, although three other Casimiroa spp. (Jirón et al., 1988) and several other wild native plants could also have been original hosts.
    [Show full text]
  • Diccionario Campesino Hondureño Jeffery W. Bentley1 Prólogo Como
    Diccionario campesino hondureño Jeffery W. Bentley1 Prólogo Los campesinos tienen un vocabulario enorme, del cual este diccionario documenta una parte. Los campesinos llevan una vida verbal, con poca influencia de medios visuales como el periódico, el cine y la televisión. Tienen un vocabulario grande, a pesar de que muchos de ellos no saben leer ni escribir. El conversar y escuchar la radio son fuentes importantes de información y diversión. En el campo se estima mucho una conversación con gracia. Mucha gente de la ciudad cree que los campesinos usan palabras inventadas por ellos mismos. Sin embargo, la mayoría son palabras antiguas, con raíces en idiomas viejos, como latín o náhuat. Los campesinos saben muchas palabras que los capitalinos no saben, pero que sí se encuentran en el Diccionario de la Lengua Española de la Real Academia. Sin embargo, el español rural hondureño es un idioma moderno, actualizado, que sigue cambiando para servir los intereses de un pueblo en cambio. Pretendemos aquí lograr tres metas. La primera es ayudar a la comunicación con el pueblo rural. En segundo, esperamos documentar en parte el mundo conceptual de la gente de las aldeas, mostrando que sus palabras son claves para conceptos complicados, profundos, con definiciones concretas. Las palabras muestran las categorías conceptuales de la gente. La tercera meta es que por medio de una presentación formal, brindar el prestigio y respeto que merece el hablar del pueblo rural de Honduras. Empecé a escribir el diccionario con un enfoque de dialecto: pensaba que los campesinos por ser un grupo social tenían su propio hablar.
    [Show full text]
  • Papaya Fruit Fly, Toxotrypana Curvicauda Gerstaecker
    EENY-021 Papaya Fruit Fly (suggested common name), Toxotrypana curvicauda Gerstaecker (Insecta: Diptera: Tephritidae)1 H. L. Selman, J. B. Heppner, and T. R. Fasulo2 Introduction Venezuela). In the United States, the fly is found in south- ern Texas and southern Florida. The papaya fruit fly, Toxotrypana curvicauda Gerstaecker, is the principal insect pest of papaya (Carica papaya L.) throughout the tropical and subtropical areas of the New World. The insect was introduced into Florida in 1905, most likely from the West Indies on papaya shipments. It first became established in the Florida Keys and Miami, then spread throughout the state wherever papayas are grown. Papaya fruit fly larvae and adults have been found in Florida in every month of the year. Although originally considered to be monophagous, infesting only wild and cultivated papaya, the insect has also been reported on mango and milkweed in Florida, and other plant species in Mexico. Figure 1. Adult female papaya fruit fly, Toxotrypana curvicauda Synonymy Gerstaecker. Credits: Doug Caldwell, UF/IFAS Mikimyia furcifera Bigot. Description Distribution Adult The papaya fruit fly is distributed throughout the Carib- Commonly mistaken for a vespid wasp due to its size, form, bean, particularly in Puerto Rico, the Dominican Republic, coloration, and behavior, the papaya fruit fly is predomi- Trinidad, Cuba, and the Bahamas. It is also found in nantly yellow marked with black. The female has a very Central America (Belize, Costa Rica, Guatemala, Hon- long, slender abdomen with a greatly elongated, curved duras, Mexico, Panama) and South America (Columbia, ovipositor which exceeds the length of its body (body length: 8.5–12.5 mm; ovipositor length: 9–14 mm).
    [Show full text]
  • Diptera: Tephritidae)
    ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 28 (online 008): 1–9 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 17.12.2019 ANDRZEJ PALACZYK1 , ANNA KLASA2, ANDRZEJ SZLACHETKA3 First record in Poland and remarks on the origin of the northern populations of Goniglossum wiedemanni MEIGEN, 1826 (Diptera: Tephritidae) http://doi.org/10.5281/zenodo.3580897 1 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31–016 Kraków, Poland, e-mail: [email protected] 2 Ojców National Park, 32–045 Sułoszowa, Ojców 9, e-mail: [email protected] 3 Parszowice 81, 59–330 Ścinawa, e-mail: [email protected] Abstract: The fruit fly Goniglossum wiedemanni has been recorded from Poland for the first time. Found in a single locality (Parszowice) in Lower Silesia, this species was recorded in a garden on Bryonia alba. Notes on the identification, biology and remarks on the general distribution and origin of the northern populations of this species are given. Colour photographs of the habitus and live specimens are also provided. Key words: Goniglossum wiedemanni, Carpomyini, species new for Poland, Lower Silesia, general distribution, Bryonia alba. INTRODUCTION Species from the family Tephritidae, the larvae of which develop in fruit, belong to the subfamilies Dacinae and Trypetinae. They occur most numerously in regions with a tropical or subtropical climate, where they pose a serious economic problem: in some areas they give rise to crop losses worth many millions of dollars. In central Europe, there are only a few species whose larvae feed on fruit; they belong exclusively to the tribes Carpomyini and Trypetini from the subfamily Trypetinae.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • 54 Cucumeropsis Mannii Reverses High-Fat Diet Induced Metabolic
    [Frontiers in Bioscience, Elite, 13, 54-76, Jan 1, 2021] Cucumeropsis mannii reverses high-fat diet induced metabolic derangement and oxidative stress Anthony T Olofinnade1, Adejoke Y Onaolapo2, Azurra Stefanucci3, Adriano Mollica3, Olugbenga A Olowe4, Olakunle J Onaolapo5 1Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Ikeja, Lagos State, Nigeria, 2Behavioral Neuroscience and Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria, 3Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy, 4Molecular Bacteriology Unit, Department of Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria, 5Behavioral Neuroscience and Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Materials and methods 3.1. Chemicals 3.2. Cucumeropsis mannii 3.3. Phytochemical screening 3.3.1. Determination of total phenol contents 3.3.2. Determination of total flavonoid content 3.3.3. Determination of ascorbic acid content 3.3.4. Antioxidant activity 3.4. Animals 3.5. Diet 3.6. Experimental method 3.7. Behavioural tests 3.7.1. Open field 3.7.2. Memory tests 3.7.3. Anxiety-related behaviour in the elevated plus maze 3.8. Blood collection 3.9. Tissue homogenisation 3.10. Biochemical tests 3.10.1. Liver and renal function tests 3.10.2. Lipid profile 3.10.3. Superoxide dismutase 3.10.4. Lipid peroxidation (Malondialdehyde) 3.10.5 Acetylcholinesterase activity 3.10.6. γ-amino-butyric acid (GABA) levels 3.11.
    [Show full text]
  • Diptera: Tephritidae) Research in Latin America: Myths, Realities and Dreams
    Dezembro, 1999 An. Soc. Entomol. Brasil 28(4) 565 FORUM Fruit Fly (Diptera: Tephritidae) Research in Latin America: Myths, Realities and Dreams MARTÍN ALUJA Instituto de Ecología, A.C., Apartado Postal 63, C.P. 91000, Xalapa, Veracruz, Mexico This article is dedicated to J.S. Morgante, R.A. Zucchi, A. Malavasi, F.S. Zucoloto, A.S. Nascimento, S. Bressan, L.A.B. Salles, and A. Kovaleski who have greatly contributed to our knowledge on fruit flies and their parasitoids in Latin America An. Soc. Entomol. Brasil 28(4): 565-594 (1999) A Pesquisa com Moscas-das-Frutas (Diptera: Tephritidae) na América Latina: Mitos, Realidade e Perspectivas RESUMO – Apresento uma avaliação crítica da pesquisa com moscas-das-frutas na América Latina baseada na noção de que muitos mitos e mal-entendidos são transmitidos a estudantes, jovens pesquisadores ou administrações oficiais. Pondero que depois de um esclarecedor início de século, durante o qual muitas descobertas significativas foram feitas sobre a história natural desses insetos, pouco progresso tem sido observado em muitas áreas de pesquisas e manejo de moscas-das-frutas na América Latina durante os últimos 50 anos. Isso tem sido causado em parte pela escassez de estudos sob condições naturais, bem com pela abordagem reducionista utilizada no estudo desses insetos maravilhosos, considerando as espécies individualmente, ou apenas as espécies-praga. Para interromper esse círculo vicioso, proponho que demos mais atenção à história natural das espécies, independente de sua importância econômica, ampliemos o escopo e o período de tempo de nossos estudos, fortaleçamos os fundamentos teóricos e ecológicos das pesquisas com moscas-das-frutas na América Latina e enfatizemos o enfoque comparativo sempre que possível.
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]