Beach Nourishment Effects at Ystad Sandskogen Project in Practice
Total Page:16
File Type:pdf, Size:1020Kb
Beach nourishment effects at Ystad Sandskogen Project in practice At The Department of Geoscience and Natural Resource Management, Copenhagen University and The Danisch Coastal Authority (DCA) Nikolai Heath Sørensen (bsj791) Supervisors: Troels Aagaard (IGN) and Per Sørensen (DCA) 23rd of April 2020 The north-eastern end of Ystad Sandskogen. Photo by Nikolai Sørensen, 2020. Table of Contents Abstract .................................................................................................................................................... 2 1. Introduction and background ............................................................................................................... 3 1.1 Objectives ...................................................................................................................................... 3 2. Theory .................................................................................................................................................. 4 2.1 Sediment transport ......................................................................................................................... 4 2.2 Bedforms and bars ......................................................................................................................... 4 2.3 Seasonal Profile variability ............................................................................................................ 5 2.4 Beach nourishment ........................................................................................................................ 5 2.5 Coastal management structures ..................................................................................................... 6 2.6 Momentary coastline (MCL) ......................................................................................................... 6 3. Study site ............................................................................................................................................. 7 4. Physical processes ............................................................................................................................. 10 4.1 Waves .......................................................................................................................................... 10 4.2 Sediment transport convergence zone ......................................................................................... 12 4.3 Storms .......................................................................................................................................... 13 5. Methods and data ............................................................................................................................... 14 5.1. Data processing ........................................................................................................................... 14 5.2 Data accuracy ............................................................................................................................... 15 5.3. Sediment volume calculations .................................................................................................... 15 5.3.1. MorphAn volumes ............................................................................................................... 15 5.3.2. Sediment volume sections ................................................................................................... 17 5.4 MorphAn momentary coastline position (MCL) ......................................................................... 18 5.5 Morphological evolution (Timestack plot) .................................................................................. 18 6. Results................................................................................................................................................ 19 6.1 Volumes ....................................................................................................................................... 19 6.1.1 Total volume evolution ......................................................................................................... 19 6.1.2 Profile volumes ..................................................................................................................... 20 6.1.3 Section volumes .................................................................................................................... 23 6.2 Morphology ................................................................................................................................. 23 6.3 Momentary Coastline (MCL) ...................................................................................................... 25 7. Discussion .......................................................................................................................................... 27 7.1 Nourishment impact on the beach volume .................................................................................. 27 7.2 Nourishment distribution ............................................................................................................. 27 7.3 Hydrodynamic and nourishment impacts on morphology, MCL and volumes ........................... 29 8. Conclusion ......................................................................................................................................... 31 9. References .......................................................................................................................................... 32 Appendix A: Timeline ........................................................................................................................... 34 Appendix B: Profile volume evolutions ................................................................................................ 35 1 Abstract Certain parts of Ystad Sandskogen Beach are subject to erosion and shoreline retreat, especially at the southwestern part, which is the most visited part, where the SPA hotel Ystad Saltsjöbad and the easiest access to the beach are located. The coastline has retreated by an average of 1- 1.5 m/yr over the past 150 years (Halldén, 2017). Almström, B & Hanson, H, 2013 estimate a sediment loss of 147,000 m3 from 1997 to 2010, 90 % of which has been eroded from below the water surface. This study, however, finds a less significant volume loss. The construction of Ystad harbour and several groynes influence the sediment budget at Ystad Sandskogen. Sediment is trapped upstream of these structures, resulting in beach erosion of the downstream beaches as the sediment outflow becomes much greater than the sediment input. This study finds a retreat of the coastline up until the 2011 beach nourishment, especially at the most visited parts of the beach, which indicates a sediment redistribution or loss. The 2011 nourishment is found to have had positive effects on the beach volume and beach width for up to at least three years after the nourishment. Some areas, however, have not benefitted from the nourishment at all, while others only showed advantage from the nourishment in the first five months. 2 1. Introduction and background Ystad Sandskogen is a beach of high recreational value and therefore of socioeconomic importance to the municipality of Ystad. The value of the beach is estimated to be 42 million euros per year (Halldén, 2017). The hinterland located behind the relatively small dunes are at risk of flooding if the beach is not assisted to sustain a certain resilience level to flooding and sea level rise. Beach nourishment is a coastal management action that is applied to increase the resilience of the beach to flooding and erosion and furthermore maintain a firm beach width and volume (see Figure 1 for nourishment effects on the shoreline extent). Beach nourishment has a lifetime of 1 to 5 years in general, depending on wave climate and the magnitude of nourishment (Giardino et al., 2019). 224,000 m3 of sand has been applied to Ystad Sandskogen over three intervals, 80,000m3 in May 2011, 64,000 m3 in March 2014 and 80,000 in April 2017. The last nourishment of the total of four nourishments is planned to be carried out in April 2020 (Bontje et al., 2018). The purpose of this study is to assist parts of the EU, Interreg Building with Nature (BwN) project. BwN is a concept which researches the opportunities of accommodating climate change challenges, such as sea level rise and increased storm frequency, by applying nature’s own dynamics. Through the examination of seven, so-called, living laboratories along the coast of the North Sea region (Ystad Sandskogen is one of these living laboratories), the project aims to quantify nourishment effects for future policy making (Interreg, 2015). Figure 1: Ystad, Sandskogen Beach in December 2010, before the first nourishment (left) and June 2012 roughly one year after the 2011 nourishment (right) (Google Earth, 2020). 1.1 Objectives The aim of this study is to analyse the effects of two beach nourishments carried out at Ystad Sandskogen. By examining the cross and longshore distribution of the 80,000 m3 applied sediment in 2011 and 64,000 m3 in 2014 and relating this to physical and hydrodynamic processes, the desired outcome is to estimate volume distributions, the lifetime of nourishment, the impact on morphology and the impact on the beach width. Research questions: - How does the total volume evolve post and prior beach nourishments? - How does the nourished volume distribute? - How does the momentary coastline