1 Bertrand Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microeconomics Exam Review Chapters 8 Through 12, 16, 17 and 19
MICROECONOMICS EXAM REVIEW CHAPTERS 8 THROUGH 12, 16, 17 AND 19 Key Terms and Concepts to Know CHAPTER 8 - PERFECT COMPETITION I. An Introduction to Perfect Competition A. Perfectly Competitive Market Structure: • Has many buyers and sellers. • Sells a commodity or standardized product. • Has buyers and sellers who are fully informed. • Has firms and resources that are freely mobile. • Perfectly competitive firm is a price taker; one firm has no control over price. B. Demand Under Perfect Competition: Horizontal line at the market price II. Short-Run Profit Maximization A. Total Revenue Minus Total Cost: The firm maximizes economic profit by finding the quantity at which total revenue exceeds total cost by the greatest amount. B. Marginal Revenue Equals Marginal Cost in Equilibrium • Marginal Revenue: The change in total revenue from selling another unit of output: • MR = ΔTR/Δq • In perfect competition, marginal revenue equals market price. • Market price = Marginal revenue = Average revenue • The firm increases output as long as marginal revenue exceeds marginal cost. • Golden rule of profit maximization. The firm maximizes profit by producing where marginal cost equals marginal revenue. C. Economic Profit in Short-Run: Because the marginal revenue curve is horizontal at the market price, it is also the firm’s demand curve. The firm can sell any quantity at this price. III. Minimizing Short-Run Losses The short run is defined as a period too short to allow existing firms to leave the industry. The following is a summary of short-run behavior: A. Fixed Costs and Minimizing Losses: If a firm shuts down, it must still pay fixed costs. -
1 Sequential Games
1 Sequential Games We call games where players take turns moving “sequential games”. Sequential games consist of the same elements as normal form games –there are players, rules, outcomes, and payo¤s. However, sequential games have the added element that history of play is now important as players can make decisions conditional on what other players have done. Thus, if two people are playing a game of Chess the second mover is able to observe the …rst mover’s initial move prior to making his initial move. While it is possible to represent sequential games using the strategic (or matrix) form representation of the game it is more instructive at …rst to represent sequential games using a game tree. In addition to the players, actions, outcomes, and payo¤s, the game tree will provide a history of play or a path of play. A very basic example of a sequential game is the Entrant-Incumbent game. The game is described as follows: Consider a game where there is an entrant and an incumbent. The entrant moves …rst and the incumbent observes the entrant’sdecision. The entrant can choose to either enter the market or remain out of the market. If the entrant remains out of the market then the game ends and the entrant receives a payo¤ of 0 while the incumbent receives a payo¤ of 2. If the entrant chooses to enter the market then the incumbent gets to make a choice. The incumbent chooses between …ghting entry or accommodating entry. If the incumbent …ghts the entrant receives a payo¤ of 3 while the incumbent receives a payo¤ of 1. -
1 Continuous Strategy Markov Equilibrium in a Dynamic Duopoly
1 Continuous Strategy Markov Equilibrium in a Dynamic Duopoly with Capacity Constraints* Milan Horniacˇek CERGE-EI, Charles University and Academy of Sciences of Czech Republic, Prague The paper deals with an infinite horizon dynamic duopoly composed of price setting firms, producing differentiated products, with sales constrained by capacities that are increased or maintained by investments. We analyze continuous strategy Markov perfect equilibria, in which strategies are continuous functions of (only) current capacities. The weakest possible criterion of a renegotiation-proofness, called renegotiation-quasi-proofness, eliminates all equilibria in which some continuation equilibrium path in the capacity space does not converge to a Pareto efficient capacity vector giving both firms no lower single period net profit than some (but the same for both firms) capacity unconstrained Bertrand equilibrium. Keywords: capacity creating investments, continuous Markov strategies, dynamic duopoly, renegotiation-proofness. Journal of Economic Literature Classification Numbers: C73, D43, L13. * This is a revised version of the paper that I presented at the 1996 Econometric Society European Meeting in Istanbul. I am indebted to participants in the session ET47 Oligopoly Theory for helpful and encouraging comments. Cristina Rata provided an able research assistance. The usual caveat applies. CERGE ESC Grant is acknowledged as a partial source of financial support. 2 1. INTRODUCTION Many infinite horizon, discrete time, deterministic oligopoly models involve physical links between periods, i.e., they are oligopolistic difference games. These links can stem, for example, from investment or advertising. In difference games, a current state, which is payoff relevant, should be taken into account by rational players when deciding on a current period action. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
Amazon's Antitrust Paradox
LINA M. KHAN Amazon’s Antitrust Paradox abstract. Amazon is the titan of twenty-first century commerce. In addition to being a re- tailer, it is now a marketing platform, a delivery and logistics network, a payment service, a credit lender, an auction house, a major book publisher, a producer of television and films, a fashion designer, a hardware manufacturer, and a leading host of cloud server space. Although Amazon has clocked staggering growth, it generates meager profits, choosing to price below-cost and ex- pand widely instead. Through this strategy, the company has positioned itself at the center of e- commerce and now serves as essential infrastructure for a host of other businesses that depend upon it. Elements of the firm’s structure and conduct pose anticompetitive concerns—yet it has escaped antitrust scrutiny. This Note argues that the current framework in antitrust—specifically its pegging competi- tion to “consumer welfare,” defined as short-term price effects—is unequipped to capture the ar- chitecture of market power in the modern economy. We cannot cognize the potential harms to competition posed by Amazon’s dominance if we measure competition primarily through price and output. Specifically, current doctrine underappreciates the risk of predatory pricing and how integration across distinct business lines may prove anticompetitive. These concerns are height- ened in the context of online platforms for two reasons. First, the economics of platform markets create incentives for a company to pursue growth over profits, a strategy that investors have re- warded. Under these conditions, predatory pricing becomes highly rational—even as existing doctrine treats it as irrational and therefore implausible. -
A Cournot-Nash–Bertrand Game Theory Model of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers
A Cournot-Nash–Bertrand Game Theory Model of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers Anna Nagurney1,2 and Tilman Wolf3 1Department of Operations and Information Management Isenberg School of Management University of Massachusetts, Amherst, Massachusetts 01003 2School of Business, Economics and Law University of Gothenburg, Gothenburg, Sweden 3Department of Electrical and Computer Engineering University of Massachusetts, Amherst, Massachusetts 01003 December 2012; revised May and July 2013 Computational Management Science 11(4), (2014), pp 475-502. Abstract: This paper develops a game theory model of a service-oriented Internet in which profit-maximizing service providers provide substitutable (but not identical) services and compete with the quantities of services in a Cournot-Nash manner, whereas the network transport providers, which transport the services to the users at the demand markets, and are also profit-maximizers, compete with prices in Bertrand fashion and on quality. The consumers respond to the composition of service and network provision through the demand price functions, which are both quantity and quality dependent. We derive the governing equilibrium conditions of the integrated game and show that it satisfies a variational in- equality problem. We then describe the underlying dynamics, and provide some qualitative properties, including stability analysis. The proposed algorithmic scheme tracks, in discrete- time, the dynamic evolution of the service volumes, quality levels, and the prices until an approximation of a stationary point (within the desired convergence tolerance) is achieved. Numerical examples demonstrate the modeling and computational framework. Key words: network economics, game theory, oligopolistic competition, service differen- tiation, quality competition, Cournot-Nash equilibrium, service-oriented Internet, Bertrand competition, variational inequalities, projected dynamical systems 1 1. -
Topics in Mean Field Games Theory & Applications in Economics And
Topics in Mean Field Games Theory & Applications in Economics and Quantitative Finance Charafeddine Mouzouni To cite this version: Charafeddine Mouzouni. Topics in Mean Field Games Theory & Applications in Economics and Quan- titative Finance. Analysis of PDEs [math.AP]. Ecole Centrale Lyon, 2019. English. tel-02084892 HAL Id: tel-02084892 https://hal.archives-ouvertes.fr/tel-02084892 Submitted on 29 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N◦ d’ordre NNT : 2019LYSEC006 THESE` de DOCTORAT DE L’UNIVERSITE´ DE LYON oper´ ee´ au sein de l’Ecole Centrale de Lyon Ecole Doctorale 512 Ecole Doctorale InfoMaths Specialit´ e´ de doctorat : Mathematiques´ et applications Discipline : Mathematiques´ Soutenue publiquement le 25/03/2019, par Charafeddine MOUZOUNI Topics in Mean Field Games Theory & Applications in Economics and Quantitative Finance Devant le jury compos´ede: M. Yves Achdou Professeur, Universite´ Paris Diderot President´ M. Martino Bardi Professeur, Universita` di Padova Rapporteur M. Jean-Franc¸ois Chassagneux Professeur, Universite´ Paris Diderot Rapporteur M. Franc¸ois Delarue Professeur, Universite´ Nice-Sophia Antipolis Examinateur Mme. Catherine Rainer Maˆıtre de conferences,´ Universite´ de Brest Examinatrice M. Francisco Silva Maˆıtre de conferences,´ Universite´ de Limoges Examinateur Mme. -
Apple and Amazon's Antitrust Antics
APPLE AND AMAZON’S ANTITRUST ANTICS: TWO WRONGS DON’T MAKE A RIGHT, BUT MAYBE THEY SHOULD Kerry Gutknecht‡ I. INTRODUCTION The exploding market for books of all kinds in the form of digital files (“e- books”), which can be read on mobile devices and personal computers, has attracted aggressive competition between the two leading online e-book retail- ers, Amazon, Inc. (“Amazon”) and Apple Inc. (“Apple”).1 While both Amazon and Apple have been accused by critics of engaging in anticompetitive practic- es with regard to e-book sales,2 the U.S. Department of Justice has focused on Apple. In 2012, federal prosecutors brought an antitrust suit against Apple and five of the nation’s largest book publishers—HarperCollins Publishers LLC (“HarperCollins”), Hachette Book Group, Inc. and Hachette Digital (“Hachette”); Holtzbrinck Publishers, LLC d/b/a Macmillan (“Macmillan”); Penguin Group (USA), Inc. (“Penguin”); and Simon & Schuster, Inc. and (“Simon & Schuster”) (collectively, the “Publisher Defendants”)3—for collud- ing in violation of the Sherman Act to raise the retail prices of e-books.4 Each ‡ J.D. Candidate, May 2014, The Catholic University of America, Columbus School of Law. The author would like to thank Calla Brown for her daily support and the CommLaw Conspectus staff for their diligent effort during the writing and editing process. Finally, a special thanks to Antonio F. Perez for providing expert advice during the writing of this paper. 1 Complaint at 2–3, United States v. Apple Inc., 952 F. Supp. 2d 638 (S.D.N.Y. 2013) (No. 12 CV 2826) [hereinafter Complaint]. -
The Marginal Cost Controversy in Intellectual Property John F Duffyt
The Marginal Cost Controversy in Intellectual Property John F Duffyt In 1938, Harold Hotelling formally advanced the position that "the optimum of the general welfare corresponds to the sale of everything at marginal cost."' To reach this optimum, Hotelling argued, general gov- ernment revenues should "be applied to cover the fixed costs of electric power plants, waterworks, railroad, and other industries in which the fixed costs are large, so as to reduce to the level of marginal cost the prices charged for the services and products of these industries."2 Other major economists of the day subsequently endorsed Hotelling's view' and, in the late 1930s and early 1940s, it "aroused considerable interest and [had] al- ready found its way into some textbooks on public utility economics."' In his 1946 article, The MarginalCost Controversy,Ronald Coase set forth a detailed rejoinder to the Hotelling thesis, concluding that the social subsidies proposed by Hotelling "would bring about a maldistribu- tion of the factors of production, a maldistribution of income and proba- bly a loss similar to that which the scheme was designed to avoid."' The article, which Richard Posner would later hail as Coase's "most impor- tant" contribution to the field of public utility pricing,6 was part of a wave of literature debating the merits of the Hotelling proposal.' Yet the very success of the critique by Coase and others has led to the entire contro- t Professor of Law, George Washington University Law School. The author thanks Michael Abramowicz. Richard Hynes, Eric Kades. Doug Lichtman, Chip Lupu, Alan Meese, Richard Pierce, Anne Sprightley Ryan, and Joshua Schwartz for comments on earlier drafts. -
ABSTRACT Asymptotics for Mean Field Games of Market Competition
ABSTRACT Asymptotics for mean field games of market competition Marcus A. Laurel Director: P. Jameson Graber, Ph.D. The goal of this thesis is to analyze the limiting behavior of solutions to a system of mean field games developed by Chan and Sircar to model Bertrand and Cournot competition. We first provide a basic introduction to control theory, game theory, and ultimately mean field game theory. With these preliminaries out of the way, we then introduce the model first proposed by Chan and Sircar, namely a cou- pled system of two nonlinear partial differential equations. This model contains a parameter that measures the degree of interaction between players; we are inter- ested in the regime goes to 0. We then prove a collection of theorems which give estimates on the limiting behavior of solutions as goes to 0 and ultimately obtain recursive growth bounds of polynomial approximations to solutions. Finally, we state some open questions for further research. APPROVED BY DIRECTOR OF HONORS THESIS: Dr. P. Jameson Graber, Department of Mathematics APPROVED BY THE HONORS PROGRAM: Dr. Elizabeth Corey, Director DATE: ASYMPTOTICS FOR MEAN FIELD GAMES OF MARKET COMPETITION A Thesis Submitted to the Faculty of Baylor University In Partial Fulfillment of the Requirements for the Honors Program By Marcus A. Laurel Waco, Texas December 2018 TABLE OF CONTENTS Acknowledgments . iii Dedication . iv Chapter One: Introductions of Pertinent Concepts . 1 Chapter Two: Bertrand and Cournot Mean Field Games . 15 Chapter Three: Proof of Error Estimates . 21 Chapter Four: Conclusions and Open Questions . 46 References . 48 ii ACKNOWLEDGMENTS I am particularly grateful toward my thesis mentor, Dr. -
Chapter 16 Oligopoly and Game Theory Oligopoly Oligopoly
Chapter 16 “Game theory is the study of how people Oligopoly behave in strategic situations. By ‘strategic’ we mean a situation in which each person, when deciding what actions to take, must and consider how others might respond to that action.” Game Theory Oligopoly Oligopoly • “Oligopoly is a market structure in which only a few • “Figuring out the environment” when there are sellers offer similar or identical products.” rival firms in your market, means guessing (or • As we saw last time, oligopoly differs from the two ‘ideal’ inferring) what the rivals are doing and then cases, perfect competition and monopoly. choosing a “best response” • In the ‘ideal’ cases, the firm just has to figure out the environment (prices for the perfectly competitive firm, • This means that firms in oligopoly markets are demand curve for the monopolist) and select output to playing a ‘game’ against each other. maximize profits • To understand how they might act, we need to • An oligopolist, on the other hand, also has to figure out the understand how players play games. environment before computing the best output. • This is the role of Game Theory. Some Concepts We Will Use Strategies • Strategies • Strategies are the choices that a player is allowed • Payoffs to make. • Sequential Games •Examples: • Simultaneous Games – In game trees (sequential games), the players choose paths or branches from roots or nodes. • Best Responses – In matrix games players choose rows or columns • Equilibrium – In market games, players choose prices, or quantities, • Dominated strategies or R and D levels. • Dominant Strategies. – In Blackjack, players choose whether to stay or draw. -
Dynamic Games Under Bounded Rationality
Munich Personal RePEc Archive Dynamic Games under Bounded Rationality Zhao, Guo Southwest University for Nationalities 8 March 2015 Online at https://mpra.ub.uni-muenchen.de/62688/ MPRA Paper No. 62688, posted 09 Mar 2015 08:52 UTC Dynamic Games under Bounded Rationality By ZHAO GUO I propose a dynamic game model that is consistent with the paradigm of bounded rationality. Its main advantages over the traditional approach based on perfect rationality are that: (1) the strategy space is a chain-complete partially ordered set; (2) the response function is certain order-preserving map on strategy space; (3) the evolution of economic system can be described by the Dynamical System defined by the response function under iteration; (4) the existence of pure-strategy Nash equilibria can be guaranteed by fixed point theorems for ordered structures, rather than topological structures. This preference-response framework liberates economics from the utility concept, and constitutes a marriage of normal-form and extensive-form games. Among the common assumptions of classical existence theorems for competitive equilibrium, one is central. That is, individuals are assumed to have perfect rationality, so as to maximize their utilities (payoffs in game theoretic usage). With perfect rationality and perfect competition, the competitive equilibrium is completely determined, and the equilibrium depends only on their goals and their environments. With perfect rationality and perfect competition, the classical economic theory turns out to be deductive theory that requires almost no contact with empirical data once its assumptions are accepted as axioms (see Simon 1959). Zhao: Southwest University for Nationalities, Chengdu 610041, China (e-mail: [email protected]).