Dynamic Programming Entry for Consideration by the New Palgrave Dictionary of Economics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Sequential Games
1 Sequential Games We call games where players take turns moving “sequential games”. Sequential games consist of the same elements as normal form games –there are players, rules, outcomes, and payo¤s. However, sequential games have the added element that history of play is now important as players can make decisions conditional on what other players have done. Thus, if two people are playing a game of Chess the second mover is able to observe the …rst mover’s initial move prior to making his initial move. While it is possible to represent sequential games using the strategic (or matrix) form representation of the game it is more instructive at …rst to represent sequential games using a game tree. In addition to the players, actions, outcomes, and payo¤s, the game tree will provide a history of play or a path of play. A very basic example of a sequential game is the Entrant-Incumbent game. The game is described as follows: Consider a game where there is an entrant and an incumbent. The entrant moves …rst and the incumbent observes the entrant’sdecision. The entrant can choose to either enter the market or remain out of the market. If the entrant remains out of the market then the game ends and the entrant receives a payo¤ of 0 while the incumbent receives a payo¤ of 2. If the entrant chooses to enter the market then the incumbent gets to make a choice. The incumbent chooses between …ghting entry or accommodating entry. If the incumbent …ghts the entrant receives a payo¤ of 3 while the incumbent receives a payo¤ of 1. -
Complexity and Bounded Rationality in Individual Decision Problems
Complexity and Bounded Rationality in Individual Decision Problems Theodoros M. Diasakos Working Paper No. 90 December 2008 www.carloalberto.org THE CARLO ALBERTO NOTEBOOKS Complexity and Bounded Rationality in Individual Decision Problems¤ Theodoros M. Diasakosy December 2008z ¤I am grateful to Chris Shannon for invaluable advice on this and earlier versions. Discussions with David Ahn, Bob Anderson, Paolo Ghirardato, Shachar Kariv, Botond Koszegi, Matthew Rabin, Jacob Sagi, and Adam Szeidl were of signi¯cant bene¯t. I also received helpful comments from Art Boman, Zack Grossman, Kostis Hatzitaskos, Kristof Madarasz, George Petropoulos, Florence Neymotin, and participants in the Xth Spring Meeting of Young Economists, the 2005 Conference of the Southwestern Economic Association, the 3rd and 5th Conference on Research in Economic Theory and Econometrics, and the 2007 SAET conference. Needless to say, all errors are mine. This research was supported by a fellowship from the State Scholarship Foundation of Greece. yCollegio Carlo Alberto E-mail: [email protected] Tel:+39-011-6705270 z°c 2008 by Theodoros M. Diasakos. Any opinions expressed here are the author's, not of the CCA. Abstract I develop a model of endogenous bounded rationality due to search costs, arising implicitly from the decision problem's complexity. The decision maker is not required to know the entire structure of the problem when making choices. She can think ahead, through costly search, to reveal more of its details. However, the costs of search are not assumed exogenously; they are inferred from revealed preferences through choices. Thus, bounded rationality and its extent emerge endogenously: as problems become simpler or as the bene¯ts of deeper search become larger relative to its costs, the choices more closely resemble those of a rational agent. -
Calculating the Value Function When the Bellman Equation Cannot Be
Journal of Economic Dynamics & Control 28 (2004) 1437–1460 www.elsevier.com/locate/econbase Investment under uncertainty: calculating the value function when the Bellman equation cannot besolvedanalytically Thomas Dangla, Franz Wirlb;∗ aVienna University of Technology, Theresianumgasse 27, A-1040 Vienna, Austria bUniversity of Vienna, Brunnerstr.˝ 72, A-1210 Vienna, Austria Abstract The treatment of real investments parallel to ÿnancial options if an investment is irreversible and facing uncertainty is a major insight of modern investment theory well expounded in the book Investment under Uncertainty by Dixit and Pindyck. Thepurposeof this paperis to draw attention to the fact that many problems in managerial decision making imply Bellman equations that cannot be solved analytically and to the di6culties that arise when approximating therequiredvaluefunction numerically.This is so becausethevaluefunctionis thesaddlepoint path from the entire family of solution curves satisfying the di7erential equation. The paper uses a simple machine replacement and maintenance framework to highlight these di6culties (for shooting as well as for ÿnite di7erence methods). On the constructive side, the paper suggests and tests a properly modiÿed projection algorithm extending the proposal in Judd (J. Econ. Theory 58 (1992) 410). This fast algorithm proves amendable to economic and stochastic control problems(which onecannot say of theÿnitedi7erencemethod). ? 2003 Elsevier B.V. All rights reserved. JEL classiÿcation: D81; C61; E22 Keywords: Stochastic optimal control; Investment under uncertainty; Projection method; Maintenance 1. Introduction Without doubt, thebook of Dixit and Pindyck (1994) is oneof themost stimulating books concerning management sciences. The basic message of this excellent book is the following: Considering investments characterized by uncertainty (either with ∗ Corresponding author. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
1 Bertrand Model
ECON 312: Oligopolisitic Competition 1 Industrial Organization Oligopolistic Competition Both the monopoly and the perfectly competitive market structure has in common is that neither has to concern itself with the strategic choices of its competition. In the former, this is trivially true since there isn't any competition. While the latter is so insignificant that the single firm has no effect. In an oligopoly where there is more than one firm, and yet because the number of firms are small, they each have to consider what the other does. Consider the product launch decision, and pricing decision of Apple in relation to the IPOD models. If the features of the models it has in the line up is similar to Creative Technology's, it would have to be concerned with the pricing decision, and the timing of its announcement in relation to that of the other firm. We will now begin the exposition of Oligopolistic Competition. 1 Bertrand Model Firms can compete on several variables, and levels, for example, they can compete based on their choices of prices, quantity, and quality. The most basic and funda- mental competition pertains to pricing choices. The Bertrand Model is examines the interdependence between rivals' decisions in terms of pricing decisions. The assumptions of the model are: 1. 2 firms in the market, i 2 f1; 2g. 2. Goods produced are homogenous, ) products are perfect substitutes. 3. Firms set prices simultaneously. 4. Each firm has the same constant marginal cost of c. What is the equilibrium, or best strategy of each firm? The answer is that both firms will set the same prices, p1 = p2 = p, and that it will be equal to the marginal ECON 312: Oligopolisitic Competition 2 cost, in other words, the perfectly competitive outcome. -
Physics of Risk and Uncertainty in Quantum Decision Making VI Yukalov
Physics of risk and uncertainty in quantum decision making V.I. Yukalov1,2,a and D. Sornette1,3,b 1Department of Management, Technology and Economics, Swiss Federal Institute of Technology, ETH Zurich, Kreuzplatz 5, Zurich 8032, Switzerland 2Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia 3Swiss Finance Institute, University of Geneva, CH-1211 Geneva 4, Switzerland Abstract The Quantum Decision Theory, developed recently by the authors, is applied to clarify the role of risk and uncertainty in decision making and in particular in relation to the phe- nomenon of dynamic inconsistency. By formulating this notion in precise mathematical terms, we distinguish three types of inconsistency: time inconsistency, planning para- dox, and inconsistency occurring in some discounting effects. While time inconsistency is well accounted for in classical decision theory, the planning paradox is in contradiction with classical utility theory. It finds a natural explanation in the frame of the Quan- tum Decision Theory. Different types of discounting effects are analyzed and shown to enjoy a straightforward explanation within the suggested theory. We also introduce a gen- eral methodology based on self-similar approximation theory for deriving the evolution equations for the probabilities of future prospects. This provides a novel classification of possible discount factors, which include the previously known cases (exponential or hyperbolic discounting), but also predicts a novel class of discount factors that decay to a strictly positive constant for very large future time horizons. This class may be useful to deal with very long-term discounting situations associated with intergenerational public policy choices, encompassing issues such as global warming and nuclear waste disposal. -
A Model of Time-Inconsistent Misconduct: the Case of Lawyer Misconduct
Fordham Law Review Volume 74 Issue 3 Article 8 2005 A Model of Time-Inconsistent Misconduct: The Case of Lawyer Misconduct Manuel A. Utset Follow this and additional works at: https://ir.lawnet.fordham.edu/flr Part of the Law Commons Recommended Citation Manuel A. Utset, A Model of Time-Inconsistent Misconduct: The Case of Lawyer Misconduct, 74 Fordham L. Rev. 1319 (2005). Available at: https://ir.lawnet.fordham.edu/flr/vol74/iss3/8 This Article is brought to you for free and open access by FLASH: The Fordham Law Archive of Scholarship and History. It has been accepted for inclusion in Fordham Law Review by an authorized editor of FLASH: The Fordham Law Archive of Scholarship and History. For more information, please contact [email protected]. A Model of Time-Inconsistent Misconduct: The Case of Lawyer Misconduct Cover Page Footnote Professor of Law, University of Utah, S.J. Quinney College of Law. I would like to thank Nancy McLaughlin, Daniel Medwed, and Linda Smith fo their comments. This article is available in Fordham Law Review: https://ir.lawnet.fordham.edu/flr/vol74/iss3/8 A MODEL OF TIME-INCONSISTENT MISCONDUCT: THE CASE OF LAWYER MISCONDUCT Manuel A. Utset* INTRODUCTION The recent corporate scandals resulted from systematic violations of federal securities laws and state corporate law by managers over long periods of time. This type of systematic managerial misconduct requires the active participation of lawyers or at least their turning a blind eye to manager actions that should arouse their suspicion and a desire to investigate further. Thus, corporate scandals invariably lead scholars and regulators to question the effectiveness of existing regulations of corporate lawyers. -
Chapter 16 Oligopoly and Game Theory Oligopoly Oligopoly
Chapter 16 “Game theory is the study of how people Oligopoly behave in strategic situations. By ‘strategic’ we mean a situation in which each person, when deciding what actions to take, must and consider how others might respond to that action.” Game Theory Oligopoly Oligopoly • “Oligopoly is a market structure in which only a few • “Figuring out the environment” when there are sellers offer similar or identical products.” rival firms in your market, means guessing (or • As we saw last time, oligopoly differs from the two ‘ideal’ inferring) what the rivals are doing and then cases, perfect competition and monopoly. choosing a “best response” • In the ‘ideal’ cases, the firm just has to figure out the environment (prices for the perfectly competitive firm, • This means that firms in oligopoly markets are demand curve for the monopolist) and select output to playing a ‘game’ against each other. maximize profits • To understand how they might act, we need to • An oligopolist, on the other hand, also has to figure out the understand how players play games. environment before computing the best output. • This is the role of Game Theory. Some Concepts We Will Use Strategies • Strategies • Strategies are the choices that a player is allowed • Payoffs to make. • Sequential Games •Examples: • Simultaneous Games – In game trees (sequential games), the players choose paths or branches from roots or nodes. • Best Responses – In matrix games players choose rows or columns • Equilibrium – In market games, players choose prices, or quantities, • Dominated strategies or R and D levels. • Dominant Strategies. – In Blackjack, players choose whether to stay or draw. -
Dynamic Games Under Bounded Rationality
Munich Personal RePEc Archive Dynamic Games under Bounded Rationality Zhao, Guo Southwest University for Nationalities 8 March 2015 Online at https://mpra.ub.uni-muenchen.de/62688/ MPRA Paper No. 62688, posted 09 Mar 2015 08:52 UTC Dynamic Games under Bounded Rationality By ZHAO GUO I propose a dynamic game model that is consistent with the paradigm of bounded rationality. Its main advantages over the traditional approach based on perfect rationality are that: (1) the strategy space is a chain-complete partially ordered set; (2) the response function is certain order-preserving map on strategy space; (3) the evolution of economic system can be described by the Dynamical System defined by the response function under iteration; (4) the existence of pure-strategy Nash equilibria can be guaranteed by fixed point theorems for ordered structures, rather than topological structures. This preference-response framework liberates economics from the utility concept, and constitutes a marriage of normal-form and extensive-form games. Among the common assumptions of classical existence theorems for competitive equilibrium, one is central. That is, individuals are assumed to have perfect rationality, so as to maximize their utilities (payoffs in game theoretic usage). With perfect rationality and perfect competition, the competitive equilibrium is completely determined, and the equilibrium depends only on their goals and their environments. With perfect rationality and perfect competition, the classical economic theory turns out to be deductive theory that requires almost no contact with empirical data once its assumptions are accepted as axioms (see Simon 1959). Zhao: Southwest University for Nationalities, Chengdu 610041, China (e-mail: [email protected]). -
From Single-Agent to Multi-Agent Reinforcement Learning: Foundational Concepts and Methods Learning Theory Course
From Single-Agent to Multi-Agent Reinforcement Learning: Foundational Concepts and Methods Learning Theory Course Gon¸caloNeto Instituto de Sistemas e Rob´otica Instituto Superior T´ecnico May 2005 Abstract Interest in robotic and software agents has increased a lot in the last decades. They allow us to do tasks that we would hardly accomplish otherwise. Par- ticularly, multi-agent systems motivate distributed solutions that can be cheaper and more efficient than centralized single-agent ones. In this context, reinforcement learning provides a way for agents to com- pute optimal ways of performing the required tasks, with just a small in- struction indicating if the task was or was not accomplished. Learning in multi-agent systems, however, poses the problem of non- stationarity due to interactions with other agents. In fact, the RL methods for the single agent domain assume stationarity of the environment and cannot be applied directly. This work is divided in two main parts. In the first one, the reinforcement learning framework for single-agent domains is analyzed and some classical solutions presented, based on Markov decision processes. In the second part, the multi-agent domain is analyzed, borrowing tools from game theory, namely stochastic games, and the most significant work on learning optimal decisions for this type of systems is presented. ii Contents Abstract 1 1 Introduction 2 2 Single-Agent Framework 5 2.1 Markov Decision Processes . 6 2.2 Dynamic Programming . 10 2.2.1 Value Iteration . 11 2.2.2 Policy Iteration . 12 2.2.3 Generalized Policy Iteration . 13 2.3 Learning with Model-free methods . -
UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society
UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title Language as a Tool for Thought: The Vocabulary of Games Facilitates Strategic Decision Making Permalink https://escholarship.org/uc/item/2n8028tv Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28) ISSN 1069-7977 Authors Keller, Josh Loewenstein, Jeffrey Publication Date 2006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Language as a Tool for Thought: The Vocabulary of Games Facilitates Strategic Decision Making Jeffrey Loewenstein ([email protected]) McCombs School of Business, 1 University Station B6300 Austin, TX 78712 USA Josh Keller ([email protected]) McCombs School of Business, 1 University Station B6300 Austin, TX 78712 USA Abstract thereby influence key decision makers to favor their desired policies. More than 60 years ago, the sociologist Mills People in competitive decision-making situations often make (1939) argued that problems are perceived relative to a poor choices because they inadequately understand the vocabulary. For example, what counts as murder seems decision they are to make, particularly because they fail to straightforward, but should differ substantially across consider contingencies such as how their opponent will react vegans, anti-abortion activists, lawyers, soldiers and the to their choice (Tor & Bazerman, 2004). Accordingly it would be useful to have a generally applicable vocabulary to guide (hopefully extinct) ritual practitioner of human sacrifice people towards effective interpretations of decision situations. (Clark, 1998). The vocabulary of games provides one such toolkit. We One role of language is to invoke particular framings or presented 508 participants with words from the vocabulary of interpretations. -
Lectures on Political Competition and Welfare
GV 507: Lectures on Political Competition and Welfare Professor Timothy Besley∗ Michaelmas Term 1999 Contents 1 TheEconomicEnvironment........................ 3 2 RepresentativeDemocracy......................... 5 2.1PolicyChoice............................. 5 2.2Voting................................. 6 2.3Campaigning............................. 7 2.4Entry................................. 7 2.5 Equilibrium .............................. 8 2.6TheDownsianModel......................... 9 2.7TheCitizen-CandidateModel.................... 10 2.8Assessment.............................. 16 3 Normative Analysis of Political Equilibria . ............. 16 3.1 Efficiency............................... 20 3.2DistributionalIssues......................... 23 4 DynamicAnalysis.............................. 28 4.1Anapproachtopolitico-economicequilibrium........... 28 4.2PolicyMakingintheDynamicModel................ 33 4.2.1 FailuretoCommittoFutureCompensation........ 33 4.2.2 StrategicPolicyMaking................... 35 4.2.3 Aggregate Capital Accumulation and Political Equilibrium 36 ∗Disclaimer: These notes are not guaranteed to be error free. Please bring any problems that you notice to the attention of the lecturer. 4.3Assessment.............................. 39 5 AppendixA:Proofs............................. 44 2 1. The Economic Environment There are N citizens who have to make a social decision about a set policies de- noted by x ,where denotes the set of feasible policies. Citizen’s preferences over policy∈ areA denotedAV i (x, j)(wherei =1, ...,