Spatial and Matrix Influences on the Biogeography of Insect Taxa in Forest Fragments in Central Uganda

Total Page:16

File Type:pdf, Size:1020Kb

Spatial and Matrix Influences on the Biogeography of Insect Taxa in Forest Fragments in Central Uganda Spatial and matrix influences on the biogeography of insect taxa in forest fragments in central Uganda Perpetra Akite Dissertation for a cotutelle award of Doctor of Philosophy Degree of Makerere University, Uganda and University of Bergen, Norway Makerere University University of Bergen 2016 Department of Biological Sciences, Makerere University Department of Biology, University of Bergen ii DECLARATION OF ORIGINALITY This is my own work and it has never been submitted for any degree award in any University iii TABLE OF CONTENTS DECLARATION OF ORIGINALITY......................................................................................iii LIST OF CONTENTS...............................................................................................................iv ACKNOWLEDGEMENTS.......................................................................................................vi LIST OF PAPERS....................................................................................................................vii Declaration of authors’ contributions…………………….…...……………...……...viii ABSTRACT...............................................................................................................................x BACKGROUND........................................................................................................................1 Problem statement..........................................................................................................……….2 Objectives........................................................................................................................3 Research questions..........................................................................................................4 INTRODUCTION......................................................................................................................5 Forest fragmentation and Biodiversity............................................................................6 Does the Matrix matter?……………………………………………………………......9 Roles of insects in ecosystem dynamics……………………………………..……… 12 How much is known about insects in Uganda?………………………………………14 STUDY AREAS AND SITES.................................................................................................15 MATERIALS AND METHODS…………………………………………………….………17 Study protocols…………………………………………………………………………….…17 Paper I…………………………………………………..……………………….……17 Paper II…………………………………………………………………………..……19 Paper III……………………………………………………………………………….21 Paper IV…………………………………………………………………………….…23 RESULTS AND DISCUSSION...............................................................................................24 Temporal dynamics of forest biodiversity....................................................................26 iv Species distribution along the vertical continuum........................................................29 Habitat use by insects in a patch-matrix landscape.......................................................30 The need for focused sampling in face of limited inventory………………….………33 Challenges of biodiversity conservation in modified forest landscapes in Uganda…. 34 The social and political realities and their effects on forest protection in Uganda…...36 CONCLUSIONS......................................................................................................................39 RECOMMENDATIONS.........................................................................................................40 REFERENCES..........................................................................................................…….…..42 PLATES SHOWING REPRESENTATIVE SPECIES OF DIFFERENT GROUPS INDIVIDUAL PAPERS I – IV APPENDICES OF LISTS OF SPECIES OF DIFFERENT INSECT TAXA v ACKNOWLEDGEMENTS This study was supported by the Norwegian Research Council (FRIMUF programme) funded the study through the MATRIX project (# 184912) and supported by the University of Bergen–Makerere University Collaboration. I am grateful to my supervisors for guiding me through my doctoral study. You have been inspiring and supportive to my research decisions. Your invaluable expertises in the different aspects of this study are highly regarded. I am indebted to Vigdis Vandvik PI-MATRIX project) for her enthusiastic, encouraging and valuable discussions throughout this work. Your fast feedback on manuscripts, open minded face to face discussions and very constructive criticisms were instrumental in making this study end a reality. Amy Eycott, it’s said better late than never and your coming on board the Matrix project was an honour for me. Thank you for your tireless efforts, endless reading of manuscripts, mapping and all other help you extended to me. I am especially grateful to Paul Waring and Hugh Rowell for all the expert field trainings, Ian Kitching and Alessandro Giusti from the Natural History Museum London, Torben Larsen (R.I.P) for identifying difficult butterfly specimens, research associates Therese Kronstad and Jenny Reiniö and our local assistants, colleagues at Ecology and Environmental Research Group (University of Bergen) and the Department of Biological Sciences, Makerere University for a friendly and inspiring work atmosphere, Cathy Jenks; my welfare hero in Bergen, Josephine Esaete for all the ‘big sister’ counsel and fantastic coordination, Ulf Bjelke for financial help following gruesome road accident and for sharing my passion for insects and photography, Janet McCrae, Joseph Chipperfield, Mikail Erdogan and Jan Skogvang. Above all, I am grateful to God for holding everything together to the very end. This thesis is dedicated to a dear friend, Petter Hansen (the cruel hand of death did not let you see the end of this journey), and to all who appreciate nature. vi LIST OF PAPERS The thesis is based on the following four papers which will be referred to by their Roman numerals hereafter. Paper I: Akite, P., Telford, R.J., Waring, P., Akol, A.M. & Vandvik, V. (2015) Temporal patterns in Saturnidae (silk moth) and Sphingidae (hawk moth) assemblages in protected forests of Central Uganda. Ecology and Evolution 5 (8): 1746–1757. Paper II: Akite, P., Akol, M.A., Kronstad, T., Vandvik, V & Telford, R.J. Vertical distribution of fruit-feeding butterflies in three protected forests in Central Uganda. Manuscript under revision. Paper III: Akite, P., Akol, M.A., Eycott, A.E., Vandvik, V. & Telford, R.J. The use of matrix habitats by forest insect species. Manuscript. Paper IV: Akite, P. & Rowell, C.H.F. (2013) Oshwea dubiosa rediscovered in Uganda. Journal of Orthoptera Research 22 (1): 45–49. vii Declaration of authors’ contributions Paper I: P. Akite, R.J. Telford, P.Waring, A.M. Akol & V. Vandvik. Temporal patterns in Saturnidae (silk moth) and Sphingidae (hawk moth) assemblages in protected forests of Central Uganda. Akite, P.: Compiling historical data, survey design, field work, laboratory work, data processing, statistical analyses, writing Telford, R.J.: Project design, analytical design, data processing, statistical analyses, editing Waring, P.: Survey design, field work, editing Akol, A.M.: Analytical design, statistical analyses, editing Vandvik, V.: Project design, analytical design, statistical analyses, editing Paper II: Akite, P., Akol, M.A., Kronstad, T., Vandvik, V & Telford, R.J. Vertical distribution of fruit-feeding butterflies in three protected forests in Central Uganda. Akite, P.: Survey design, field work, laboratory work, data processing, statistical analyses, writing Akol, M.A.: Analytical design, editing Kronstad, T.: Field work, laboratory work, data processing, editing Vandvik, V.: Project design, analytical design, statistical analyses, editing Telford, R.J.: Project design, analytical design, data processing, statistical analyses, editing viii Paper III: Akite, P., Akol, M.A., Eycott, A.E., Vandvik, V. & Telford, R.J. The use of matrix habitats by forest insect species. Akite, P.: Survey design, field work, laboratory work, data processing, statistical analyses, writing Akol, M.A.: Editing Eycott, A.E.: Data processing, statistical analyses, editing Vandvik, V.: Project design, analytical design, statistical analyses, editing Telford, R.J.: Project design, analytical design, statistical analyses, editing Paper IV: Perpetra Akite & C.H.F. Rowell (2013). Oshwea dubiosa rediscovered in Uganda. Akite, P.: Field work, data processing, editing Rowell, C.H.F.: Field work, laboratory work, data processing, writing ix ABSTRACT How best to manage forest patches, mitigate the consequences of forest fragmentation, and enable landscape permeability are key questions facing conservation scientists and managers. In Uganda, most protected forests have undergone considerable changes from a range of human activities in recent decades. As such once continuous forests now exist as ‘islands’ (patches) in a matrix of non-forest habitats. In fragmented forest landscapes, the capacity of matrix habitats to support forest species varies. However, very little is known of how faunal communities and in particular insect assemblages utilize resources within the patch-matrix landscape. This study explored spatial and temporal patterns of diversity and distribution of butterflies, moths and grasshoppers in the patch-matrix landscapes of three protected forests: Mabira (largely stable and recovering from past encroachment, albeit with minor illegal logging, but disturbed at the edges), Zika and Mpanga (relatively undisturbed and unchanged internally, but with substantially altered matrix),
Recommended publications
  • 119 Genus Amauris Huebner
    AFROTROPICAL BUTTERFLIES 17th edition (2018). MARK C. WILLIAMS. http://www.lepsocafrica.org/?p=publications&s=atb Genus Amauris Hübner, [1816] In: Hübner, [1816-[1826]. Verzeichniss bekannter Schmettlinge 14 (432 + 72 pp.). Augsburg. Type-species: Papilio niavius Linnaeus, by subsequent designation (Scudder, 1875. Proceedings of the American Academy of Arts and Sciences 10: 108 (91-293).). The genus Amauris belongs to the Family Nymphalidae Rafinesque, 1815; Subfamily Danainae Boisduval, 1833; Tribe Danaini Boisduval, 1833; Subtribe Amaurina Le Cerf, 1922. Amauris is the only Afrotropical genus in the Subtribe Amaurina. Amauris is an exclusively Afrotropical genus containing 16 species. Relevant literature: De Vries, 2002 [Differential wing toughness with other taxa]. Amauris species. Final instar larva. Images courtesy Raimund Schutte Amauris species. Pupa. 1 Image courtesy Raimund Schutte Subgenus Amauris Hübner, [1816] In: Hübner, [1816-26]. Verzeichniss bekannter Schmettlinge 14 (432 + 72 pp.). Augsburg. Type-species: Papilio niavius Linnaeus, by subsequent designation (Scudder, 1875. Proceedings of the American Academy of Arts and Sciences 10: 108 (91-293).). *Amauris (Amauris) niavius (Linnaeus, 1758)# Friar Male of the Friar Butterfly (Amauris niavius) at Lake Sibaya, Zululand. Image courtesy Steve Woodhall. Papilio niavius Linnaeus, 1758. Systema Naturae 1, Regnum Animale, 10th edition: 470 (824 pp.). Holmiae. Amauris (Amauris) niavius (Linnaeus, 1758). Pringle et al., 1994: 48. Amauris niavius niavius. Male (Wingspan 75 mm). Left
    [Show full text]
  • Da Guiné-Bissau. Ii. Papilionidae E Pieridae
    Boletín Sociedad Entomológica Aragonesa, n1 41 (2007) : 223–236. NOVOS DADOS SOBRE OS LEPIDÓPTEROS DIURNOS (LEPIDOPTERA: HESPERIOIDEA E PAPILIONOIDEA) DA GUINÉ-BISSAU. II. PAPILIONIDAE E PIERIDAE A. Bivar-de-Sousa1, L.F. Mendes2 & S. Consciência3 1 Sociedade Portuguesa de Entomologia, Apartado 8221, 1803-001 Lisboa, Portugal. – [email protected] 2 Instituto de Investigação Científica Tropical (IICT-IP), JBT, Zoologia, R. da Junqueira, 14, 1300-343 Lisboa, Portugal. – [email protected] 3 Instituto de Investigação Científica Tropical (IICT-IP), JBT, Zoologia, R. da Junqueira, 14, 1300-343 Lisboa, Portugal. – [email protected] Resumo: Estudam-se amostras de borboletas diurnas das famílias Papilionidae e Pieridae colhidas ao longo da Guiné-Bissau, no que corresponde à nossa segunda contribuição para o conhecimento das borboletas diurnas deste país. Na sua maioria o material encontra-se depositadas na colecção aracno-entomológica do IICT e na colecção particular do primeiro co-autor, tendo-se reexaminado as amostras determinadas por Bacelar (1949). Em simultâneo, actualizam-se os conhecimentos sobre a fauna de lepidópteros ropalóceros do Parque Natural das Lagoas de Cufada (PNLC). A distribuição geográfica conhecida de cada uma das espécies no país é representada em mapas UTM com quadrícula de 10 Km de lado. Referem-se três espécies de Papilionidae e um género e quatro espécies de Pieridae como novidades faunísticas para a Guiné-Bissau e três espécies de Papilionidae e dois géneros e sete espécies de Pieridae são novas para o PNLC, no total das trinta e uma espécies até ao momento encontradas nestas famílias (nove, e vinte e duas, respectivamente) no país. Palavras chave: Lepidoptera, Papilionidae, Pieridae, distribuição geográfica, Guiné-Bissau.
    [Show full text]
  • Species Composition and Diversity of Insects of the Kogyae Strict Nature Reserve in Ghana
    Open Journal of Ecology, 2014, 4, 1061-1079 Published Online December 2014 in SciRes. http://www.scirp.org/journal/oje http://dx.doi.org/10.4236/oje.2014.417087 Species Composition and Diversity of Insects of the Kogyae Strict Nature Reserve in Ghana Rosina Kyerematen1,2*, Erasmus Henaku Owusu1, Daniel Acquah-Lamptey1, Roger Sigismund Anderson2, Yaa Ntiamoa-Baidu1,3 1Department of Animal Biology and Conservation Science, University of Ghana, Legon, Ghana 2African Regional Postgraduate Programme in Insect Science, University of Ghana, Legon, Ghana 3Centre for African Wetlands, University of Ghana, Legon, Ghana Email: *[email protected], [email protected], [email protected], [email protected], [email protected] Received 6 September 2014; revised 9 November 2014; accepted 21 November 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Kogyae Strict Nature Reserve, the only one in Ghana, was established to promote scientific re- search, particularly on how nature revitalizes itself after major disasters, and also to check the southward drift of the savannah grassland. This study presents the first comprehensive inventory of species composition and diversity of insects of the Reserve. Insects were surveyed between September 2011 and June 2012 to capture the end of the rainy season, the dry season and the peak of the wet season. Samples were taken from two sites within the Reserve, Dagomba and Oku using various sampling techniques including pitfall traps, malaise traps and sweep nets. Insect com- munities were characterized in terms of, 1) species richness estimators, 2) species richness, 3) Shannon-Weiner Index of Diversity, 4) Pielou’s evenness and 5) Bray-Curtis similarity.
    [Show full text]
  • Segoma Forest Reserve: a Biodiversity Survey. East Usambara Conservation Area Management Programme Technical Paper No
    TECHNICAL PAPER 50 Segoma Forest Reserve A biodiversity survey Frontier Tanzania 2001 East Usambara Conservation Area Management Programme Technical Paper 50 Segoma Forest Reserve A biodiversity survey Doody, K. Z., Howell, K. M. and Fanning, E. (eds.) Ministry of Natural Resources and Tourism, Tanzania Forestry and Beekeeping Division Department of International Frontier-Tanzania Development Co-operation, Finland University of Dar es Salaam Metsähallitus Consulting Society for Environmental Exploration Tanga 2001 © Metsähallitus - Forest and Park Service Cover painting: Jaffary Aussi (1995) ISSN 1236-630X ISBN 9987-646-06-9 Suggested citation: Frontier Tanzania 2001. Doody, K. Z., Howell, K. M., and Fanning, E., (eds.). Segoma Forest Reserve: A biodiversity survey. East Usambara Conservation Area Management Programme Technical Paper No. 50. Frontier Tanzania, Forestry and Beekeeping Division & Metsähallitus Consulting , Dar es Salaam & Vantaa, Finland. East Usambara Conservation Area Management Programme (EUCAMP) The East Usambara rain forests are one of the most valuable conservation areas in Africa, several plant and animal species are found only in the East Usambara mountains. The rain forests secure the water supply of 200,000 people and the local people in the mountains depend on these forests. The East Usambara Conservation Area Management Programme has established the Amani Nature Reserve, and aims at protecting water sources; establishing and protecting forest reserves; sustaining villager’s benefits from the forest; and rehabilitating the Amani Botanical Garden. The Forestry and Beekeeping Division of the Ministry of Natural Resources and Tourism implement the programme with financial support from the Government of Finland, and implementation support from the Metsahallitus Consulting . To monitor the impact of the project, both baseline biodiversity assessments and development of a monitoring system are needed.
    [Show full text]
  • Confirmation of Hawkmoth Pollination in Habenaria Epipactidea: Leg Placement of Pollinaria and Crepuscular Scent Emission ⁎ C.I
    Available online at www.sciencedirect.com South African Journal of Botany 75 (2009) 744–750 www.elsevier.com/locate/sajb Confirmation of hawkmoth pollination in Habenaria epipactidea: Leg placement of pollinaria and crepuscular scent emission ⁎ C.I. Peter a, , G. Coombs a, C.F. Huchzermeyer a, N. Venter a, A.C. Winkler a, D. Hutton a, L.A. Papier a, A.P. Dold a, S.D. Johnson b a Department of Botany, Rhodes University, PO Box 94, Grahamstown 6140, South Africa b School of Conservation and Biological Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa Received 5 June 2009; received in revised form 30 July 2009; accepted 17 August 2009 Abstract In his landmark work on the pollination biology of South African plants in 1954, Stefan Vogel described the deposition of Habenaria epipactidea (= H. polyphylla) pollinaria on the forelegs of the hawkmoth Hippotion celerio. The discovery of a large, well-pollinated population of H. epipactidea in the Eastern Cape allowed us to confirm the presence of this unusual pollen placement on a number of species of shorter- tongued hawkmoths. The long-tongued species Agrius convolvuli is likely to function as a nectar thief as the length of the tongue of this species relative to the nectar spur ensures that the forelegs are unlikely to come into contact with the viscidia. The legitimate hawkmoth pollinators removed a large proportion of pollinaria from the flowers and the majority of flowers had pollen deposited on their stigmas. Despite this, pollen transfer efficiency was relatively low at 8.4%.
    [Show full text]
  • Mali 1964-2006
    MALI 1964-2006 Por Jean-Michel MAES Con el apoyo de Patrice Bonafonte (Coleoptera), Larry Fillion (Malaria) y James Skapteson (Insectos). Actualizado en Julio de 2012. Republica de Mali, independiente desde 1960, ex colonia francesa. Tiene una superficie de 1,200,000 kilometros cuadrados y una población de 11,400,000 habitantes. Capital Bamako. 1964 Junio 1 : Lepidoptera (14 valores, en bloques de dos valores) (Y & T : T 7 – T 20) (Scott : J 7 – J 20). Lepidoptera : Sphingidae : Lepidoptera : Saturniidae : Lepidoptera : Pieridae : Colotis Deilephila nerii + Lepidoptera : Gynanisa maja + Lepidoptera : antevippe + Lepidoptera : Sphingidae : Polyptychus roseus . Saturniidae : Bunaea alcinoe . Pieridae : Teracolus eris . Lepidoptera : Nymphalidae : Charaxes epijasius + Lepidoptera : Lycaenidae : Lipaphnaeus leontina + Lepidoptera : Maratha microcepa . Lepidoptera : Lycaenidae : Hyporopelates otraeda . Lepidoptera : Saturniidae : Gonimbrasia hecate + Lepidoptera : Pieridae : Catopsilia florella + Lepidoptera : Saturniidae : Lobobunea chiristyi . Lepidoptera : Nymphalidae : Hypolimnas misippus . 1964 Junio 15 : Lucha contra los acrididos (3 valores) (Y & T : 60-62) (Scott : 58-60). Orthoptera : Acrididae : Locusta Orthoptera : Acrididae : Locusta Orthoptera : Acrididae : Locusta migratoria migratorioides . migratoria migratorioides . migratoria migratorioides . 1964 Junio 15 : Idem, Lucha contra los acrididos, en bloques de 4 sellos (Y & T : 60-62) (Scott : 58-60). Orthoptera : Acrididae : Locusta migratoria Orthoptera : Acrididae : Locusta
    [Show full text]
  • Check-List of the Butterflies of the Kakamega Forest Nature Reserve in Western Kenya (Lepidoptera: Hesperioidea, Papilionoidea)
    Nachr. entomol. Ver. Apollo, N. F. 25 (4): 161–174 (2004) 161 Check-list of the butterflies of the Kakamega Forest Nature Reserve in western Kenya (Lepidoptera: Hesperioidea, Papilionoidea) Lars Kühne, Steve C. Collins and Wanja Kinuthia1 Lars Kühne, Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstraße 43, D-10115 Berlin, Germany; email: [email protected] Steve C. Collins, African Butterfly Research Institute, P.O. Box 14308, Nairobi, Kenya Dr. Wanja Kinuthia, Department of Invertebrate Zoology, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya Abstract: All species of butterflies recorded from the Kaka- list it was clear that thorough investigation of scientific mega Forest N.R. in western Kenya are listed for the first collections can produce a very sound list of the occur- time. The check-list is based mainly on the collection of ring species in a relatively short time. The information A.B.R.I. (African Butterfly Research Institute, Nairobi). Furthermore records from the collection of the National density is frequently underestimated and collection data Museum of Kenya (Nairobi), the BIOTA-project and from offers a description of species diversity within a local literature were included in this list. In total 491 species or area, in particular with reference to rapid measurement 55 % of approximately 900 Kenyan species could be veri- of biodiversity (Trueman & Cranston 1997, Danks 1998, fied for the area. 31 species were not recorded before from Trojan 2000). Kenyan territory, 9 of them were described as new since the appearance of the book by Larsen (1996). The kind of list being produced here represents an information source for the total species diversity of the Checkliste der Tagfalter des Kakamega-Waldschutzge- Kakamega forest.
    [Show full text]
  • Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes
    Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes Akito Y. Kawahara1*, Andre A. Mignault1, Jerome C. Regier2, Ian J. Kitching3, Charles Mitter1 1 Department of Entomology, College Park, Maryland, United States of America, 2 Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America, 3 Department of Entomology, The Natural History Museum, London, United Kingdom Abstract Background: The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well- studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes. Methodology/Principal Findings: The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two- thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes.
    [Show full text]
  • Archiv Für Naturgeschichte
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Lepidoptera für 1903. Bearbeitet von Dr. Robert Lucas in Rixdorf bei Berlin. A. Publikationen (Autoren alphabetisch) mit Referaten. Adkin, Robert. Pyrameis cardui, Plusia gamma and Nemophila noc- tuella. The Entomologist, vol. 36. p. 274—276. Agassiz, G. Etüde sur la coloration des ailes des papillons. Lausanne, H. Vallotton u. Toso. 8 °. 31 p. von Aigner-Abafi, A. (1). Variabilität zweier Lepidopterenarten. Verhandlgn. zool.-bot. Ges. Wien, 53. Bd. p. 162—165. I. Argynnis Paphia L. ; IL Larentia bilineata L. — (2). Protoparce convolvuli. Entom. Zeitschr. Guben. 17. Jahrg. p. 22. — (3). Über Mimikry. Gaea. 39. Jhg. p. 166—170, 233—237. — (4). A mimicryröl. Rov. Lapok, vol. X, p. 28—34, 45—53 — (5). A Mimicry. Allat. Kozl. 1902, p. 117—126. — (6). (Über Mimikry). Allgem. Zeitschr. f. Entom. 7. Bd. (Schluß p. 405—409). Über Falterarten, welche auch gesondert von ihrer Umgebung, in ruhendem Zustande eine eigentümliche, das Auge täuschende Form annehmen (Lasiocampa quercifolia [dürres Blatt], Phalera bucephala [zerbrochenes Ästchen], Calocampa exoleta [Stück morschen Holzes]. — [Stabheuschrecke, Acanthoderus]. Raupen, die Meister der Mimikry sind. Nachahmung anderer Tiere. Die Mimik ist in vielen Fällen zwecklos. — Die wenn auch recht geistreichen Mimikry-Theorien sind doch vielleicht nur ein müßiges Spiel der Phantasie. Aitken u. Comber, E. A list of the butterflies of the Konkau. Journ. Bombay Soc. vol. XV. p. 42—55, Suppl. p. 356. Albisson, J. Notes biologiques pour servir ä l'histoire naturelle du Charaxes jasius. Bull. Soc. Etud. Sc. nat. Nimes. T. 30. p. 77—82. Annandale u. Robinson. Siehe unter S w i n h o e.
    [Show full text]
  • Bulletin of Zoological Nomenclature
    \M RD IV WV The Bulletin of Zoological Nomenclature IGzjJxjThe Official Periodical of the International Commission on Zoological Nomenclature Volume 56, 1999 Published on behalf of the Commission by The International Trust for Zoological Nomenclature c/o The Natural History Museum Cromwell Road London, SW7 5BD, U.K. ISSN 0007-5167 '£' International Trust for Zoological Nomenclature Bulletin of Zoological Nomenclature 56(4) December 1999 I TABLE OF CONTENTS Page Notices 1 The International Commission on Zoological Nomenclature and its publications . 2 Addresses of members of the Commission 3 International Trust for Zoological Nomenclature 4 The International Code of Zoological Nomenclature 5 Towards Stability in the Names of Animals 5 General Article Recording and registration of new scientific names: a simulation of the mechanism proposed (but not adopted) for the International Code of Zoological Nomen- clature. P. Bouchet 6 Applications Eiulendriwn arbuscula Wright, 1859 (Cnidaria, Hydrozoa): proposed conservation of the specific name. A.C. Marques & W. Vervoort 16 AUGOCHLORiNi Moure. 1943 (Insecta. Hymenoptera): proposed precedence over oxYSTOGLOSSiNi Schrottky, 1909. M.S. Engel 19 Strongylogasier Dahlbom. 1835 (Insecta. Hymenoptera): proposed conservation by the designation of Teiuhredo muhifascuim Geoffroy in Fourcroy, 1785 as the type species. S.M. Blank, A. Taeger & T. Naito 23 Solowpsis inviclu Buren, 1972 (Insecta, Hymenoptera): proposed conservation of the specific name. S.O. Shattuck. S.D. Porter & D.P. Wojcik 27 NYMPHLILINAE Duponchel, [1845] (Insecta, Lepidoptera): proposed precedence over ACENTROPiNAE Stephens. 1835. M.A. Solis 31 Hemibagnis Bleeker, 1862 (Osteichthyes, Siluriformes): proposed stability of nomenclature by the designation of a single neotype for both Bagrus neimirus Valenciennes, 1840 and B.
    [Show full text]
  • Arise by Chance As the Result of Mutation. They Therefore Suggest
    THE EVOLUTION OF DOMINANCE UNDER DISRUPTIVE SELECTION C. A. CLARKE and P. Ni. SHEPPARD Department of Medicine and Department of Zoology, University of Liverpool Received6.iii.59 1.INTRODUCTION INa paper on the effects of disruptive selection, Mather (1955) pointed out that if there are two optimum values for a character and all others are less advantageous or disadvantageous there will be disruptive selection which can lead to the evolution of a polymorphism. Sheppard (1958) argued that where such selection is effective and the change from one optimum value to the other is switched by a single pair of allelomorphs there will be three genotypes but only two advantageous phenotypes. Consequently if dominance were absent initially it would be evolved as a result of the disruptive selection, the heterozygote and one of the homozygotes both coming to resemble one of the two optimum phenotypes (see Ford, 1955, on Tripharna comes). Thoday (1959) has shown by means of an artificial selection experiment that, even when a character is, at the beginning, controlled polygenically (sternopleural chaeta-number in Drosophila) and there is 50 per cent. gene exchange between the "high" and "low" selected sub-popu- lations, a polymorphism can evolve. The most fully understood examples of disruptive selection (other than sex) are provided by instances of Batesian Mimicry, where there are a number of distinct warningly coloured species, acting as models, which are mimicked by the polymorphic forms of a single more edible species. Fisher and Ford (see Ford, 1953) have argued that a suffi- ciently good resemblance between mimic and model is not likely to arise by chance as the result of mutation.
    [Show full text]
  • Mt Mabu, Mozambique: Biodiversity and Conservation
    Darwin Initiative Award 15/036: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems MT MABU, MOZAMBIQUE: BIODIVERSITY AND CONSERVATION November 2012 Jonathan Timberlake, Julian Bayliss, Françoise Dowsett-Lemaire, Colin Congdon, Bill Branch, Steve Collins, Michael Curran, Robert J. Dowsett, Lincoln Fishpool, Jorge Francisco, Tim Harris, Mirjam Kopp & Camila de Sousa ABRI african butterfly research in Forestry Research Institute of Malawi Biodiversity of Mt Mabu, Mozambique, page 2 Front cover: Main camp in lower forest area on Mt Mabu (JB). Frontispiece: View over Mabu forest to north (TT, top); Hermenegildo Matimele plant collecting (TT, middle L); view of Mt Mabu from abandoned tea estate (JT, middle R); butterflies (Lachnoptera ayresii) mating (JB, bottom L); Atheris mabuensis (JB, bottom R). Photo credits: JB – Julian Bayliss CS ‒ Camila de Sousa JT – Jonathan Timberlake TT – Tom Timberlake TH – Tim Harris Suggested citation: Timberlake, J.R., Bayliss, J., Dowsett-Lemaire, F., Congdon, C., Branch, W.R., Collins, S., Curran, M., Dowsett, R.J., Fishpool, L., Francisco, J., Harris, T., Kopp, M. & de Sousa, C. (2012). Mt Mabu, Mozambique: Biodiversity and Conservation. Report produced under the Darwin Initiative Award 15/036. Royal Botanic Gardens, Kew, London. 94 pp. Biodiversity of Mt Mabu, Mozambique, page 3 LIST OF CONTENTS List of Contents .......................................................................................................................... 3 List of Tables .............................................................................................................................
    [Show full text]