Articles Entered and Propagated in the Magnetosphere to Form the Ring Current
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Iowa Instruments in Space
University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar. -
The Planeterrella Experiment: from Individual Initiative to Networking J
submitted to Journal of Space Weather and Space Climate c The author(s) under the Creative Commons Attribution-NonCommercial license The Planeterrella experiment: from individual initiative to networking J. Lilensten1, G. Provan2, S. Grimald3, A. Brekke4, E. Fluckiger¨ 5, P. Vanlommel6, C. Simon Wedlund6, M. Barthel´ emy´ 1, and P. Garnier3 1 Institut de Plantologie et d’Astrophysique de Grenoble, 38041 Grenoble, France e-mail: [email protected] 2 Institution University of Leicester, United Kingdom e-mail: [email protected] 3 IRAP, e-mail: [email protected] 4 History of Geoph. and Space Sciences journal, e-mail: [email protected] 5 Physikalisches Institut, University of Bern, Switzerland, e-mail: [email protected] 6 Royal Observatory of Belgium e-mail: [email protected] 7 e-mail: [email protected] ABSTRACT Space weather is a relatively new discipline which is generally unknown to the wider public, de- spite its increasing importance to all of our daily lives. Outreach activities can help in promoting the concept of space weather. In particular the visual beauty and excitement of the aurora make these lights a wonderful inspirational hook. A century ago Norwegian experimental physicist Kristian Birkeland, one of the founding fathers of modern space science, demonstrated with his Terrella experiment the formation of the aurora. Recently a modernised version of the Terrella has been designed. This Planeterrella experiment is very flexible, allowing the visualization of many phenomena occurring in our space environment. Although the Planeterrella was originally designed to be small to be demonstrated locally by a scientist, the Planeterrella has proved to be a very successful public outreach experiment. -
United States National Museum
Contributions from The Museum of History and Technology: Paper 8 The Natural Philosophy of William Gilbert and His Predecessors IV. James King 121 By W James King THE NATURAL PHILOSOPHY OF WILLIAM GILBERT AND HIS PREDECESSORS Until several decades ago, the physical sciences were considered to have had their origins in the 17th century— mechanics beginning with men Like Galileo Galilei and magnetism ivith men like the Elixjihcthan physician and scientist William Gilbert. Historians of science, however, have traced many of the 17th century's concepts of tncchanics hack into the Middle Ages. Here, Gilbert' s explanation of the loadstone and its powers is compared with explanations to he found in the Middle Ages and earlier. From this comparison it appears that Gilbert can best be understood by considering him not so much a herald of the new science as a modifier of the old. The Author : W. James King is curator of electricity. Museum of History and Technology, in the Smithsonian Institution' s United States National Musettm. THE \K.\R 1600 SAW the puhlkiition Ijy an English for such a tradition by determining what (iilbert's physician, William Gilbert, of a book on the original contributions to these sciences were, and loadstone. Entitled De magnele, ' it has traditionally to make explicit the sense in which he may be con- been credited with laying a foundation for the sidered as being dependent upon earlier work. In modern science of electricity and magnetism. The this manner a more accurate estimate of his position following essay is an attempt U) examine the basis in the history of science may be made. -
Curriculum Vitae
Curriculum Vitae Personal data Dr. Natalia Ganushkina (name as in passport Natalia Ganjushkina) Office address: University of Michigan, Department of Climate and Space Sciences and Engineering, 2455 Hayward St., Ann Arbor, MI 48109-2143, USA Phone: +1-734-647-3108 Email: [email protected] Second affiliation: Finnish Meteorological Institute, P.O.Box 503, Helsinki, FIN-00101, Finland Phone: +358-29-539-4645 Email: [email protected]; Academic education and degrees April 2010: Docent (Space Physics), University of Helsinki, Helsinki, Finland. September 1997: Ph.D. (Physics and Chemistry of Plasma), Moscow State University, Physics Department, Moscow, Russia. Thesis title: "Formation of the magnetostatically equilibrium Region 1 field-aligned currents and the dawn-dusk electric field in the Earth's Magnetosphere". Advisors: Prof. B. A. Tverskoy and Dr. E. E. Antonova January 1994: MS (Physics), Moscow State University, Physics Department, Moscow, Russia. Diploma title: "Characteristics of the magnetostatic equilibrium processes in the Earth's magnetosphere and the coordinate system for their description". Advisor: Dr. E. E. Antonova. Research Experience September 2013-present: associate research scientist, Department of Climate and Space Sciences and Engineering (former Department of Atmospheric, Oceanic, and Space Sciences), University of Michigan, Ann Arbor, USA. May 2009-August 2013: Assistant Research scientist at University of Michigan, Department of Atmospheric, Oceanic and Space Sciences, Ann Arbor, USA. January 2008-present: Research Scientist at Finnish Meteorological Institute, Earth Observations, Helsinki, Finland (organization change). March 2004-December 2007: Research Scientist at Finnish Meteorological Institute, Space Research, Helsinki, Finland (organization change). November 2000-February 2004: Research Scientist at Finnish Meteorological Institute, Geophysical Research, Helsinki, Finland. -
A Brief History of Magnetospheric Physics Before the Spaceflight Era
A BRIEF HISTORY OF MAGNETOSPHERIC PHYSICS BEFORE THE SPACEFLIGHT ERA David P. Stern Laboratoryfor ExtraterrestrialPhysics NASAGoddard Space Flight Center Greenbelt,Maryland Abstract.This review traces early resea/ch on the Earth's aurora, plasma cloud particles required some way of magneticenvironment, covering the period when only penetratingthe "Chapman-Ferrarocavity": Alfv•n (1939) ground:based0bservationswerepossible. Observations of invoked an eleCtric field, but his ideas met resistance. The magneticstorms (1724) and of perturbationsassociated picture grew more complicated with observationsof with the aurora (1741) suggestedthat those phenomena comets(1943, 1951) which suggesteda fast "solarwind" originatedoutside the Earth; correlationof the solarcycle emanatingfrom the Sun's coronaat all times. This flow (1851)with magnetic activity (1852) pointed to theSun's was explainedby Parker's theory (1958), and the perma- involvement.The discovei-yof •solarflares (1859) and nent cavity which it producedaround the Earth was later growingevidence for their associationwith large storms named the "magnetosphere"(1959). As early as 1905, led Birkeland (1900) to proposesolar electronstreams as Birkeland had proposedthat the large magneticperturba- thecause. Though laboratory experiments provided some tions of the polar aurora refleCteda "polar" type of support;the idea ran into theoreticaldifficulties and was magneticstorm whose electric currents descended into the replacedby Chapmanand Ferraro's notion of solarplasma upper atmosphere;that idea, however, was resisted for clouds (1930). Magnetic storms were first attributed more than 50 years. By the time of the International (1911)to a "ringcurrent" of high-energyparticles circling GeophysicalYear (1957-1958), when the first artificial the Earth, but later work (1957) reCOgnizedthat low- satelliteswere launched, most of the importantfeatures of energy particlesundergoing guiding center drifts could the magnetospherehad been glimpsed, but detailed have the same effect. -
2862 001 OCR DBL ZIP 0.Pdf
, , .- GREAT SCIENTIFIC EXPERIMENTS Twenty Experiments that Changed our View of the World ROM HARRE Oxford New York OXFORD UNIVERSITY PRESS 1983 Whi'te Oalt OXford Um'wrsity Press, Waftoff Street, OXfordOX'2 6DP LondonGlasgov) New Yorn Toronto Delhi &mbay Calcutta Madras Knrachi Kuala'LumpurSingapore HangKnng·Tokyo Nairobi Dar es Salaam Cape Town Mel~urne Auckland and associates in Beirut Berlin [hac/an Mexico City Nicosia © Phaidon Press limited 1981 First published by Phaidon Press Limited /981 First issued as an Oxford University Press Paperback 1983 All n'ghts reserved. No port of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by atiy means, electronic, mechanical, photocopying, recording, or otherwise, without ., the prior permission oj Oxford University Press This book is sold subject to the condition that it shall n(Jt,~by way oftrade or otherwise, be Jent, re-sold, hired out or otheruxse circulated without the pilblisher's prior consent in any fonn of binding or cover other than that in which it is published and ulithout a similar condition including this condition being imposed on the subsequent purchaser British Library Cataloguing in Publication Data Ham, Rom Great scientific experiments.-{Oxford paperbacks) 1. Science-experiments-History 1. Title SfJ1'.24 Q125 ISBN 0-19-286036-4 library of Congress Cataloging in Publication Data , Harrl, Rmnimo. Great scientific experimetus. (Oxford paperbacks) " Biblwgraphy: p. Includes index. 1. Scieni:e-MethodlJ~(Ue studies. 2.-Science-Expen"men/$-PhI1osopf!y. 3. Science-Histo1y--Sources. 4. Scientists_Biograpf!y. I. Title. QI75.H32541983 507'.2 82';'19035 ISBN 0-19-286036-4 (pbk.) Printed in Great Britain by R. -
Kristian Birkeland (1867 - 1917) the Almost Forgotten Scientist and Father of the Sun-Earth Connection
Kristian Birkeland (1867 - 1917) the Almost Forgotten Scientist and Father of the Sun-Earth Connection PÅL BREKKE Norwegian Space Centre ISWI Workshop, Boston College, 31 July - 4 August 2017 The Young Kristian Birkeland Olaf Kristian Birkeland was born 13 December 1967. Early on Birkeland was interested in magnetism and already as a schoolboy he had bought his own magnet with his own money. He used the magnet for many surprising experiments and practical jokes - often irritating his teachers Birkeland’s Early Career Birkeland became a certificate teacher at the University of Kristiania at only 23 years old and graduated with top grades. In 1896 Birkeland was elected into the Norwegian Academy of Sciences at only 28 years old. Two years later he became a professor in Physics - quite unusual at that young age at that time (was called «the boy professor»). Photograph of Kristian Birkeland on Karl Johans Gate, (Oslo) in 1895 taken by student Carl Størmer, using a concealed camera. (source: UiO) Birkeland - Electromagnetic Waves Birkeland did laboratory experiments on electromagnetic waves in 1890 and first publication came in 1892 with some ground breaking results. In 1893 he focused on the energy transported by these waves. In 1895 Birkeland published his most important theoretical paper. He provided the first general solution of Maxwell’s equations for homogeneous isotropic media. First page of Birkeland's 1895 paper where he derived a general solution to Maxwell’s equations Birkeland - Cathode Rays In 1895 he began pioneer studies of cathode rays, a stream of electrons in a vacuum tube that occurs through high voltage passing between negative and positive charged electrodes. -
Minima, When the Type B Redauroras Are Predominant. SOLAR
VOL. 43, 1957 GEOPHYSICS: J. BARTELS 75 are being slowed down much higher in the atmosphere than occurs at sunspot minima, when the Type B red auroras are predominant. From the general physical interpretation of the observations of unusual heights of aurora, it seems probable that a consideration of the degree of ionization of the upper atmosphere may account for the wide range found in auroral heights. For this reason the degree of ionization may become one of the problems of auroral morphol- ogy. The auroral program for the International Geophysical Year, 1957-1958, was de- signed with many of the above-mentioned problems in auroral morphology in mind. Hence we may expect to have answers for some of the problems in the next two or three years. 1 J. A. Van Allen, Phys. Rev., 99, 609, 1955. 2 S. Chapman and C. G. Little, J. Atm. and Terrest. Phys. (in press). 3 J. P. Heppner, J. Geophys. Research, 59, 329, 1954. 4 C. W. Gartlein, Nat. Geographic Mag., 92, 683, 1947. 5 F. T. Davies, Transactions of the Oslo Meeting, August 19-928, 1948 (Washington: Interna- tional Union of Geodesy and Geophysics, 1950). 6 A. B. Meinel, Astrophys. J., 113, 50, 1951; 114, 431, 1951. 7 A. B. Meinel and C. Y. Fan, Astrophys. J., 115, 330, 1952. 8 H. Leinbach, Sky and Telescope, 15, 329, 1956. 9 C. T. Elvey, Seventh Alaska Science Conference, Alaska Division, AAAS, Juneau, September 26-29, 1956. 10 C. St0rmer, The Polar Aurora (Oxford: Clarendon Press, 1955). 1 M. Sugiura, Proceedings of the Third Alaska Science Conference, September 22-97, 1962, p. -
VLF Wave Injection Into the Magnetosphere from Siple Station
VOL. 79, NO. 16 JOURNAL OF GEOPHYSICAL RESEARCH JUNE I, 1974 VLF Wave Injection Into the MagnetosphereFrom Siple Station, Antarctica R. A. HELLIWELL AND J.P. KATSUFRAKIS RadioscienceLaboratory, Stanford University,Stanford, California 94305 Radio signalsin the 1.5- to 16-kHz range transmittedfrom Siple Station, Antarctica (L = 4), are used to control wave-particleinteractions in the magnetosphere.Observations at the conjugatepoint show signalgrowth and triggeredemissions including risers, failers, and hooks. Growth ratesof the order of 100 dB/s and total gainsup to 30 dB are observed.Triggered emissions may be cut off or havetheir fre- quencyrate of changealtered by Siplepulses. Similar effectsoccur in associationwith harmonicsfrom the Canadianpower system. The observedtemporal growth is predictedby a recentlyproposed feedback model of cyclotroninteraction. Plasma instability theories predicting only spatialgrowth are not in ac- cord with these observations.Possible applications include study of nonlinear plasma instability phenomena,diagnostic measurements of energeticparticles trapped in the magnetosphere,modification of the ionosphere through control of precipitation, and VLF communication through the magnetosphere. This is a report of the first resultsof a new experimentto plasma instability. To obtain further experimental data, a control wave-particleinteractions in the magnetosphere,us- transmitter was neededthat could operate at lower frequen- ing VLF waves.Coherent whistlermode signalswere injected cies and whose power, pulse length, and frequency could into the magnetospherein the 1.5- to 16.0-kHz range from a easily be varied. 100-kW transmitter located at Siple Station, Antarctica. The The next step was constructionof a 33.6-km-long horizon- output signalswere observedat the Sipleconjugate point near tal dipole at Byrd Station (L = 7.25) in 1965 [Guy, 1966]. -
Kristian Birkeland's Pioneering Investigations of Geomagnetic
CMYK RGB Hist. Geo Space Sci., 1, 13–24, 2010 History of www.hist-geo-space-sci.net/1/13/2010/ Geo- and Space © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Access Open Sciences Advances in Science & Research Kristian Birkeland’s pioneering investigationsOpen Access Proceedings of geomagnetic disturbances Drinking Water Drinking Water A. Egeland1 and W. J. Burke2 Engineering and Science Engineering and Science 1University of Oslo, Norway Open Access Access Open Discussions 2Air Force Research Laboratory, USA Received: 11 February 2010 – Accepted: 15 March 2010 – Published: 12 April 2010 Discussions Earth System Earth System Abstract. More than 100 years ago Kristian Birkeland (1967–1917) addressed questions that had Science vexed sci- Science entists for centuries. Why do auroras appear overhead while the Earth’s magnetic field is disturbed? Are magnetic storms on Earth related to disturbances on the Sun? To answer these questions Birkeland devised Open Access Open terrella simulations, led coordinated campaigns in the Arctic wilderness, and then interpretedAccess Open hisData results in Data the light of Maxwell’s synthesis of laws governing electricity and magnetism. After analyzing thousands of magnetograms, he divided disturbances into 3 categories: Discussions 1. Polar elementary storms are auroral-latitude disturbances now called substorms. Social Social 2. Equatorial perturbations correspond to initial and main phases of magnetic storms. Open Access Open Geography Open Access Open Geography 3. Cyclo-median perturbations reflect enhanced solar-quiet currents on the dayside. He published the first two-cell pattern of electric currents in Earth’s upper atmosphere, nearly 30 years before the ionosphere was identified as a separate entity. -
Joint Space Weather Summer Camp Program
Joint Space Weather Summer Camp Program July 22 - August 18, 2013 The University of Alabama in Huntsville German Aerospace Center (DLR) The University of Rostock Joint WeatherSpace Summer Camp 1 Table of Contents Welcome……………………………………………………………………………..4 Schedules Schedule in Huntsville………………………………………………………..5 Schedule in Neustrelitz……………………………………………………….7 Space Weather Summer Camp in Huntsville Abstracts……………………………………………………………………..10 Project Work…………………………………………………………………23 Space Weather Summer Camp in Neustrelitz Abstracts……………………………………………………………………..25 Project Work…………………………………………………………………37 Joint WeatherSpace Summer Camp 2 Joint WeatherSpace Summer Camp 3 Welcome to the Joint Space Weather Summer Camp 2013 The Joint Space Weather Summer Camp is a partnership between UAHuntsville, the DLR and the University of Rostock. Because of the considerable historical ties between Huntsville and the state of Mecklenburg Vorpommern (Germany) in the development of rockets, missiles, and eventually manned space flight, the Joint Space Weather Summer Camp was created to forge ties and develop communication between these two regions that have had such an impact on the 20th century. During the 4 week series of lectures, hands-on projects, experiments, and excursions you will be given an understanding of both the theoretical underpinnings and practical appli- cations of Space Weather and solar and space physics. During the first two weeks in Huntsville, we begin by focusing on the Sun as the primary cause of space weather in the entire solar system, and discuss fundamental processes in plasma physics, the solar wind and the interaction processes between the solar wind and Earth’s upper atmosphere.There will also be the opportunity to participate in either data or practical-based project work, enabling you to gain a practical understanding of the top- ics that will be discussed in the lectures both in Huntsville and in Germany. -
Birkeland Currents and Dark Matter
Issue 2 (April) PROGRESS IN PHYSICS Volume 14 (2018) Birkeland Currents and Dark Matter Donald E. Scott Dept. of Electrical Engineering (Retired), University of Massachusetts, Amherst, Massachusetts, USA E-mail: [email protected] A straight-forward application of basic electrical definitions and one of Maxwell’s di- vergence equations provide an extension of the Bessel function model of force-free, field-aligned currents (FAC). This extended model offers descriptions of the charge den- sity, electric-field strength, velocity profile, and voltage profile, each as a function of radial value, r, within the cross-section of the FAC structure. The resulting model ex- hibits an obvious correspondence with the results of the Marklund convection process in plasma filaments. Most importantly, it shows that observed stellar velocity profiles in galaxies are now accurately predicted without invocations of Dark Matter, WIMPs, or MACHOs. 1 Introduction to be of unlimited extent in length and have a circular cross- section, the model assumes no variation of either B or j in the Kristian Birkeland’s hypothesis [1] that Earth’s auroras are θ, or z directions. The mathematical results of this modeling powered by electric charges flowing from the Sun was shown process are: to be correct in the late 1960’s [2]. Since that time there has been a growing interest in the exact structure of those Bz(r) = Bz(0) J0(αr) ; (1) streams. What are the precise shapes and physical proper- ties of these currents that cascade down into Earth’s polar B (r) = B (0) J (αr) ; (2) regions? NASA calls them “magnetic flux-ropes”.