List of Plant Species Identified in the Northern Part of the Lope Reserve, Gabon*

Total Page:16

File Type:pdf, Size:1020Kb

List of Plant Species Identified in the Northern Part of the Lope Reserve, Gabon* TROPICS 3 (3/4): 249-276 Issued March, 1994 List of Plant Species Identified in the Northern Part of the Lope Reserve, Gabon* Caroline E.G. TUTIN Centre International de Recherche Medicales de Franceville, Franceville, Gabon; Department of Biological and Molecular Sciences, University of Stirling, Scotland. Lee J. T. WHITE NYZS-The Wildlife Conservation Society, U.S.A.; Institute of Cell, Animal and Population Biology, University of Edinburgh, Scotland; Programme de Conservation et Utilisation Rationelle des Ecosystemes Forestiers d'Afrique Centrale (ECOFAC), Composante Gabon (Projet FED, CCE DG VIII). Elizabeth A. WILLIAMSON Psychology Department, University of Stirling, Scotland. Michel FERNANDEZ Centre International de Recherche Medicales de Franceville, Franceville, Gabon; Department of Biological and Molecular Sciences, University of Stirling, Scotland; Programme de Conservation et Utilisation Rationelle des Ecosystemes Forestiers d' Afrique Centrale (ECOFAC), Composante Gabon (Projet FED, CCE DG VIII). Gordon MCPHERSON Missouri Botanical Garden, St. Louis, Missouri, U.S.A. ABSTRACT Research on lowland gorillas (Gorilla g. gorilla) and chimpanzees (Pan t. troglodytes) began at the 'Station d'Etudes des Gorilles et Chimpanzes' in the Lope Reserve, central Gabon, in 1983 and is on-going. This paper lists 676 species of plants belonging to 91 families that occur in the 50 sq. km study area. Data on trees with diameters of 10 cm or more were collected systematically along line transects and opportunistic collections of fertile plants were made. For each plant species, the life-form, habitat preference and density (for trees recorded on transects) are listed. For plants that provide food for gorillas and chimpanzees, the part eaten is given. The plant species list is not complete but shows the flora of the SEGC study area to be diverse. The seven habitat types described range from Savanna to Closed Canopy Forest but the study area is dominated by Marantaceae Forest. Gorillas and chimpanzees at Lope have diverse diets and obtain food from plants in all of the habitat types. Some minor (in terms of area) habitats provide large amounts of food in particular seasons. Comparison of ape diets in different parts of Africa can only advance if vegetation inventories for each study site are compiled and published. Key words: Gorilla g. gorilla / Pan t. troglodytes / plant species list / habitat-types / vegetation description / conservation and reserve management Gabon straddles the equator on the west coast of Africa and approximately 80% of the country's area of 267,000 km2 is covered by lowland tropical forest. Though still incompletely documented, the floristic diversity is great and Breteler (1990) estimated that at least 6,000 species of phanerogams occur. The patchy nature of botanical exploration within Gabon is highlighted by recent descriptions of new species (e.g. Halle, 1987; Halle & Louis, 1989; McPherson & Louis, 1991) and many new locality records (F. White, pers. comm.). The area of Gabon that has been most intensively studied is around Makokou, in the north-east of the * Correspondence and Reprint Requests: Dr. C.E.G. Tutin, C.I.R.M.F., B.P. 769, Franceville, Gabon C. E. G. Turnq, L. J. T. Wrure, E. A. Wu-unusoN, M. FEnNANDEZ & G. McRrnsoN country. Six published lists cover a total of 1,233 plant species (Hall6, 1964;19651' Hall6 & I-e Thomas, 1967;1970; Hladik & Halld, 1973; Florence & Hladik, 1980). Research at the Lopd Reserve, in central Gabon, began at the Station d'Etudes des Gorilles et Chimpanzds (SEGC) in 1983 and is on-going. The focus of much of the research has been the ecology of lowland gorillas and chimpanzees but this has involved collecting and identifying plant species eaten by apes and running transects to describe the vegetation of the apes' habitat. Among the important food species of apes at Lop6 (Tutin & Fernandez, 1993; Williamson et aI., 1990) were two new species of tree (Coln lizae [Sterculiaceae], N. Hall6, 1987 and Dialiurn lopense [Caesalpiniaceae], Breteler, in press). The discovery of the former was particularly surprising as it is the commonest tree species within the main study area and has distinctive, enonnous, leaves (Tirtin et al., t99la). Both of these new species have restricted geographical ranges suggesting that many undescribed species remain in the botanically unexplored parts of the country. Recent work at Lopd has included more syst€matic botanical collecting and an extension of the enumeration of trees along ftansects. Analysis of these data has allowed the forest within the Reserve to be classed into 20 types that differ both in structure and species composition (Whire, 1992). Similar ecological research, focussing on great apes, is underway at several other sites in the ropical forests of cenfral Africa (e.9. Carroll, 1986; Fay, 1989; Kano & Mulavwa, 1984; Kuroda, 1992; Malenky & Stiles, 1991; Mitani, 1992; Nishihara, 1992; Yamagiwa et al., 1992) but comparisons of diets between areas have been hindered by lack of background data on the variety and density of plant species available as potential foods at each site. Data on the vegetation ofthe Lopd Reserve are available from several sources, but publi- cations are limited to a single vegetation type and are not readily accessible (Descoings, 1974; Reitsma, 1988), or are in the form of unpublished Ph.D. theses (White, 1992; Williamson, 1988). Here we present a list of plant species, identified to at least family, that occur in the SEGC study area at Lop6. For each species, the life-form and typical habitat is given and the parts eaten by gorillas or chimpanzees are listed. Density data are included for all species of tree with diameters at breast height (dbh) > 10 cm recorded on vegetation transects. The list is certainly incomplete and is biased in favour of habitats well represented in the SEGC study area, but it provides the basis for inter-site comparisons both of ape feeding ecology and of botanical inventories. STUDY AREA The Lopd Reserve covers 5,000 km2 and extends in a tapering rectangular shape from its northern boundary, the river Ogoou6 (0'3'S) to Mont Ibondji (l'10'S) between latitudes 11"17'-11o50'8. Altitudes vary from 100-700 m. A chain of mountains runs almost north- south through the centre of the Reserve and elsewhere the terrain is rugged with numerous smaller hills and steep valleys. The Reserve includes a complex mosaic of vegetation types. In the north and east there are areas of savanna interspersed with gallery forests and isolated forest patches (Figure l; see also aerial photograph in Harrison & Hladik, 1986). These savannas are thought to be natural in origin (Aubreville, 1967; White,1992), dating from the Pleistocene, and active recolonisation by forest is underway except when arrested by annual burning. Most of the List of Plant Species Identified in the Lope Reserve 25r Fig. 1. The Lopd Reserve with savanna areas (stippled), the SEGC study area (hatched box) and the loca-tions of the five 5 km vegetation transects (Sites 1-5). savannas are burnt each year for management purposes but some are protected by watercourses or by their inaccessibility. Within the forest block, areas adjacent to the savannas have discontinuous canopy cover and a dense unders0orey dominated by herbs of the Marantaceae and ZingSllrlraceae, classed as 'Marantaceae Forest' (Irtouzey, 1968). This forest type is thought to be of relatively recent origin, reflecting the re-colonisation of Pleistocene savannas (Aubreville, 1967; de Foresta, 1990; White,1992). Deeper into the forest block, canopy cover becomes continuous, plant species diversity increases and the density of herbaceous plants in the understorey decreases dramatically: this forest type is classed as 'Closed Canopy Forest'. Within these two major forest types there are smaller areas of permanent water, rocky outcrops, and areas where the vegetation has been affected by selective logging in the past. In each of these cases, plant species occur that are rare, or absent, elsewhere. The SEGC study area covers about 50 km2(0o10'S, l1o 35'E) of mainly Marantaceae Forest to the south and west of the savanna zone but extends into Closed Canopy Forest !o the west of the major mountain range. Parts of the study area were selectively logged between 1960-70. Asinglespecies, Aucoumeaklainearw wasextractedatanaveragedensityof 1.5 trees per hectare and logging occurred in both Marantaceae Forest and Closed Canopy Forest. Mean annual rainfall is 1506 mm (1984-92). The climate is characterised by a long dry setson of about 3 months from mid-June to mid-September. Temperatures vary little ovgr the year but are lowest during the dry season when constant cloud cover during the daylight 252 C. E. G. Turnr, L. J. T. Wrrre, E. A. Wu.unusoN, M. FEnNANDEz & G. McHunsoN hours results in low evaporation rates and high relative humidity (Hladik, 1973). METHODS Vegetation data presented in this paper were collected during studies with different aims, and hence methods vary somewhat. White (1992) conducted the most extensive vegetation survey: five 5 km line-transects were established across major drainage features (c/. Norton- Griffiths, 1978) in areas which had experienced different logging histories. Trees and lianes )10 crn dbh were identified and measured in a strip 5m wide along each ffansect (providing a sample of 2.5 ha in each area), and Eees 270 cm dbh were similarly enumerated in a stip 50m wide (25 ha in each area). Figure 1 shows the location of the tansects. Sites 1, 4 and 5 were within the SEGC study area, while Sites 2 and 3 were 35 km south-west, in an active logging concession and, as little information is available on ape diet in this area, these data are not included here. Williamson (1988) enumerated a sample of 4 ha of ftees )10 cm dbh in lOm wide snips along a line-fiansect and several elephant paths, selected to sample various gorilla habitats within the SEGC study area.
Recommended publications
  • Physical, Mechanical, and Other Properties Of
    ARC: 634.9 TA/OST 73-24 C559a PHYSICAL, MECHANICAL, AND OTHER PROPERTIES OF SELECTED SECONDARY SPECIES in Surinam, Peru, Colombia, Nigeria, Gabon, Philippines, and Malaysia FPL-AID-PASA TA(Aj)2-73 (Species Properties) * PHYSICAL, MECHANICAL, AND OTHER PROPERTIES OF SELECTED SECONDARY SPECIES LOCATED IN SURINAM, PERU, COLOMBIA, NIGERIA, GABON, PHILIPPINES, AND MALAYSIA MARTIN CHUDNOFF, Forest Products Technologist Forest Products Laboratory Forest Service, U.S. Department of Agriculture Madison, Wisconsin 53705 November 1973 Prepared for AGENCY FOR INTERNATIONAL DEVELOPMENT U.S. Department of State Washington, DC 20523 ARC No. 634.9 - C 559a INTRODUCTION This report is a partial response to a Participating Agency Service Agreement between the Agency for Inter­ national Development and the USDA, Forest Service (PASA Control No. TA(AJ)2-73) and concerns a study of the factors influencing the utilization of the tropical forest resource. The purpose of this portion of the PASA obligation is to present previously published information on the tree and wood characteristics of selected secondary species growing m seven tropical countries. The format is concise and follows the outline developed for the second edition of the "Handbook of Hardwoods" published by HMSO, London. Species selected for review are well known in the source countries, but make up a very small component, if any, of their export trade. The reasons why these species play a secondary role in the timber harvest are discussed in the other accompanying PASA reports. ii INDEX Pages SURINAM 1-11 Audira spp. Eperu falcata Eschweilera spp. Micropholis guyanensis Nectandra spp. Ocotea spp. Parinari campestris Parinari excelsa Pouteria engleri Protium spp.
    [Show full text]
  • Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods
    United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation
    [Show full text]
  • Antimicrobial Activities of Some Euphorbiaceae Plants Used in the Traditional Medicine of Akwa Ibom State of Nigeria
    Ethnobotanical Leaflets 14: 654-64. 2010. Antimicrobial Activities of Some Euphorbiaceae Plants Used in the Traditional Medicine of Akwa Ibom State of Nigeria Uduak, A. Essiett1, Kola’, K. Ajibesin* 2 1 Department of Botany and Ecological studies, University of Uyo, Uyo, Akwa Ibom State, Nigeria 2 Department of Pharmacognosy, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria *E-mail: [email protected] Issued: June 1, 2010 Abstract Nine plant species belonging to the Euphorbiaceae family and used in traditional medicine in Akwa Ibom State of Nigeria were evaluated for in vitro antimicrobial activity using agar diffusion method. The stem bark of Maesobotrya dusenii gave the most significant effect followed by its root bark. The inhibitory effect of M. dusenii stem bark extract (37 mm) on Pseudomonas aeruginosa was higher than that of Chloramphenicol (35 mm). However, Alchornea laxiflora leaf extract showed the weakest activity. The minimum inhibitory concentration of the extracts ranged between 12.5 and 250 µg/mL. The results of the antimicrobial effects validated the use of the plants to treat infections caused by these microorganisms. Key words: Euphorbiaceae; antimicrobial activities; traditional medicine; Akwa Ibom State; Nigeria. Introduction The Euphorbiaceae is the 4th largest family of the angiosperms comprising over 300 genera and about 7500 species distributed widely in tropical Africa (Gill, 1988). The euphorbiaceae plants are shrubs, trees, herbs or rarely lianas (Pandey, 2006). Many of them are xerophytes and cactoid and most often with milky latex. The family provides food (Pandey, 2006; Etukudo, 2003) and varied medicinal properties used in ethnobotany (Gill, 1988; Vasishta, 1974; Agbovie et al., 2002; Betti, 2004; Kubmarawa, 2007).
    [Show full text]
  • Plants for Tropical Subsistence Farms
    SELECTING THE BEST PLANTS FOR THE TROPICAL SUBSISTENCE FARM By Dr. F. W. Martin. Published in parts, 1989 and 1994; Revised 1998 and 2007 by ECHO Staff Dedication: This document is dedicated to the memory of Scott Sherman who worked as ECHO's Assistant Director until his death in January 1996. He spent countless hours corresponding with hundreds of missionaries and national workers around the world, answering technical questions and helping them select new and useful plants to evaluate. Scott took special joy in this work because he Photo by ECHO Staff knew the God who had created these plants--to be a blessing to all the nations. WHAT’S INSIDE: TABLE OF CONTENTS HOW TO FIND THE BEST PLANTS… Plants for Feeding Animals Grasses DESCRIPTIONS OF USEFUL PLANTS Legumes Plants for Food Other Feed Plants Staple Food Crops Plants for Supplemental Human Needs Cereal and Non-Leguminous Grain Fibers Pulses (Leguminous Grains) Thatching/Weaving and Clothes Roots and Tubers Timber and Fuel Woods Vegetable Crops Plants for the Farm Itself Leguminous Vegetables Crops to Conserve or Improve the Soil Non-Leguminous Fruit Vegetables Nitrogen-Fixing Trees Leafy Vegetables Miners of Deep (in Soil) Minerals Miscellaneous Vegetables Manure Crops Fruits and Nut Crops Borders Against Erosion Basic Survival Fruits Mulch High Value Fruits Cover Crops Outstanding Nuts Crops to Modify the Climate Specialty Food Crops Windbreaks Sugar, Starch, and Oil Plants for Shade Beverages, Spices and Condiment Herbs Other Special-Purpose Plants Plants for Medicinal Purposes Living Fences Copyright © ECHO 2007. All rights reserved. This document may be reproduced for training purposes if Plants for Alley Cropping distributed free of charge or at cost and credit is given to ECHO.
    [Show full text]
  • Impacts of Global Climate Change on the Phenology of African Tropical Ecosystems
    IMPACTS OF GLOBAL CLIMATE CHANGE ON THE PHENOLOGY OF AFRICAN TROPICAL ECOSYSTEMS GABRIELA S. ADAMESCU MSc by Research UNIVERSITY OF YORK Biology October 2016 1 Abstract The climate has been changing at an unprecedented rate, affecting natural systems around the globe. Its impact has been mostly reflected through changes in species’ phenology, which has received extensive attention in the current global-change research, mainly in temperate regions. However, little is known about phenology in African tropical forests. Africa is known to be vulnerable to climate change and filling the gaps is an urgent matter. In this study we assess plant phenology at the individual, site and continental level. We first compare flowering and fruiting events of species shared between multiple sites, accounting for three quantitative indicators, such as frequency, fidelity for conserving a certain frequency and seasonal phase. We complement this analysis by assessing interannual trends of flowering and fruiting frequency and fidelity to their dominant frequency at 11 sites. We complete the bigger picture by analysing flowering and fruiting frequency of African tropical trees at the site and community level. Next, we correlate three climatic indices (ENSO, IOD and NAO) with flowering and fruiting events at the canopy level, at 16 sites. Our results suggest that 30 % of the studied species show plasticity or adaptability to different environments and will most likely be resilient to moderate future climate change. At both site and continental level, we found that annual flowering cycles are dominant, indicating strong seasonality in the case of more than 50% of African tropical species under investigation.
    [Show full text]
  • Ethnobotany and Phytomedicine of the Upper Nyong Valley Forest in Cameroon
    African Journal of Pharmacy and Pharmacology Vol. 3(4). pp. 144-150, April, 2009 Available online http://www.academicjournals.org/ajpp ISSN 1996-0816 © 2009 Academic Journals Full Length Research Paper Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon T. Jiofack1*, l. Ayissi2, C. Fokunang3, N. Guedje4 and V. Kemeuze1 1Millennium Ecologic Museum, P. O Box 8038, Yaounde – Cameroon. 2Cameron Wildlife Consevation Society (CWCS – Cameroon), Cameroon. 3Faculty of Medicine and Biomedical Science, University of Yaounde I, Cameroon. 4Institute of Agronomic Research for Development, National Herbarium of Cameroon, Cameroon. Accepted 24 March, 2009 This paper presents the results of an assessment of the ethnobotanical uses of some plants recorded in upper Nyong valley forest implemented by the Cameroon wildlife conservation society project (CWCS). Forestry transects in 6 localities, followed by socio-economic study were conducted in 250 local inhabitants. As results, medicinal information on 140 plants species belonging to 60 families were recorded. Local people commonly use plant parts which included leaves, bark, seed, whole plant, stem and flower to cure many diseases. According to these plants, 8% are use to treat malaria while 68% intervenes to cure several others diseases as described on. There is very high demand for medicinal plants due to prevailing economic recession; however their prices are high as a result of prevailing genetic erosion. This report highlighted the need for the improvement of effective management strategies focusing on community forestry programmes and aims to encourage local people participation in the conservation of this forest heritage to achieve a sustainable plant biodiversity and conservation for future posterity.
    [Show full text]
  • Seed Germination and Genetic Structure of Two Salvia Species In
    Seed germination and genetic structure of two Salvia species in response to environmental variables among phytogeographic regions in Jordan (Part I) and Phylogeny of the pan-tropical family Marantaceae (Part II). Dissertation Zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat) Vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg Von Herrn Mohammad Mufleh Al-Gharaibeh Geb. am: 18.08.1979 in: Irbid-Jordan Gutachter/in 1. Prof. Dr. Isabell Hensen 2. Prof. Dr. Martin Roeser 3. Prof. Dr. Regina Classen-Bockhof Halle (Saale), den 10.01.2017 Copyright notice Chapters 2 to 4 have been either published in or submitted to international journals or are in preparation for publication. Copyrights are with the authors. Just the publishers and authors have the right for publishing and using the presented material. Therefore, reprint of the presented material requires the publishers’ and authors’ permissions. “Four years ago I started this project as a PhD project, but it turned out to be a long battle to achieve victory and dreams. This dissertation is the culmination of this long process, where the definition of “Weekend” has been deleted from my dictionary. It cannot express the long days spent in analyzing sequences and data, battling shoulder to shoulder with my ex- computer (RIP), R-studio, BioEdite and Microsoft Words, the joy for the synthesis, the hope for good results and the sadness and tiredness with each attempt to add more taxa and analyses.” “At the end, no phrase can describe my happiness when I saw the whole dissertation is printed out.” CONTENTS | 4 Table of Contents Summary ..........................................................................................................................................
    [Show full text]
  • Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 7-30-2008 Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St. Louis Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Sweeney, Patrick Wayne, "Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae)" (2008). Dissertations. 539. https://irl.umsl.edu/dissertation/539 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. SYSTEMATICS AND FLORAL EVOLUTION IN THE PLANT GENUS GARCINIA (CLUSIACEAE) by PATRICK WAYNE SWEENEY M.S. Botany, University of Georgia, 1999 B.S. Biology, Georgia Southern University, 1994 A DISSERTATION Submitted to the Graduate School of the UNIVERSITY OF MISSOURI- ST. LOUIS In partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in BIOLOGY with an emphasis in Plant Systematics November, 2007 Advisory Committee Elizabeth A. Kellogg, Ph.D. Peter F. Stevens, Ph.D. P. Mick Richardson, Ph.D. Barbara A. Schaal, Ph.D. © Copyright 2007 by Patrick Wayne Sweeney All Rights Reserved Sweeney, Patrick, 2007, UMSL, p. 2 Dissertation Abstract The pantropical genus Garcinia (Clusiaceae), a group comprised of more than 250 species of dioecious trees and shrubs, is a common component of lowland tropical forests and is best known by the highly prized fruit of mangosteen (G. mangostana L.). The genus exhibits as extreme a diversity of floral form as is found anywhere in angiosperms and there are many unresolved taxonomic issues surrounding the genus.
    [Show full text]
  • Medicinal Plant Research Volume 11 Number 14, 10 April, 2017 ISSN 1996-0875
    Journal of Medicinal Plant Research Volume 11 Number 14, 10 April, 2017 ISSN 1996-0875 ABOUT JMPR The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals. The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font). Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/JMPR Submit manuscript online http://ms.academicjournals.me/ Editors Prof. Akah Peter Achunike Prof. Parveen Bansal Editor-in-chief Department of Biochemistry Department of Pharmacology & Toxicology Postgraduate Institute of Medical Education and University of Nigeria, Nsukka Research Nigeria Chandigarh India. Associate Editors Dr. Ravichandran Veerasamy AIMST University Dr. Ugur Cakilcioglu Faculty of Pharmacy, AIMST University, Semeling - Elazıg Directorate of National Education 08100, Turkey. Kedah, Malaysia. Dr. Jianxin Chen Dr. Sayeed Ahmad Information Center, Herbal Medicine Laboratory, Department of Beijing University of Chinese Medicine, Pharmacognosy and Phytochemistry, Beijing, China Faculty of Pharmacy, Jamia Hamdard (Hamdard 100029, University), Hamdard Nagar, New Delhi, 110062, China. India. Dr. Hassan Sher Dr. Cheng Tan Department of Botany and Microbiology, Department of Dermatology, first Affiliated Hospital College of Science, of Nanjing Univeristy of King Saud University, Riyadh Traditional Chinese Medicine.
    [Show full text]
  • Title UTILIZATION of MARANTACEAE PLANTS
    UTILIZATION OF MARANTACEAE PLANTS BY THE Title BAKA HUNTER-GATHERERS IN SOUTHEASTERN CAMEROON Author(s) HATTORI, Shiho African study monographs. Supplementary issue (2006), 33: Citation 29-48 Issue Date 2006-05 URL http://dx.doi.org/10.14989/68476 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University African Study Monographs, Suppl. 33: 29-48, May 2006 29 UTILIZATION OF MARANTACEAE PLANTS BY THE BAKA HUNTER-GATHERERS IN SOUTHEASTERN CAMEROON Shiho HATTORI Graduate School of Asian and African Area Studies (ASAFAS), Kyoto University ABSTRACT The Baka hunter-gatherers of the Cameroonian rainforest use plants of the family Marantaceae for a variety of purposes, as food, in material culture, as “medicine” and as trading item. They account for as much as 40% of the total number of uses of plants in Baka material culture. The ecological background of such intensive uses in material culture reflects the abundance of Marantaceae plants in the African rainforest. This article describes the frequent and diversified uses of Marantaceae plants, which comprise a unique characteristic in the ethnobotany of the Baka hunter-gatherers and other forest dwellers in central Africa. Key Words: Ethnobotany; Baka hunter-gatherers; Marantaceae; Multi-purpose plants; Rainforest. INTRODUCTION The family Marantaceae comprises 31 genera and 550 species, and most of them are widely distributed in the tropics (Cabezas et al., 2005). The African flora of the Marantaceae are not especially rich in species (30-35 species) compared with those of South East Asia and South America, but the people living in the central African rainforest frequently use Matantaceae plants in a variety of ways (Tanno, 1981; Burkill, 1997; Terashima & Ichikawa, 2003).
    [Show full text]
  • Spatial and Matrix Influences on the Biogeography of Insect Taxa in Forest Fragments in Central Uganda
    Spatial and matrix influences on the biogeography of insect taxa in forest fragments in central Uganda Perpetra Akite Dissertation for a cotutelle award of Doctor of Philosophy Degree of Makerere University, Uganda and University of Bergen, Norway Makerere University University of Bergen 2016 Department of Biological Sciences, Makerere University Department of Biology, University of Bergen ii DECLARATION OF ORIGINALITY This is my own work and it has never been submitted for any degree award in any University iii TABLE OF CONTENTS DECLARATION OF ORIGINALITY......................................................................................iii LIST OF CONTENTS...............................................................................................................iv ACKNOWLEDGEMENTS.......................................................................................................vi LIST OF PAPERS....................................................................................................................vii Declaration of authors’ contributions…………………….…...……………...……...viii ABSTRACT...............................................................................................................................x BACKGROUND........................................................................................................................1 Problem statement..........................................................................................................……….2 Objectives........................................................................................................................3
    [Show full text]
  • Floristic Diversity Across the Cameroon Mountains: the Case of Bakossi National Park and Mt Nlonako
    Floristic Diversity across the Cameroon Mountains: The Case of Bakossi National Park and Mt Nlonako i Floristic Diversity across the Cameroon Mountains The case of Bakossi National Park and Mt Nlonako Technical Report Prepared and Submitted to the Rufford Small Grant Foundation, UK By Sainge Nsanyi Moses, Ngoh Michael Lyonga and Benedicta Jailuhge Tropical Plant Exploration Group (TroPEG) Cameroon June 2018 ii To cite this work: Sainge, MN., Lyonga, NM., Jailuhge B., (2018) Floristic Diversity across the Cameroon Mountains: The case of Bakossi National Park, and Mt Nlonako. Technical Report to the Rufford Small Grant Foundation UK, by Tropical Plant Exploration Group (TroPEG) Cameroon Authors: Sainge, MN., Lyonga NM., and Jailuhge B., Title: Floristic Diversity across the Cameroon Mountains: The case of Bakossi National Park, and Mt Nlonako. Tropical Plant Exploration Group (TroPEG) Cameroon P.O. Box 18 Mundemba, Ndian division, Southwest Region [email protected]; [email protected], Tel: (+237) 677513599 iii Acknowledgement We must comment that this is the fourth grant awarded as grant number 19476-D (being the second booster RSG ) which Tropical Plant Exploration Group (TroPEG) Cameroon has received from the Rufford Small Grant (RSG) Foundation UK. We are sincerely grateful and wish to express our deep hearted thanks for the immensed support since 2011. Our sincere appreciation also goes to the Government of Cameroon through the Ministry of Scientific Research and Innovation (MINRESI) and the Ministry of Forestry and Wildlife (MINFOF) for granting authorization to carry out this work. Special gratitute goes to Dr. Mabel Nechia Wantim of the University of Buea for her contribution in developing the maps.
    [Show full text]