Qualitative Analysis of Synchronizing Probabilistic Systems Mahsa Shirmohammadi

Total Page:16

File Type:pdf, Size:1020Kb

Qualitative Analysis of Synchronizing Probabilistic Systems Mahsa Shirmohammadi Qualitative analysis of synchronizing probabilistic systems Mahsa Shirmohammadi To cite this version: Mahsa Shirmohammadi. Qualitative analysis of synchronizing probabilistic systems. Numerical Anal- ysis [cs.NA]. École normale supérieure de Cachan - ENS Cachan; Université libre de Bruxelles (1970-..), 2014. English. NNT : 2014DENS0054. tel-01153942 HAL Id: tel-01153942 https://tel.archives-ouvertes.fr/tel-01153942 Submitted on 20 May 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ LIBRE DE BRUXELLES ÉCOLE NORMALE SUPÉRIEURE Service des méthodes formelles DE CACHAN et vérification Laboratoire spécification et vérification Qualitative Analysis of Probabilistic Synchronizing Systems Mahsa Shirmohammadi Dissertation submitted for the joint degree of Doctor of Philosophy in computer science from Université Libre de Bruxelles, Belgium and Ecole Normale Supérieure de Cachan, France Committee in charge: Laurent Doyen: Supervisor Thierry Massart: Supervisor Stefan Kiefer: Reviewer Jeremy Sproston: Reviewer Joost-Pieter Katoen: Examiner Jean François Raskin: Examiner Béatrice Bérard: Examiner Emmanuel Filiot: Examiner Defense date: 10th December 2014 To Maryam, my mother. Acknowledgment I gratefully acknowledge all who supported me to accomplish my wish. Being so lucky to have supports from several countries and in several languages; I try to mention all, however I am surely bound to forget a few. Laurent, I admire the way you turn science into art. Your seriousness, patience, insights, enthusiasm and not to forget your expectations motivated me to work hard, to be thirsty to learn how to carry out deep research, write clear proofs and give good talks. I am so grateful that you made me rewrite proofs several times, for some more than there are fingers in a hand, to reformulate and simplify my ideas and to turn a problem up and down, and look from one angle to another. Wishing that I hadfilled my backpack with more of your knowledge and advices, I am at the same time grateful for the freedom I had while writing my thesis; I found my academic personality those days, thanks Laurent. Thierry, we have heard “doubt your beliefs and believe in your doubts” more than once from Laurent; however the one who taught it to me is you. I will always remain amazed by your capability offinding mistakes in proofs and counter examples for conjectures. You taught me to question and challenge myself, to not be easily convinced, thanks for all of those, and much more for the social support you never forgot to offer me. Thanks for welcoming me atfirst in Brussels, for helping me integrate in my new life, for simply being ’there’ when the sensitivity of a girl overlapped with her professionalism. Thanks Thierry. I am so pleased that Stefan Kiefer, Jeremy Sproston, Jean François Raskin, Joost-Pieter Katoen, Béatrice Bérard and Emmanuel Filiot accepted to be the other jury members of my thesis. A further thank for all asked questions during my private defense, some of which spark new directions of research. I am grateful to the Belgian national fund for scientific research (F.N.R.S.) and Inter- national relation office of ENS de Cachan which provided me with two scholarships during my study: one allowed me to fully concentrate on my thesis, and the other one facilitated my dual life between France and Belgium over three years. I should not forget any member of LSV (ENS de Cachan) and the Verification group at ULB, with a special mention to Benedikt, Frédéric, Gilles, Dietmar, Luc, Cristina, Thida, Thomas and Julien who smiled at me and made refreshing small talks every time I met them during coffee breaks. I also appreciate all the helps I received from the secretaries of both labs: Pascaline, Maryka, Véronique and Virgine several times took care of administrative papers instead of the lost-in-French Mahsa. I wish to say thanks to Nicolas Markey (a big thanks), Stéphanie Delaune and Alain Finkel for constructive advice; to Kim Larsen and Line for welcoming me in Aalborg university while collaborating; to Alexander for teaching me how to teach; to Sylvain for saving my introduction; to Nathann for knocking the door of my office in a gloomy winter day; to all adorable girls who surrounded both me and my surviving feminine trait: Sinem jan janam, dear Aina, delicate Marie, small mommy Sandie, strong Raffaella, happiest ever Barbara, lively Aiswarya, organized Laure, fun Juliette and the other fun Juliette, kind Eli, i sportive Line, creative Carla, hard-working Atefeh, backgammon-champion Öykü, eastern- soul Xiajou, sweet Agathe, the only-musician-friend Nona and far-away Eleni (girls, I lived moments with you, your weddings, your 25th, 30th birthdays, your pregnancy worried days, your graduations, your love or hate days, simply normal days, thank you, thank you for all); to Gabriel and Tristan to be myfirst and so good friends in Europe; to Guillermo, Romain and the other Romain for being such unique charming office-mates, and for enjoying summer BBQs where I have to mention Ocan and Mathieu, the delicious- sauce maker; to Chris, Hernan, Vince and César for never rejecting to try what I cook and even complimenting it, and more than that for the friendship and respect between us; to Ali and Hani my best ever friends that keep our relation fresh and deep from such a long distance; to my soul-mates Mina, Mona and Somayeh for not letting me disconnect from the other world of mine by long and late phone conversations; to Mani for lifting spirit words; and to dear Hossein for encouraging me to pursue my post-graduate study and be more independent and more honest. Vincent and Christoph, I am indebted to you guys. Ask me why, and I need to think minutes before taking out one of the hundreds cards from the deck of friendly supports, scientific advices, stressful critical times, relaxed laughs and smiles, sunny and rainy but all memorable days. Vince, you have been so generous to me, so more than what others can guess, so perfectly careful with the fragile glass of my soul, thanks. Chris, you make me look into myself and hunt clues of peace and braveness whose existences were lost over years, thanks. Special thanks to Vince for going through all my thesis, and to Chris for commenting my introduction and my post-doctorate application to Oxford. Thanks Vince, thanks Chris. Madaram Maryam, my mother Maryam, one tip of afinger from your kindness and devotion was sufficient to make me who I am, though you lived your life in each of ours, your children. My eyes have always felt shy to look up at the height of the shadow of your support and to say thanks; I can only write it down as down as my short mount of achievements. Thanks Maryam, Madaram. Mahsa so thankful, after herfirst Thanksgiving dinner at Tony’s place Paris, FMSH library December 2014. ii Abstract Markov decision processes (MDPs) arefinite-state probabilistic systems with both strategic and random choices, hence well-established to model the interactions between a controller and its randomly responding environment. An MDP can be mathematically 1 viewed as a1 2 -player stochastic game played in rounds when the controller chooses an ac- tion, and the environment chooses a successor according to afixed probability distribution. There are two incomparable views on the behavior of an MDP, when the strategic choices arefixed. In the traditional view, an MDP is a generator of sequence of states, called the state-outcome; the winning condition of the player is thus expressed as a set of desired sequences of states that are visited during the game, e.g. Borel condition such as reachability. The computational complexity of related decision problems and memory requirement of winning strategies for the state-outcome conditions are well-studied. Recently, MDPs have been viewed as generators of sequences of probability distributions over states, called the distribution-outcome. We introduce synchronizing conditions defined on distribution-outcomes, which intuitively requires that the probability mass accumulates in some (group of) state(s), possibly in limit. A probability distribution isp-synchronizing if the probability mass is at leastp in some state, and a sequence of probability distributions is always, eventually, weakly, or stronglyp-synchronizing if respectively all, some, infinitely many, or all butfinitely many distributions in the sequence arep-synchronizing. For each synchronizing mode, an MDP can be(i) sure winning if there is a strategy that produces a1-synchronizing sequence;(ii) almost-sure winning if there is a strategy that produces a sequence that is, for allϵ>0, a (1-ϵ)-synchronizing sequence;(iii) limit-sure winning if for allϵ>0, there is a strategy that produces a (1-ϵ)-synchronizing sequence. We consider the problem of deciding whether an MDP is winning, for each synchronizing and winning mode: we establish matching upper and lower complexity bounds of the problems, as well as the memory requirement for optimal winning strategies. As a further contribution, we study synchronization in probabilistic automata (PAs), that are kind of MDPs where controllers are restricted to use only word-strategies; i.e. no ability to observe the history of the system execution, but the number of choices made so far. The synchronizing languages of a PA is then the set of all synchronizing word- strategies: we establish the computational complexity of the emptiness problems for all synchronizing languages in all winning modes.
Recommended publications
  • 1 Sequential Games
    1 Sequential Games We call games where players take turns moving “sequential games”. Sequential games consist of the same elements as normal form games –there are players, rules, outcomes, and payo¤s. However, sequential games have the added element that history of play is now important as players can make decisions conditional on what other players have done. Thus, if two people are playing a game of Chess the second mover is able to observe the …rst mover’s initial move prior to making his initial move. While it is possible to represent sequential games using the strategic (or matrix) form representation of the game it is more instructive at …rst to represent sequential games using a game tree. In addition to the players, actions, outcomes, and payo¤s, the game tree will provide a history of play or a path of play. A very basic example of a sequential game is the Entrant-Incumbent game. The game is described as follows: Consider a game where there is an entrant and an incumbent. The entrant moves …rst and the incumbent observes the entrant’sdecision. The entrant can choose to either enter the market or remain out of the market. If the entrant remains out of the market then the game ends and the entrant receives a payo¤ of 0 while the incumbent receives a payo¤ of 2. If the entrant chooses to enter the market then the incumbent gets to make a choice. The incumbent chooses between …ghting entry or accommodating entry. If the incumbent …ghts the entrant receives a payo¤ of 3 while the incumbent receives a payo¤ of 1.
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • 1 Bertrand Model
    ECON 312: Oligopolisitic Competition 1 Industrial Organization Oligopolistic Competition Both the monopoly and the perfectly competitive market structure has in common is that neither has to concern itself with the strategic choices of its competition. In the former, this is trivially true since there isn't any competition. While the latter is so insignificant that the single firm has no effect. In an oligopoly where there is more than one firm, and yet because the number of firms are small, they each have to consider what the other does. Consider the product launch decision, and pricing decision of Apple in relation to the IPOD models. If the features of the models it has in the line up is similar to Creative Technology's, it would have to be concerned with the pricing decision, and the timing of its announcement in relation to that of the other firm. We will now begin the exposition of Oligopolistic Competition. 1 Bertrand Model Firms can compete on several variables, and levels, for example, they can compete based on their choices of prices, quantity, and quality. The most basic and funda- mental competition pertains to pricing choices. The Bertrand Model is examines the interdependence between rivals' decisions in terms of pricing decisions. The assumptions of the model are: 1. 2 firms in the market, i 2 f1; 2g. 2. Goods produced are homogenous, ) products are perfect substitutes. 3. Firms set prices simultaneously. 4. Each firm has the same constant marginal cost of c. What is the equilibrium, or best strategy of each firm? The answer is that both firms will set the same prices, p1 = p2 = p, and that it will be equal to the marginal ECON 312: Oligopolisitic Competition 2 cost, in other words, the perfectly competitive outcome.
    [Show full text]
  • Chapter 16 Oligopoly and Game Theory Oligopoly Oligopoly
    Chapter 16 “Game theory is the study of how people Oligopoly behave in strategic situations. By ‘strategic’ we mean a situation in which each person, when deciding what actions to take, must and consider how others might respond to that action.” Game Theory Oligopoly Oligopoly • “Oligopoly is a market structure in which only a few • “Figuring out the environment” when there are sellers offer similar or identical products.” rival firms in your market, means guessing (or • As we saw last time, oligopoly differs from the two ‘ideal’ inferring) what the rivals are doing and then cases, perfect competition and monopoly. choosing a “best response” • In the ‘ideal’ cases, the firm just has to figure out the environment (prices for the perfectly competitive firm, • This means that firms in oligopoly markets are demand curve for the monopolist) and select output to playing a ‘game’ against each other. maximize profits • To understand how they might act, we need to • An oligopolist, on the other hand, also has to figure out the understand how players play games. environment before computing the best output. • This is the role of Game Theory. Some Concepts We Will Use Strategies • Strategies • Strategies are the choices that a player is allowed • Payoffs to make. • Sequential Games •Examples: • Simultaneous Games – In game trees (sequential games), the players choose paths or branches from roots or nodes. • Best Responses – In matrix games players choose rows or columns • Equilibrium – In market games, players choose prices, or quantities, • Dominated strategies or R and D levels. • Dominant Strategies. – In Blackjack, players choose whether to stay or draw.
    [Show full text]
  • Dynamic Games Under Bounded Rationality
    Munich Personal RePEc Archive Dynamic Games under Bounded Rationality Zhao, Guo Southwest University for Nationalities 8 March 2015 Online at https://mpra.ub.uni-muenchen.de/62688/ MPRA Paper No. 62688, posted 09 Mar 2015 08:52 UTC Dynamic Games under Bounded Rationality By ZHAO GUO I propose a dynamic game model that is consistent with the paradigm of bounded rationality. Its main advantages over the traditional approach based on perfect rationality are that: (1) the strategy space is a chain-complete partially ordered set; (2) the response function is certain order-preserving map on strategy space; (3) the evolution of economic system can be described by the Dynamical System defined by the response function under iteration; (4) the existence of pure-strategy Nash equilibria can be guaranteed by fixed point theorems for ordered structures, rather than topological structures. This preference-response framework liberates economics from the utility concept, and constitutes a marriage of normal-form and extensive-form games. Among the common assumptions of classical existence theorems for competitive equilibrium, one is central. That is, individuals are assumed to have perfect rationality, so as to maximize their utilities (payoffs in game theoretic usage). With perfect rationality and perfect competition, the competitive equilibrium is completely determined, and the equilibrium depends only on their goals and their environments. With perfect rationality and perfect competition, the classical economic theory turns out to be deductive theory that requires almost no contact with empirical data once its assumptions are accepted as axioms (see Simon 1959). Zhao: Southwest University for Nationalities, Chengdu 610041, China (e-mail: [email protected]).
    [Show full text]
  • UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society
    UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title Language as a Tool for Thought: The Vocabulary of Games Facilitates Strategic Decision Making Permalink https://escholarship.org/uc/item/2n8028tv Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28) ISSN 1069-7977 Authors Keller, Josh Loewenstein, Jeffrey Publication Date 2006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Language as a Tool for Thought: The Vocabulary of Games Facilitates Strategic Decision Making Jeffrey Loewenstein ([email protected]) McCombs School of Business, 1 University Station B6300 Austin, TX 78712 USA Josh Keller ([email protected]) McCombs School of Business, 1 University Station B6300 Austin, TX 78712 USA Abstract thereby influence key decision makers to favor their desired policies. More than 60 years ago, the sociologist Mills People in competitive decision-making situations often make (1939) argued that problems are perceived relative to a poor choices because they inadequately understand the vocabulary. For example, what counts as murder seems decision they are to make, particularly because they fail to straightforward, but should differ substantially across consider contingencies such as how their opponent will react vegans, anti-abortion activists, lawyers, soldiers and the to their choice (Tor & Bazerman, 2004). Accordingly it would be useful to have a generally applicable vocabulary to guide (hopefully extinct) ritual practitioner of human sacrifice people towards effective interpretations of decision situations. (Clark, 1998). The vocabulary of games provides one such toolkit. We One role of language is to invoke particular framings or presented 508 participants with words from the vocabulary of interpretations.
    [Show full text]
  • Extensive Form Games and Backward Induction
    Recap Perfect-Information Extensive-Form Games Extensive Form Games and Backward Induction ISCI 330 Lecture 11 February 13, 2007 Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 1 Recap Perfect-Information Extensive-Form Games Lecture Overview Recap Perfect-Information Extensive-Form Games Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 2 I The extensive form is an alternative representation that makes the temporal structure explicit. I Two variants: I perfect information extensive-form games I imperfect-information extensive-form games Recap Perfect-Information Extensive-Form Games Introduction I The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 3 I Two variants: I perfect information extensive-form games I imperfect-information extensive-form games Recap Perfect-Information Extensive-Form Games Introduction I The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players I The extensive form is an alternative representation that makes the temporal structure explicit. Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 3 Recap Perfect-Information Extensive-Form Games Introduction I The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players I The extensive form is an alternative representation that makes the temporal
    [Show full text]
  • Restoring Fun to Game Theory
    Restoring Fun to Game Theory Avinash Dixit Abstract: The author suggests methods for teaching game theory at an introduc- tory level, using interactive games to be played in the classroom or in computer clusters, clips from movies to be screened and discussed, and excerpts from novels and historical books to be read and discussed. JEL codes: A22, C70 Game theory starts with an unfair advantage over most other scientific subjects—it is applicable to numerous interesting and thought-provoking aspects of decision- making in economics, business, politics, social interactions, and indeed to much of everyday life, making it automatically appealing to students. However, too many teachers and textbook authors lose this advantage by treating the subject in such an abstract and formal way that the students’ eyes glaze over. Even the interests of the abstract theorists will be better served if introductory courses are motivated using examples and classroom games that engage the students’ interest and encourage them to go on to more advanced courses. This will create larger audiences for the abstract game theorists; then they can teach students the mathematics and the rigor that are surely important aspects of the subject at the higher levels. Game theory has become a part of the basic framework of economics, along with, or even replacing in many contexts, the traditional supply-demand frame- work in partial and general equilibrium. Therefore economics students should be introduced to game theory right at the beginning of their studies. Teachers of eco- nomics usually introduce game theory by using economics applications; Cournot duopoly is the favorite vehicle.
    [Show full text]
  • MS&E 246: Lecture 10 Repeated Games
    MS&E 246: Lecture 10 Repeated games Ramesh Johari What is a repeated game? A repeated game is: A dynamic game constructed by playing the same game over and over. It is a dynamic game of imperfect information. This lecture • Finitely repeated games • Infinitely repeated games • Trigger strategies • The folk theorem Stage game At each stage, the same game is played: the stage game G. Assume: • G is a simultaneous move game •In G, player i has: •Action set Ai • Payoff Pi(ai, a-i) Finitely repeated games G(K) : G is repeated K times Information sets: All players observe outcome of each stage. What are: strategies? payoffs? equilibria? History and strategies Period t history ht: ht = (a(0), …, a(t-1)) where a(τ) = action profile played at stage τ Strategy si: Choice of stage t action si(ht) ∈ Ai for each history ht i.e. ai(t) = si(ht) Payoffs Assume payoff = sum of stage game payoffs Example: Prisoner’s dilemma Recall the Prisoner’s dilemma: Player 1 defect cooperate defect (1,1) (4,0) Player 2 cooperate (0,4) (2,2) Example: Prisoner’s dilemma Two volunteers Five rounds No communication allowed! Round 1 2 3 4 5 Total Player 1 1 1 1 1 1 5 Player 2 1 1 1 1 1 5 SPNE Suppose aNE is a stage game NE. Any such NE gives a SPNE: NE Player i plays ai at every stage, regardless of history. Question: Are there any other SPNE? SPNE How do we find SPNE of G(K)? Observe: Subgame starting after history ht is identical to G(K - t) SPNE: Unique stage game NE Suppose G has a unique NE aNE Then regardless of period K history hK , last stage has unique NE aNE NE ⇒ At SPNE, si(hK) = ai SPNE: Backward induction At stage K -1, given s-i(·), player i chooses si(hK -1) to maximize: Pi(si(hK -1), s-i(hK -1)) + Pi(s(hK)) payoff at stage K -1 payoff at stage K SPNE: Backward induction At stage K -1, given s-i(·), player i chooses si(hK -1) to maximize: NE Pi(si(hK -1), s-i(hK -1)) + Pi(a ) payoff at stage K -1 payoff at stage K We know: at last stage, aNE is played.
    [Show full text]
  • Alpha-Beta Pruning
    CMSC 474, Introduction to Game Theory Game-tree Search and Pruning Algorithms Mohammad T. Hajiaghayi University of Maryland Finite perfect-information zero-sum games Finite: finitely many agents, actions, states, histories Perfect information: Every agent knows • all of the players’ utility functions • all of the players’ actions and what they do • the history and current state No simultaneous actions – agents move one-at-a-time Constant sum (or zero-sum): Constant k such that regardless of how the game ends, • Σi=1,…,n ui = k For every such game, there’s an equivalent game in which k = 0 Examples Deterministic: chess, checkers go, gomoku reversi (othello) tic-tac-toe, qubic, connect-four mancala (awari, kalah) 9 men’s morris (merelles, morels, mill) Stochastic: backgammon, monopoly, yahtzee, parcheesi, roulette, craps For now, we’ll consider just the deterministic games Outline A brief history of work on this topic Restatement of the Minimax Theorem Game trees The minimax algorithm α-β pruning Resource limits, approximate evaluation Most of this isn’t in the game-theory book For further information, look at the following Russell & Norvig’s Artificial Intelligence: A Modern Approach • There are 3 editions of this book • In the 2nd edition, it’s Chapter 6 Brief History 1846 (Babbage) designed machine to play tic-tac-toe 1928 (von Neumann) minimax theorem 1944 (von Neumann & Morgenstern) backward induction 1950 (Shannon) minimax algorithm (finite-horizon search) 1951 (Turing) program (on paper) for playing chess 1952–7
    [Show full text]
  • Rationality Assumptions of Game Theory and the Backward Induction Paradox
    16 Rationality assumptions of game theory and the backward induction paradox Andrew M Col man Backward induction Backward induction is a form of logical reasoning, based on the technique of mathematical induction, that is applicable to certain sequential games. I shall illustrate it with a simple version of the ancient game of nim. There are 20 matches on the table, and two players take turns in removing either one or two matches, the winner being the player who takes the last one, leaving the other player unable to move. Ernst Zermelo (1912) proved the first major theorem of game theory to the effect that, in games of this type, either one player or the other must have a guaranteed winning strategy. In this case, which player wins, and how? The player who moves first wins. The game is easily solved by backward induction. We begin at the end: if it is my turn to move and there are either one or two matches left, then I can obviously win, because in either case I can immediately take the last match, leaving my opponent unable to move. Therefore, if it is my opponent's move and there are three matches left, I can win, because my opponent must take either one or two and will therefore have to leave either two or one, whereupon I can win immediately. Therefore, if it is my opponent's turn to move and there are six matches left, I can win, because my opponent will have to leave either four or five, and in either case I can then leave three, which as I have shown ensures that I can win.
    [Show full text]
  • Backward Induction, Or SPNE’S
    LECTURE 10: GAMES IN EXTENSIVE FORM Jan Zouhar Games and Decisions Sequential Move Games 2 so far, we have only dealt with simultaneous games (players make the decisions at the same time, or simply without knowing what the action of their opponent is) in most games played for amusement (cards, chess, other board games), players make moves in turns → sequential move games many economic problems are in the sequential form: English auctions price competition: firms repeatedly charge prices executive compensation (contract signed; then executive works) monetary authority and firms (continually observe and learn actions) … formally, we describe these as games in extensive form (representation using a game tree) Games and Decisions Jan Zouhar Class Game: Century Mark 3 rules: played by fixed pairs of players taking turns at each turn, each player chooses a number (integer) between 1 and 10 inclusive this choice is added to sum of all previous choices (initial sum is 0) the first player to take the cumulative sum above 100 (century) loses the game prize: 5 extra points for the final test (!!!) Volunteers? Games and Decisions Jan Zouhar Class Game: Century Mark (cont’d) 4 Analysis of the game what’s the winning strategy? broadly speaking, bring the sum to 89; then your opponent can’t possibly win actually, it’s enough to bring it to 78; then you can make sure to make it 89 later reasoning like this, the winning positions are: 100, 89, 78, 67, 56, 45, 34, 23, 12, 1 → the first mover can guarantee a win! winning strategy: in
    [Show full text]