Extensive Form Games and Backward Induction

Total Page:16

File Type:pdf, Size:1020Kb

Extensive Form Games and Backward Induction Recap Perfect-Information Extensive-Form Games Extensive Form Games and Backward Induction ISCI 330 Lecture 11 February 13, 2007 Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 1 Recap Perfect-Information Extensive-Form Games Lecture Overview Recap Perfect-Information Extensive-Form Games Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 2 I The extensive form is an alternative representation that makes the temporal structure explicit. I Two variants: I perfect information extensive-form games I imperfect-information extensive-form games Recap Perfect-Information Extensive-Form Games Introduction I The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 3 I Two variants: I perfect information extensive-form games I imperfect-information extensive-form games Recap Perfect-Information Extensive-Form Games Introduction I The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players I The extensive form is an alternative representation that makes the temporal structure explicit. Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 3 Recap Perfect-Information Extensive-Form Games Introduction I The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players I The extensive form is an alternative representation that makes the temporal structure explicit. I Two variants: I perfect information extensive-form games I imperfect-information extensive-form games Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 3 I Each internal node represents a particular player’s ’turn’ I Each branch from this internal node represents a different choice for that player I Each terminal node represents a possible final outcome of the game I Usually written with the basal root on top I Parts of the tree are labeled as follows: I Internal nodes (including the root) are labeled with player identifiers I Branches are labeled with player choices I Terminal nodes are labeled with utility outcomes Recap Perfect-Information Extensive-Form Games Perfect-Information Extensive Form Representation I Represents a finite sequential game as a rooted tree Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 4 I Each branch from this internal node represents a different choice for that player I Each terminal node represents a possible final outcome of the game I Usually written with the basal root on top I Parts of the tree are labeled as follows: I Internal nodes (including the root) are labeled with player identifiers I Branches are labeled with player choices I Terminal nodes are labeled with utility outcomes Recap Perfect-Information Extensive-Form Games Perfect-Information Extensive Form Representation I Represents a finite sequential game as a rooted tree I Each internal node represents a particular player’s ’turn’ Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 4 I Each terminal node represents a possible final outcome of the game I Usually written with the basal root on top I Parts of the tree are labeled as follows: I Internal nodes (including the root) are labeled with player identifiers I Branches are labeled with player choices I Terminal nodes are labeled with utility outcomes Recap Perfect-Information Extensive-Form Games Perfect-Information Extensive Form Representation I Represents a finite sequential game as a rooted tree I Each internal node represents a particular player’s ’turn’ I Each branch from this internal node represents a different choice for that player Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 4 I Usually written with the basal root on top I Parts of the tree are labeled as follows: I Internal nodes (including the root) are labeled with player identifiers I Branches are labeled with player choices I Terminal nodes are labeled with utility outcomes Recap Perfect-Information Extensive-Form Games Perfect-Information Extensive Form Representation I Represents a finite sequential game as a rooted tree I Each internal node represents a particular player’s ’turn’ I Each branch from this internal node represents a different choice for that player I Each terminal node represents a possible final outcome of the game Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 4 I Parts of the tree are labeled as follows: I Internal nodes (including the root) are labeled with player identifiers I Branches are labeled with player choices I Terminal nodes are labeled with utility outcomes Recap Perfect-Information Extensive-Form Games Perfect-Information Extensive Form Representation I Represents a finite sequential game as a rooted tree I Each internal node represents a particular player’s ’turn’ I Each branch from this internal node represents a different choice for that player I Each terminal node represents a possible final outcome of the game I Usually written with the basal root on top Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 4 I Branches are labeled with player choices I Terminal nodes are labeled with utility outcomes Recap Perfect-Information Extensive-Form Games Perfect-Information Extensive Form Representation I Represents a finite sequential game as a rooted tree I Each internal node represents a particular player’s ’turn’ I Each branch from this internal node represents a different choice for that player I Each terminal node represents a possible final outcome of the game I Usually written with the basal root on top I Parts of the tree are labeled as follows: I Internal nodes (including the root) are labeled with player identifiers Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 4 I Terminal nodes are labeled with utility outcomes Recap Perfect-Information Extensive-Form Games Perfect-Information Extensive Form Representation I Represents a finite sequential game as a rooted tree I Each internal node represents a particular player’s ’turn’ I Each branch from this internal node represents a different choice for that player I Each terminal node represents a possible final outcome of the game I Usually written with the basal root on top I Parts of the tree are labeled as follows: I Internal nodes (including the root) are labeled with player identifiers I Branches are labeled with player choices Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 4 Recap Perfect-Information Extensive-Form Games Perfect-Information Extensive Form Representation I Represents a finite sequential game as a rooted tree I Each internal node represents a particular player’s ’turn’ I Each branch from this internal node represents a different choice for that player I Each terminal node represents a possible final outcome of the game I Usually written with the basal root on top I Parts of the tree are labeled as follows: I Internal nodes (including the root) are labeled with player identifiers I Branches are labeled with player choices I Terminal nodes are labeled with utility outcomes Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 4 Get with a partner and decide on a simple sequential game (e.g. tic-tac-toe) and represent it in extended form Recap Perfect-Information Extensive-Form Games Example: the sharing game 1 ¨¨HH ¨ q H ¨¨ HH ¨ H 0–21–12–0 ¨¨ HH ¨¨ HH 222 ¡A ¡A ¡A ¡ A ¡ A ¡ qqq A ¡ A ¡ A ¡ A yesnoyesnoyesno ¡ A ¡ A ¡ A ¡ A ¡ A ¡ A (0,2)(0,0)(1,1)(0,0)(2,0)(0,0) qqqqqq Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 5 Recap Perfect-Information Extensive-Form Games Example: the sharing game 1 ¨¨HH ¨ q H ¨¨ HH ¨ H 0–21–12–0 ¨¨ HH ¨¨ HH 222 ¡A ¡A ¡A ¡ A ¡ A ¡ qqq A ¡ A ¡ A ¡ A yesnoyesnoyesno ¡ A ¡ A ¡ A ¡ A ¡ A ¡ A (0,2)(0,0)(1,1)(0,0)(2,0)(0,0) qqqqqq Get with a partner and decide on a simple sequential game (e.g. tic-tac-toe) and represent it in extended form Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 5 Recap Perfect-Information Extensive-Form Games Lecture Overview Recap Perfect-Information Extensive-Form Games Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 6 Play as a fun game, dividing 100 dollar coins. (Play each partner only once.) Recap Perfect-Information Extensive-Form Games Example: the sharing game 1 ¨¨HH ¨ q H ¨¨ HH ¨ H 0–21–12–0 ¨¨ HH ¨¨ HH 222 ¡A ¡A ¡A ¡ A ¡ A ¡ qqq A ¡ A ¡ A ¡ A yesnoyesnoyesno ¡ A ¡ A ¡ A ¡ A ¡ A ¡ A (0,2)(0,0)(1,1)(0,0)(2,0)(0,0) qqqqqq Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 7 Recap Perfect-Information Extensive-Form Games Example: the sharing game 1 ¨¨HH ¨ q H ¨¨ HH ¨ H 0–21–12–0 ¨¨ HH ¨¨ HH 222 ¡A ¡A ¡A ¡ A ¡ A ¡ qqq A ¡ A ¡ A ¡ A yesnoyesnoyesno ¡ A ¡ A ¡ A ¡ A ¡ A ¡ A (0,2)(0,0)(1,1)(0,0)(2,0)(0,0) qqqqqq Play as a fun game, dividing 100 dollar coins. (Play each partner only once.) Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 7 I player 1: 3; player 2: 8 I Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player. I Can think of a strategy as a complete set of instructions for a proxy who will play for the player in their abscence Recap Perfect-Information Extensive-Form Games Pure Strategies I In the sharing game (splitting 2 coins) how many pure strategies does each player have? Extensive Form Games and Backward Induction ISCI 330 Lecture 11, Slide 8 I Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.
Recommended publications
  • 1 Sequential Games
    1 Sequential Games We call games where players take turns moving “sequential games”. Sequential games consist of the same elements as normal form games –there are players, rules, outcomes, and payo¤s. However, sequential games have the added element that history of play is now important as players can make decisions conditional on what other players have done. Thus, if two people are playing a game of Chess the second mover is able to observe the …rst mover’s initial move prior to making his initial move. While it is possible to represent sequential games using the strategic (or matrix) form representation of the game it is more instructive at …rst to represent sequential games using a game tree. In addition to the players, actions, outcomes, and payo¤s, the game tree will provide a history of play or a path of play. A very basic example of a sequential game is the Entrant-Incumbent game. The game is described as follows: Consider a game where there is an entrant and an incumbent. The entrant moves …rst and the incumbent observes the entrant’sdecision. The entrant can choose to either enter the market or remain out of the market. If the entrant remains out of the market then the game ends and the entrant receives a payo¤ of 0 while the incumbent receives a payo¤ of 2. If the entrant chooses to enter the market then the incumbent gets to make a choice. The incumbent chooses between …ghting entry or accommodating entry. If the incumbent …ghts the entrant receives a payo¤ of 3 while the incumbent receives a payo¤ of 1.
    [Show full text]
  • Notes on Sequential and Repeated Games
    Notes on sequential and repeated games 1 Sequential Move Games Thus far we have examined games in which players make moves simultaneously (or without observing what the other player has done). Using the normal (strategic) form representation of a game we can identify sets of strategies that are best responses to each other (Nash Equilibria). We now focus on sequential games of complete information. We can still use the normal form representation to identify NE but sequential games are richer than that because some players observe other players’decisions before they take action. The fact that some actions are observable may cause some NE of the normal form representation to be inconsistent with what one might think a player would do. Here’sa simple game between an Entrant and an Incumbent. The Entrant moves …rst and the Incumbent observes the Entrant’s action and then gets to make a choice. The Entrant has to decide whether or not he will enter a market or not. Thus, the Entrant’s two strategies are “Enter” or “Stay Out”. If the Entrant chooses “Stay Out” then the game ends. The payo¤s for the Entrant and Incumbent will be 0 and 2 respectively. If the Entrant chooses “Enter” then the Incumbent gets to choose whether or not he will “Fight”or “Accommodate”entry. If the Incumbent chooses “Fight”then the Entrant receives 3 and the Incumbent receives 1. If the Incumbent chooses “Accommodate”then the Entrant receives 2 and the Incumbent receives 1. This game in normal form is Incumbent Fight if Enter Accommodate if Enter .
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • SEQUENTIAL GAMES with PERFECT INFORMATION Example
    SEQUENTIAL GAMES WITH PERFECT INFORMATION Example 4.9 (page 105) Consider the sequential game given in Figure 4.9. We want to apply backward induction to the tree. 0 Vertex B is owned by player two, P2. The payoffs for P2 are 1 and 3, with 3 > 1, so the player picks R . Thus, the payoffs at B become (0, 3). 00 Next, vertex C is also owned by P2 with payoffs 1 and 0. Since 1 > 0, P2 picks L , and the payoffs are (4, 1). Player one, P1, owns A; the choice of L gives a payoff of 0 and R gives a payoff of 4; 4 > 0, so P1 chooses R. The final payoffs are (4, 1). 0 00 We claim that this strategy profile, { R } for P1 and { R ,L } is a Nash equilibrium. Notice that the 0 00 strategy profile gives a choice at each vertex. For the strategy { R ,L } fixed for P2, P1 has a maximal payoff by choosing { R }, ( 0 00 0 00 π1(R, { R ,L }) = 4 π1(R, { R ,L }) = 4 ≥ 0 00 π1(L, { R ,L }) = 0. 0 00 In the same way, for the strategy { R } fixed for P1, P2 has a maximal payoff by choosing { R ,L }, ( 00 0 00 π2(R, {∗,L }) = 1 π2(R, { R ,L }) = 1 ≥ 00 π2(R, {∗,R }) = 0, where ∗ means choose either L0 or R0. Since no change of choice by a player can increase that players own payoff, the strategy profile is called a Nash equilibrium. Notice that the above strategy profile is also a Nash equilibrium on each branch of the game tree, mainly starting at either B or starting at C.
    [Show full text]
  • 1 Bertrand Model
    ECON 312: Oligopolisitic Competition 1 Industrial Organization Oligopolistic Competition Both the monopoly and the perfectly competitive market structure has in common is that neither has to concern itself with the strategic choices of its competition. In the former, this is trivially true since there isn't any competition. While the latter is so insignificant that the single firm has no effect. In an oligopoly where there is more than one firm, and yet because the number of firms are small, they each have to consider what the other does. Consider the product launch decision, and pricing decision of Apple in relation to the IPOD models. If the features of the models it has in the line up is similar to Creative Technology's, it would have to be concerned with the pricing decision, and the timing of its announcement in relation to that of the other firm. We will now begin the exposition of Oligopolistic Competition. 1 Bertrand Model Firms can compete on several variables, and levels, for example, they can compete based on their choices of prices, quantity, and quality. The most basic and funda- mental competition pertains to pricing choices. The Bertrand Model is examines the interdependence between rivals' decisions in terms of pricing decisions. The assumptions of the model are: 1. 2 firms in the market, i 2 f1; 2g. 2. Goods produced are homogenous, ) products are perfect substitutes. 3. Firms set prices simultaneously. 4. Each firm has the same constant marginal cost of c. What is the equilibrium, or best strategy of each firm? The answer is that both firms will set the same prices, p1 = p2 = p, and that it will be equal to the marginal ECON 312: Oligopolisitic Competition 2 cost, in other words, the perfectly competitive outcome.
    [Show full text]
  • Chapter 16 Oligopoly and Game Theory Oligopoly Oligopoly
    Chapter 16 “Game theory is the study of how people Oligopoly behave in strategic situations. By ‘strategic’ we mean a situation in which each person, when deciding what actions to take, must and consider how others might respond to that action.” Game Theory Oligopoly Oligopoly • “Oligopoly is a market structure in which only a few • “Figuring out the environment” when there are sellers offer similar or identical products.” rival firms in your market, means guessing (or • As we saw last time, oligopoly differs from the two ‘ideal’ inferring) what the rivals are doing and then cases, perfect competition and monopoly. choosing a “best response” • In the ‘ideal’ cases, the firm just has to figure out the environment (prices for the perfectly competitive firm, • This means that firms in oligopoly markets are demand curve for the monopolist) and select output to playing a ‘game’ against each other. maximize profits • To understand how they might act, we need to • An oligopolist, on the other hand, also has to figure out the understand how players play games. environment before computing the best output. • This is the role of Game Theory. Some Concepts We Will Use Strategies • Strategies • Strategies are the choices that a player is allowed • Payoffs to make. • Sequential Games •Examples: • Simultaneous Games – In game trees (sequential games), the players choose paths or branches from roots or nodes. • Best Responses – In matrix games players choose rows or columns • Equilibrium – In market games, players choose prices, or quantities, • Dominated strategies or R and D levels. • Dominant Strategies. – In Blackjack, players choose whether to stay or draw.
    [Show full text]
  • Dynamic Games Under Bounded Rationality
    Munich Personal RePEc Archive Dynamic Games under Bounded Rationality Zhao, Guo Southwest University for Nationalities 8 March 2015 Online at https://mpra.ub.uni-muenchen.de/62688/ MPRA Paper No. 62688, posted 09 Mar 2015 08:52 UTC Dynamic Games under Bounded Rationality By ZHAO GUO I propose a dynamic game model that is consistent with the paradigm of bounded rationality. Its main advantages over the traditional approach based on perfect rationality are that: (1) the strategy space is a chain-complete partially ordered set; (2) the response function is certain order-preserving map on strategy space; (3) the evolution of economic system can be described by the Dynamical System defined by the response function under iteration; (4) the existence of pure-strategy Nash equilibria can be guaranteed by fixed point theorems for ordered structures, rather than topological structures. This preference-response framework liberates economics from the utility concept, and constitutes a marriage of normal-form and extensive-form games. Among the common assumptions of classical existence theorems for competitive equilibrium, one is central. That is, individuals are assumed to have perfect rationality, so as to maximize their utilities (payoffs in game theoretic usage). With perfect rationality and perfect competition, the competitive equilibrium is completely determined, and the equilibrium depends only on their goals and their environments. With perfect rationality and perfect competition, the classical economic theory turns out to be deductive theory that requires almost no contact with empirical data once its assumptions are accepted as axioms (see Simon 1959). Zhao: Southwest University for Nationalities, Chengdu 610041, China (e-mail: [email protected]).
    [Show full text]
  • UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society
    UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title Language as a Tool for Thought: The Vocabulary of Games Facilitates Strategic Decision Making Permalink https://escholarship.org/uc/item/2n8028tv Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28) ISSN 1069-7977 Authors Keller, Josh Loewenstein, Jeffrey Publication Date 2006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Language as a Tool for Thought: The Vocabulary of Games Facilitates Strategic Decision Making Jeffrey Loewenstein ([email protected]) McCombs School of Business, 1 University Station B6300 Austin, TX 78712 USA Josh Keller ([email protected]) McCombs School of Business, 1 University Station B6300 Austin, TX 78712 USA Abstract thereby influence key decision makers to favor their desired policies. More than 60 years ago, the sociologist Mills People in competitive decision-making situations often make (1939) argued that problems are perceived relative to a poor choices because they inadequately understand the vocabulary. For example, what counts as murder seems decision they are to make, particularly because they fail to straightforward, but should differ substantially across consider contingencies such as how their opponent will react vegans, anti-abortion activists, lawyers, soldiers and the to their choice (Tor & Bazerman, 2004). Accordingly it would be useful to have a generally applicable vocabulary to guide (hopefully extinct) ritual practitioner of human sacrifice people towards effective interpretations of decision situations. (Clark, 1998). The vocabulary of games provides one such toolkit. We One role of language is to invoke particular framings or presented 508 participants with words from the vocabulary of interpretations.
    [Show full text]
  • The Extensive Form Representation of a Game
    The extensive form representation of a game Nodes, information sets Perfect and imperfect information Addition of random moves of nature (to model uncertainty not related with decisions of other players). Mas-Colell, pp. 221-227, full description in page 227. 1 The Prisoner's dilemma Player 2 confess don't confess Player 1 confess 2.2 10.0 don't confess 0.10 6.6 One extensive form representation of this normal form game is: 2 Player 1 confess don't confess Player 2 Player 2 confessdon't confess confess don't confess 2 10 0 6 payoffs 2 0 10 6 3 Both players decide whether to confess simultaneously (or more exactly, each player decides without any information about the decision of the other player). This is a game of imperfect information: The information set of player 2 contains more than one decision node. 4 The following extensive form represents the same normal form: Player 2 confess don't confess Player 1 Player 1 confessdon't confess confess don't confess 5 Consider now the following extensive form game: Player 1 confess don't confess Player 2 Player 2 confessdon't confess confess don't confess 2 10 6 0 6 payoffs 2 0 10 6 Now player 2 observes the behavior of player 1. This is a game of perfect information. Strategies of player 2: For instance "If player 1 confesses, I…; if he does not confess, then I…" Player 2 has 4 strategies: (c, c), (c, d), (d, c), (d, d) The normal form of this game is: Player 2 c, c c, d d, c d, d Player 1 confess 2.2 2.2 10.0 10.0 don't confess 0.10 6.6 0.10 6.6 There is only one NE, - strategy confess for player 1 and - strategy (c, c) for player 2.
    [Show full text]
  • What Is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
    What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization? Chi Jin Praneeth Netrapalli University of California, Berkeley Microsoft Research, India [email protected] [email protected] Michael I. Jordan University of California, Berkeley [email protected] August 18, 2020 Abstract Minimax optimization has found extensive application in modern machine learning, in settings such as generative adversarial networks (GANs), adversarial training and multi-agent reinforcement learning. As most of these applications involve continuous nonconvex-nonconcave formulations, a very basic question arises—“what is a proper definition of local optima?” Most previous work answers this question using classical notions of equilibria from simultaneous games, where the min-player and the max-player act simultaneously. In contrast, most applications in machine learning, including GANs and adversarial training, correspond to sequential games, where the order of which player acts first is crucial (since minimax is in general not equal to maximin due to the nonconvex-nonconcave nature of the problems). The main contribution of this paper is to propose a proper mathematical definition of local optimality for this sequential setting—local minimax—as well as to present its properties and existence results. Finally, we establish a strong connection to a basic local search algorithm—gradient descent ascent (GDA)—under mild conditions, all stable limit points of GDA are exactly local minimax points up to some degenerate points. 1 Introduction arXiv:1902.00618v3 [cs.LG] 15 Aug 2020 Minimax optimization refers to problems of two agents—one agent tries to minimize the payoff function f : X × Y ! R while the other agent tries to maximize it.
    [Show full text]
  • Finding Strategic Game Equivalent of an Extensive Form Game
    Finding Strategic Game Equivalent of an Extensive Form Game • In an extensive form game, a strategy for a player should specify what action the player will choose at each information set. That is, a strategy is a complete plan for playing a game for a particular player. • Therefore to find the strategic game equivalent of an extensive form game we should follow these steps: 1. First we need to find all strategies for every player. To do that first we find all information sets for every player (including the singleton information sets). If there are many of them we may label them (such as Player 1’s 1st info. set, Player 1’s 2nd info. set, etc.) 2. A strategy should specify what action the player will take in every information set which belongs to him/her. We find all combinations of actions the player can take at these information sets. For example if a player has 3 information sets where • the first one has 2 actions, • the second one has 2 actions, and • the third one has 3 actions then there will be a total of 2 × 2 × 3 = 12 strategies for this player. 3. Once the strategies are obtained for every player the next step is finding the payoffs. For every strategy profile we find the payoff vector that would be obtained in case these strategies are played in the extensive form game. Example: Let’s find the strategic game equivalent of the following 3-level centipede game. (3,1)r (2,3)r (6,2)r (4,6)r (12,4)r (8,12)r S S S S S S r 1 2 1 2 1 2 (24,8) C C C C C C 1.
    [Show full text]
  • Revealed Preferences of Individual Players in Sequential Games
    Revealed Preferences of Individual Players in Sequential Games Hiroki Nishimura∗ January 14, 2021 Abstract This paper studies rational choice behavior of a player in sequential games of perfect and complete information without an assumption that the other players who join the same games are rational. The model of individually rational choice is defined through a decomposition of the behavioral norm assumed in the subgame perfect equilibria, and we propose a set of axioms on collective choice behavior that characterize the individual rationality obtained as such. As the choice of subgame perfect equilibrium paths is a special case where all players involved in the choice environment are each individually rational, the paper offers testable characterizations of both individual rationality and collective rationality in sequential games. JEL Classification: C72, D70. Keywords: Revealed preference, individual rationality, subgame perfect equilibrium. 1 Introduction A game is a description of strategic interactions among players. The players involved in a game simultaneously or dynamically choose their actions, and their payoffs are determined by a profile of chosen actions. A number of solution concepts for games, such as the Nash equilibrium or the subgame perfect equilibrium, have been developed in the literature in order to study collective choice of actions made by the players. In turn, these solution concepts are widely applied in economic analysis to provide credible predictions for the choice of economic agents who reside in situations approximated by games. ∗Department of Economics, University of California Riverside. Email: [email protected]. I am indebted to Efe A. Ok for his continuous support and encouragement. I would also like to thank Indrajit Ray, anonymous referees, and an associate editor for their thoughtful suggestions.
    [Show full text]