Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods

Total Page:16

File Type:pdf, Size:1020Kb

Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation of Schedule Step Changes.......................4 gravity where drying times were similar, with the appropriate Calculation of Kiln Schedules .................................5 schedule applied to all members of the group. Estimation of Tropical and Temperate Schedules ............5 Keywords: tropical species, kiln schedule, kiln drying, dry kiln Species Grouping Method.............................................6 Background .............................................................6 Estimation of Drying Time........................................7 Kiln Schedules for Groups .........................................7 Conclusions .............................................................10 Literature Cited.........................................................12 Appendix A—Specific Gravity Conversion....................14 Appendix B—Method to Estimate Drying Time.............14 Appendix C—Species Data for Kiln Drying...................14 May 1996 Simpson, William T. 1996. Method to estimate dry-kiln schedules and species groupings: Tropical and temperate hardwoods. Res. Pap. FPL–RP–548. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 57 p. A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705–2398. Laboratory publications are sent to more than 1,000 libraries in the United States and elsewhere. The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. The United States Department of Agriculture (USDA) prohibits discrimi- nation in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. Persons with disabilities who require alternative means of communication of program information (braille, large print, audiotape, etc.) should contact the USDA Office of Communications at (202) 720–2791. To file a com- plaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, DC 20250, or call (202) 720–7327 (voice), or (202) 720–1127 (TTD). USDA is an equal employment opportunity employer. Method to Estimate Dry-Kiln Schedules and Species Groupings Tropical and Temperate Hardwoods William T. Simpson, Research Forest Products Technologist Forest Products Laboratory, Madison, Wisconsin Introduction Related Research Hisada and Sato (1976), Hisada and others (1986), and The large number of tree species in the world, especially in Durand (1985) conducted analyses to relate known kiln the tropics, presents two problems in drying lumber. Some schedules of Southeast Asian and African species to physical species have been used for timber products for decades, and properties. They developed multiple linear regressions be- dry-kiln schedules for these species have been recommended tween several kiln schedule parameters as the dependent based on experience and research . However, recommended variables and physical properties as the independent vari- kiln schedules are not available for many less-utilized spe- ables. Specific gravity was found to have the largest influence cies, especially tropical species. on schedule parameters. In general, they found good agree- ment between the recommended and estimated schedules, but A second problem stems from the sheer number of tropical noted that the estimated schedule for some species deviated species and their heterogeneous occurrence in the forest. As a considerably from the recommended schedule. Jankowski consequence, it is not always practical to fill a dry kiln with (1992) developed a rapid and simple test to indicate the a single species. The problem is the lack of a method to probable performance of wood species in kiln drying by group species, based on similar drying characteristics, so that comparing the test performance of six known species in species can be mixed and dried together in the same dry kiln. relation to their recommended schedule. Results showed that the selected schedules were adequate for the species tested. The purpose of this study was to develop and evaluate a method to solve these two problems. The first part of the Current Kiln Schedules report develops a method to estimate a kiln schedule for a species when a recommended schedule is not available; the For many years, kiln schedules for temperate and tropical second part of the report builds on the first part to develop a hardwoods have been developed by numerous people in species grouping method. research institutions and industry throughout the world. Many schedules are summarized in Hildebrand (1970), Pratt and Turner (1986), Boone and others (1988), and USDA Estimation of Kiln Schedules (1991). These schedules are recommended as conservative Background starting points—a safe reference to be adjusted upward in severity with experience. A typical kiln schedule consists of The strategy in selecting a kiln schedule is finding the right several steps. An initial dry-bulb temperature and initial wet- compromise between the desire to dry as fast as possible, bulb depression begin the drying at some green moisture which calls for severe drying conditions in the form of high content. These conditions are held until a predetermined dry-bulb temperatures and large wet-bulb depressions (low moisture content level is reached; then, the first change relative humidity), and the desire to minimize drying defects, (increase) is made in the wet-bulb depression. At subsequent such as surface checks and honeycomb, by using lower tem- moisture content levels during drying, additional increases in peratures and smaller wet-bulb depressions. Several wood the wet-bulb depression are made. During the latter stages of properties are associated with the allowable severity of a kiln the kiln schedule, increases are made in both the dry-bulb schedule, properties such as specific gravity, shrinkage, and temperature and the wet-bulb depression. A typical kiln mechanical properties perpendicular to the grain. Specific schedule for meranti (Shorea spp.), consisting of eight steps, gravity is the only property that is widely reported in the is given in Table 1 (Boone and others 1988). literature, so our analysis is confined to specific gravity. Table 1—Typical kiln schedule for hardwood lumber, in appropriate even though it is not optimized. For these this case meranti (Shorea spp.) (Boone and others 1988) reasons and the general lack of knowledge about criteria that Temperature Temperature led to schedule recommendation, it does not seem justifiable (°C) (°F) to apply statistical analyses that lead to probability-based Moisture Relative inferences on the credibility of schedule estimates. The pro- content Dry- Wet- EMCa humidity Dry- Wet- cedure we use is simple least squares curve fitting. Also, Step (%) bulb bulb (%) (%) bulb bulb keep in mind that conservative schedules are used as the base for establishing the relationship to specific gravity. The 1 >50 49 45 14.4 80 120 113 intent of these schedules is to serve only as a starting point 2 50 to 40 49 44 12.1 72 120 110 to be adjusted upward in severity as experience is gained 3 40 to 35 49 41 9.6 60 120 105 with the species in question. Even though all we can hope 4 35 to 30 49 35 6.5 40 120 95 for in schedule estimation are approximate guidelines, we feel 5 30 to 25 55 32 4.0 22 130 90 that this is a substantial improvement over the current situa- 6 25 to 20 60 32 2.9 15 140 90 tion of having no starting point in schedule selection. 7 20 to 15 66 38 3.2 18 150 100 8 15 to final 82 55 3.5 26 180 130 Method of Schedule Estimation aEquilibrium moisture content. Schedule estimation is based on relationships established between basic specific gravity (green volume and ovendry Our knowledge of the process that led to recommended kiln weight) and known recommended kiln schedules for schedules for different species is incomplete. For hardwoods 268 species or species groups
Recommended publications
  • Herbal Cosmetics for Skin and Hair Care
    Article Herbal Cosmetics for Skin and Hair care V P Kapoor National Botanical Research Institute, Lucknow – 226 001, Uttar Pradesh, India Abstract Allopathic system alone is proving insufficient and there is need to The cosmetics are the utility products used extensively throughout the world for supplement it with herbal drugs. The most maintaining and improving general appearance of face and other parts of body e.g. mouth, hand appropriate way is to utilize modern as finger, eye, hair, etc. It includes creams, powders, face pack, lotions, moisturizers, shampoo, hair well as traditional system to look after oil, conditioners, nail polish, etc. Smooth, shinning, healthy skin and hair certainly count for a beautiful woman or handsome man. Numerous chemical toxins, microorganisms, chemicals, the health of the people. Much awareness infections present in atmosphere cause damage to skin. Cosmetics alone are not sufficient to take is created amongst the consumers for care of skin and body parts, it require association of active ingredients to check the damage and health and better quality lives, which led ageing of the skin. Herbal cosmetics are now emerged as the appropriate solution to the current towards more use of herbal drugs, herbal problem. Personal care industry is currently more concentrated on herbal cosmetics as now-a-days cosmetics, neutraceuticals and natural it is a fast growing segment with a vast scope of manifold expansion in coming years. Herbal cosmetics are the preparations, which represent cosmetics associated with active bio-ingredients, dyes. The new markets are being driven neutraceuticals or pharmaceuticals. The use of bioactive phytochemicals from a variety of botanicals by fundamental shifts in demand for have dual function, (i) they serve as cosmetics for the care of body and its parts and (ii) the herbal-based products and renewed botanical ingredients present therein influence biological functions of skin and provide nutrients concern about the synthetic-based necessary for the healthy skin or hair.
    [Show full text]
  • Plants for Tropical Subsistence Farms
    SELECTING THE BEST PLANTS FOR THE TROPICAL SUBSISTENCE FARM By Dr. F. W. Martin. Published in parts, 1989 and 1994; Revised 1998 and 2007 by ECHO Staff Dedication: This document is dedicated to the memory of Scott Sherman who worked as ECHO's Assistant Director until his death in January 1996. He spent countless hours corresponding with hundreds of missionaries and national workers around the world, answering technical questions and helping them select new and useful plants to evaluate. Scott took special joy in this work because he Photo by ECHO Staff knew the God who had created these plants--to be a blessing to all the nations. WHAT’S INSIDE: TABLE OF CONTENTS HOW TO FIND THE BEST PLANTS… Plants for Feeding Animals Grasses DESCRIPTIONS OF USEFUL PLANTS Legumes Plants for Food Other Feed Plants Staple Food Crops Plants for Supplemental Human Needs Cereal and Non-Leguminous Grain Fibers Pulses (Leguminous Grains) Thatching/Weaving and Clothes Roots and Tubers Timber and Fuel Woods Vegetable Crops Plants for the Farm Itself Leguminous Vegetables Crops to Conserve or Improve the Soil Non-Leguminous Fruit Vegetables Nitrogen-Fixing Trees Leafy Vegetables Miners of Deep (in Soil) Minerals Miscellaneous Vegetables Manure Crops Fruits and Nut Crops Borders Against Erosion Basic Survival Fruits Mulch High Value Fruits Cover Crops Outstanding Nuts Crops to Modify the Climate Specialty Food Crops Windbreaks Sugar, Starch, and Oil Plants for Shade Beverages, Spices and Condiment Herbs Other Special-Purpose Plants Plants for Medicinal Purposes Living Fences Copyright © ECHO 2007. All rights reserved. This document may be reproduced for training purposes if Plants for Alley Cropping distributed free of charge or at cost and credit is given to ECHO.
    [Show full text]
  • I. Isolation and Characterization of Bioactive Compounds From
    I. ISOLATION AND CHARACTERIZATION OF BIOACTIVE COMPOUNDS FROM SURINAME AND MADAGASCAR FLORA. II. A SYNTHETIC APPROACH TO LUCILACTAENE Eba Adou Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirement for the degree of Doctor of Philosophy In Chemistry Dr. David G. I. Kingston, Chairman Dr. James Tanko Dr. Felicia Etzkorn Dr. Timothy E. Long Dr. Paul Deck November 28, 2005 Blacksburg, Virginia Keywords: Anticancer agents, Cytotoxicity assay, Indole alkaloids, Diterpenoids, Cardenolide glycosides, Physalins, Cucurbitacins, Cell cycle, Cell cycle inhibitor, p53 Tumor suppressor Gene, Lucilactaene Copyright 2005, Eba Adou ISOLATION AND CHARACTERIZATION OF BIOACTIVE COMPOUNDS FROM SURINAME AND MADAGASCAR FLORA AND A SYNTHETIC APPROACH TO LUCILACTAENE ABSTRACT Eba Adou As part of an International Cooperative Biodiversity Group (ICBG), extracts of plants from Suriname and Madagascar were bioassayed for cytotoxicity and antimalarial activity. Six cytotoxic extracts and one potential antimalarial were selected for fractionation, and yielded a number of bioactive compounds which were characterized by spectroscopy methods. Craspidospermum verticillatum (Apocynaceae) yielded four known indole alkoids. Casimirella sp (Icacinaceae) gave three new and five known diterpenoids. Pentopetia androsaemifolia (Apocynaceae) afforded one new and three known cardenolide glycosides. Physalis angulata (Solanaceae) yielded seven known physalins. Roupellina boivinnii (Apocynaceae) yielded four known and three new cardenolide glycosides, and three known cucurbitacins were isolated from Octolepis aff. dioica (Thymelaeaceae). In addition to these structural studies, a synthetic approach to lucilactaene, a cell cycle inhibitor was developed. ACKNOWLEDGMENTS I dedicate this to my family in Côte d’Ivoire (Ivory Coast) for giving me the opportunity to come to the U.S.A.
    [Show full text]
  • Diversification of Tree Crops: Domestication of Companion Crops for Poverty Reduction and Environmental Services
    Expl Agric. (2001), volume 37, pp. 279±296 Printed in Great Britain Copyright # 2001 Cambridge University Press REVIEW PAPER DIVERSIFICATION OF TREE CROPS: DOMESTICATION OF COMPANION CROPS FOR POVERTY REDUCTION AND ENVIRONMENTAL SERVICES By R. R. B. LEAKEY{ and Z. TCHOUNDJEU{ {Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, Scotland, UK and {International Centre for Research in Agroforestry, PO Box 2067, YaoundeÂ, Cameroon (Accepted 19 January 2001) SUMMARY New initiatives in agroforestry are seeking to integrate indigenous trees, whose products have traditionally been gathered from natural forests, into tropical farming systems such as cacao farms. This is being done to provide from farms, marketable timber and non-timber forest products that will enhance rural livelihoods by generating cash for resource-poor rural and peri-urban households. There are many potential candidate species for domestication that have commercial potential in local, regional or even international markets. Little or no formal research has been carried out on many of these hitherto wild species to assess potential for genetic improvement, reproductive biology or suitability for cultivation. With the participation of subsistence farmers a number of projects to bring candidate species into cultivation are in progress, however. This paper describes some tree domestication activities being carried out in southern Cameroon, especially with Irvingia gabonensis (bush mango; dika nut) and Dacryodes edulis (African plum; safoutier). As part of this, fruits and kernels from 300 D. edulis and 150 I. gabonensis trees in six villages of Cameroon and Nigeria have been quantitatively characterized for 11 traits to determine combinations de®ning multi-trait ideotypes for a genetic selection programme.
    [Show full text]
  • Proteaceae), with a Key to the Species of Phaeophleospora
    Fungal Diversity Phaeophleospora faureae comb. novo associated with leaf spots on Faurea saligna (Proteaceae), with a key to the species of Phaeophleospora Joanne E. Taylor* and Pedro W. Crous Department of Plant Pathology, University of Stellenbosch, Private Bag Xl, Stellenbosch 7602, South Africa; * e-mail: [email protected] Taylor, J.E. and erous, P.W. (1999). Phaeophleosporafaureae comb. novo associated with leaf spots on Faurea saligna (Proteaceae), with a key to the species of Phaeophleospora. Fungal Diversity 3: 153-158. During studies of the fungal pathogens occurring on Proteaceae in South Africa, the type specimen of Stilbospora faureae was examined. This fungus was found to be a species of Phaeophleospora, and is transferred to this genus in the present paper. A key to the species in Phaeophleospora is also given. Key words: pathogen, Phaeophleospora, Proteaceae, Stilbospora Introduction Phaeophleospora was considered to be a nomen dubium (Sutton, 1977), until Crous et al. (1997) resurrected it as an earlier name for the coelomycete genus Kirramyces 1. Walker, B. Sutton and 1. Pascoe. There are currently 11 species in Phaeophleospora (Walker et al., 1992; Sutton, 1993; Palm, 1996; Wingfield et al., 1996; Wu et al., 1996; Crous et al., 1997; Crous, 1998; Crous and Palm, 1999) and three of these occur on Proteaceae hosts. Phaeophleospora is associated with leaf spots and is characterised by sub• epidermal, dark-walled pycnidia, which become open and cup-shaped at maturity (Crous et al., 1997). Under conditions of high humidity, these conidiomata exude masses of conidia in a long, brown to black cirrus (Crous et al., 1997).
    [Show full text]
  • A Case of Attempted Suicide by Cerbera Odollam Seed Ingestion
    Hindawi Case Reports in Critical Care Volume 2020, Article ID 7367191, 5 pages https://doi.org/10.1155/2020/7367191 Case Report A Case of Attempted Suicide by Cerbera odollam Seed Ingestion Michelle Bernshteyn , Steven H. Adams, and Kunal Gada SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210, USA Correspondence should be addressed to Michelle Bernshteyn; [email protected] Received 3 March 2020; Revised 2 June 2020; Accepted 4 June 2020; Published 15 June 2020 Academic Editor: Ricardo Jorge Dinis-Oliveira Copyright © 2020 Michelle Bernshteyn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We report a case of attempted suicide by Cerbera odollam seed ingestion by a transgender patient who was successfully treated at our hospital. While the C. odollam plant has multiple practical and ornamental functions, its seeds have traditionally been utilized for suicidal and homicidal purposes in many parts of the world. Physicians should be aware of the presentation, diagnosis, and treatment of C. odollam ingestion given the current ease of availability of these seeds in the United States and the increased reports of suicide attempts. 1. Introduction with a junctional rhythm and therefore received a total of 10 vials of Digibind (digoxin immune fab). She denied any head- Indigenous to India and Southeast Asia, Cerbera odollam, ache, visual disturbances, chest pain, palpitations, shortness “ ” also known as pong-pong, or suicide tree, yields highly car- of breath, abdominal tenderness, diarrhea, or constipation.
    [Show full text]
  • Buchanania Obovata) Compared to Other Anacardiaceae Fruit and Nuts
    The Nutritional Potential of the Native Australian Green Plum (Buchanania obovata) Compared to Other Anacardiaceae Fruit and Nuts Author Fyfe, S, Smyth, HE, Schirra, HJ, Rychlik, M, Sultanbawa, Y Published 2020 Journal Title Frontiers in Nutrition Version Version of Record (VoR) DOI https://doi.org/10.3389/fnut.2020.600215 Copyright Statement © 2020 Fyfe, Smyth, Schirra, Rychlik and Sultanbawa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded from http://hdl.handle.net/10072/405739 Griffith Research Online https://research-repository.griffith.edu.au REVIEW published: 16 December 2020 doi: 10.3389/fnut.2020.600215 The Nutritional Potential of the Native Australian Green Plum (Buchanania obovata) Compared to Other Anacardiaceae Fruit and Nuts Selina Fyfe 1*, Heather E. Smyth 1, Horst Joachim Schirra 2, Michael Rychlik 1,3 and Yasmina Sultanbawa 1 1 Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia, 2 Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia, 3 Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany The native Australian green plum (Buchanania obovata) is a small fruit that grows in the northern parts of the Northern Territory and Western Australia. The fruit belongs to the family Anacardiaceae, which includes the other agriculturally important fruit mangoes, pistachios and cashew nuts.
    [Show full text]
  • Bursera Simaruba Seeds Subjected to Various Scarification Treatments Michael Morgan and Thomas W
    Germination Rates of Bursera simaruba Seeds Subjected to Various Scarification Treatments Michael Morgan and Thomas W. Zimmerman Agroforestry Research Specialist II, University of the Virgin Islands Agricultural Experiment Station, Kingshill, St. Croix, U.S. Virgin Islands; Research Associate Professor, Biotechnology and Agroforestry, University of the Virgin Islands Agricultural Experiment Station, Kingshill, St. Croix, U.S. Virgin Islands Abstract Tainos, also called Arawaks, were the people Columbus encountered on the Caribbean islands when he claimed the Bursera simaruba (L.) Sarg. seed were subjected to five scari- Americas for Spain in 1492. fication treatments to determine their efficacy on subsequent germination. Seeds that were scarified with sandpaper had the Distribution and Characteristics highest mean germination, although it was not statistically different than the untreated control. Those treated with hot Bursera simaruba is native to northern South America and water had significantly lower germination than the control, the Caribbean Basin (Gibney 2004, Jones 1995, Kirk 2009, suggesting that temperatures may have been too hot. These Little and Wadsworth 1964). The species is abundant in results indicate that mechanical scarification may improve the U.S. Virgin Islands and Puerto Rico. It has also become germination of this species but that further research is needed naturalized in south Florida, but some discussion remains to refine treatments. regarding whether B. simaruba is an introduced species to Florida (Navarrete-Tindall and Orellana-Nuñez 2002, Introduction Nelson 1994). B. simaruba is very tolerant of salt, wind, and drought, making it well adapted to the semiarid Virgin Islands Bursera simaruba (L.) Sarg., known as turpentine tree or environment. It is found close to the sea and on hilltops, and gumbo-limbo, is easily recognized by its reddish, papery it is native to limestone-derived soils (Kirk 2009).
    [Show full text]
  • Riches of the Forest: Food, Spices, Crafts and Resins of Asia
    Riches of the forest: Food spices crafts and resins Asia Riches of the forest: Food spices crafts and resins of Asia Editors Citlalli López Patricia Shanley Riches of the forest: Food spices crafts and resins of Asia Riches of the forest: Food spices crafts and resins of Asia Editors Citlalli López Patricia Shanley Scientific reviewer: Jenne de Beer Reviewer and copy editor: Tess Holderness Case study illustrations: Dadi Sungkowo Botanical illustrations: Ishak Syamsudin Layout design: Yani Saloh Layout: Eko Prianto © by Center for International Forestry Research All rights reserved Published in Printed in Desa Putra Indonesia ISBN Office address: Jalan CIFOR Situ Gede Sindang Barang Bogor Barat Indonesia Mailing address: PO Box JKPWB Jakarta Indonesia tel: () fax: () email: cifor@cgiarorg website: wwwciforcgiarorg Acknowledgements We would like to thank the restitution thematic working group especially Alfredo Fantini Rocío Alarcón Gallegos Paul HerschMartínez and Mariana CiavattaPantoja for their catalysing role and dedication to this project Marina Goloubinoff Jenne De Beer Koen Kusters Nicolas Césard Titin Suhartini and Ramadhani Achdiawan offered valuable assistance during the compilation of this volume The CIFORCommunications Unit Information Services Group especially Michael Hailu Yani Saloh and Eko Prianto also offered technical assistance and support This book was developed as part of CIFOR's broader NTFP Case Comparison Project led by Manuel RuizPérez and Brian Belcher who supported this publication throughout its development
    [Show full text]
  • NATIVE PLANTS for SONG and GAME BIRDS Trees, Shrubs, and Perennials to Attract, Feed, and Provide Habitat for Birds
    Promoting Native Plants since 2003 Certified Women Owned Business Enterprise NATIVE PLANTS FOR SONG AND GAME BIRDS Trees, shrubs, and perennials to attract, feed, and provide habitat for birds TREES Botanical Name Common Name Function Acer sp. Maples (red, sugar, striped, & mountain) Cover, Nesting Alnus serrulata Hazel Alder Cover, Nesting Amelanchier canadensis Shadblow Cover, Fruit Amelanchier laevis Allegheny Serviceberry Cover, Fruit Betula sp. Birches (grey, river, yellow, paper, & sweet) Nesting, Seed Carpinus caroliniana American hornbeam Nesting, Seed Carya ovata Shagbark Hickory Nesting, Nuts Carya tomentosa Mockernut Hickory Nesting, Nuts Celtis occidentalis Common Hackberry Cover, Fruit Celtis laevigata Sugarberry Cover, Fruit Chionanthus virginicus Fringe Tree Cover, Fruit Cornus alternifolia Pagoda Dogwood Nesting, Fruit Cornus florida Flowering Dogwood Cover, Fruit Crataegus sp. Hawthorns (Washington & green) Nesting, Fruit Euonymus atropurpureus Eastern Wahoo Nesting, Fruit Fagus grandifolia American Beech Cover, Nesting Hamamelis sp. Witchhazels (spring & Virginia) Cover, Seed Ilex opaca American Holly Nesting, Seed Juniperus virginiana Eastern Red Cedar Cover, Fruit Magnolia sp. Magnolias (sweetbay, cucumber, & umbrella) Cover, Fruit Malus coronaria American Crabapple Nesting, Fruit Picea sp. Spruces (white & red) Cover, Seed Pinus sp. Pines (white, red, pitch, loblolly, shortleaf, & scrub) Cover, Seed Prunus americana American Plum Cover, Fruit Prunus virginiana Chokecherry Cover, Fruit Quercus sp. Oaks (red, black, pin, white, bur, scarlet, & willow) Cover, Acorns Rhus typhina Staghorn Sumac Fruit Salix nigra Black Willow Cover, Nesting Salix discolor Pussy Willow Cover, Buds Sassafras albidum Common Sassafras Cover Sorbus americana American Mountain Ash Cover, Fruit Taxodium distichum Bald Cypress Cover, Seed Tsuga canadensis Canadian Hemlock Cover, Seed Thuja occidentalis Eastern Arborvitae Cover, Seed 2415 Route 100 Orefield PA 18069 www.EdgeOfTheWoodsNursery.com SHRUBS & VINES Aronia sp.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Phylogenetic Relationships in the Order Ericales S.L.: Analyses of Molecular Data from Five Genes from the Plastid and Mitochondrial Genomes1
    American Journal of Botany 89(4): 677±687. 2002. PHYLOGENETIC RELATIONSHIPS IN THE ORDER ERICALES S.L.: ANALYSES OF MOLECULAR DATA FROM FIVE GENES FROM THE PLASTID AND MITOCHONDRIAL GENOMES1 ARNE A. ANDERBERG,2,5 CATARINA RYDIN,3 AND MARI KAÈ LLERSJOÈ 4 2Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden; 3Department of Systematic Botany, University of Stockholm, SE-106 91 Stockholm, Sweden; and 4Laboratory for Molecular Systematics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well-supported groups were identi®ed, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae-Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae-Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styr- acaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae. Key words: atpB; atp1; cladistics; DNA; Ericales; jackknife; matR; ndhF; phylogeny; rbcL. Understanding of phylogenetic relationships among angio- was available for them at the time, viz.
    [Show full text]