5 Geomagnetism and Paleomagnetism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERI 7022/8022 Global Geophysics Spring 2016
FerrimagnetismI I Recall three types of magnetic properties of materials I Diamagnetism I Paramagnetism I Ferromagnetism I Anti-ferromagnetism I Parasitic ferromagnetism I Ferrimagnetism I Ferrimagnetism I Spinel structure is one of the common crystal structure of rock-forming minerals. I Tetrahedral and octahedral sites form two sublattices. 2+ 3+ I Fe in 1/8 of tetrahedral sites, Fe in 1/2 of octahedral sites. FerrimagnetismII I xmujpkc.xmu.edu.cn/jghx/source/chapter9.pdf Ferrimagnetism III I www.tf.uni-kiel.de/matwis/amat/def_en/kap_2/basics/b2_1_6.html I Anti-spinel structure of the most common iron oxides 3+ 3+ 2+ I Fe in 1/8 tetrahedral sites, (Fe , Fe ) in 1/2 of octahedral sites. FerrimagnetismIV I Indirect exchange involves antiparallel and unequal magnetization of the sublattices, a net spontaneous magnetization appears. This phenomenon is called ferrimagnetism. I Ferrimagnetic materials are called ferrites. I Ferrites exhibit magnetic hysteresis and retain remanent magnetization (i.e. behaves like ferromagnets.) I Above the Curie temperature, becomes paramagnetic. I Magnetite (Fe3O4), maghemite, pyrrhotite and goethite (' rust). Magnetic properties of rocksI I Matrix minerals are mainly silicates or carbonates, which are diamagnetic. I Secondary minerals (e.g., clays) have paramagnetic properties. I So, the bulk of constituent minerals have a magnetic susceptibility but not remanent magnetic properties. I Variable concentrations of ferrimagnetic and matrix minerals result in a wide range of susceptibilities in rocks. Magnetic properties of rocksII I I The weak and variable concentration of ferrimagnetic minerals plays a key role in determining the magnetic properties of the rock. Magnetic properties of rocks III I Important factors influencing rock magnetism: I The type of ferrimagnetic mineral. -
The Study of Earth's Magnetism
THE STUDY OF EARTH’S MAGNETISM (1269-1950): A FOUNDATION BY PEREGRINUS AND SUBSEQUENT DEVELOPMENT OF GEOMAGNETISM AND PALEOMAGNETISM Vincent Courtillot, Jean-Louis Le Mouël To cite this version: Vincent Courtillot, Jean-Louis Le Mouël. THE STUDY OF EARTH’S MAGNETISM (1269-1950): A FOUNDATION BY PEREGRINUS AND SUBSEQUENT DEVELOPMENT OF GEOMAGNETISM AND PALEOMAGNETISM. Reviews of Geophysics, American Geophysical Union, 2007, 45 (3), pp.RG3008. 10.1029/2006RG000198. insu-02448801 HAL Id: insu-02448801 https://hal-insu.archives-ouvertes.fr/insu-02448801 Submitted on 22 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE STUDY OF EARTH’S MAGNETISM (1269–1950): A FOUNDATION BY PEREGRINUS AND SUBSEQUENT DEVELOPMENT OF GEOMAGNETISM AND PALEOMAGNETISM Vincent Courtillot1 and Jean-Louis Le Moue¨l1 Received 17 February 2006; revised 14 July 2006; accepted 18 September 2006; published 25 September 2007. [1] This paper summarizes the histories of geomagnetism induced magnetizations), Delesse (remagnetization in a and paleomagnetism (1269–1950). The role of Peregrinus direction opposite to the original), and Melloni (direction of is emphasized. In the sixteenth century a debate on local lava magnetization acquired at time of cooling). -
An Introduction to Quantum Field Theory
AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ........................... -
Chapter 3 Beam Dynamics II - Longitudinal
Chapter 3 Beam Dynamics II - Longitudinal Sequences of Gaps Transit Time Factor Phase Stability Chapter 3 Longitudinal Beam Dynamics 1 The Faraday Cage Protons are confined in a conducting box, at low energy. Assume they can bounce off the walls with no energy loss. Move the switch from position A to B. The potential on the box rises from 0 to 1 MV. What is the proton energy now? Chapter 3 Longitudinal Beam Dynamics 2 The Linac Drift Tube A linear accelerator (linac) is comprised of a succession of drift tubes. These drift tubes have holes in their ends so the particles can enter and exit, and when particles are inside the drift tube, a Faraday Cage, the potential of the drift tube may vary without changing the energy of the particle. Acceleration takes place when a charged particle is subjected to a field. The field inside the Faraday cage is not affected by the potential outside. (Aside from fields generated by the protons themselves, the field inside the Faraday cage is zero.) The drift tubes are arranged in a sequence with a passage through their middle for the particles to pass. The field in the gap between the drift tubes accelerates the particles. Chapter 3 Longitudinal Beam Dynamics 3 Some Actual Linac Configurations We will look at: Sloan-Lawrence Structure (Ising, Wideroe) Alvarez Structure RFQ Structure Coupled-Cavity Structure Chapter 3 Longitudinal Beam Dynamics 4 Some Kinematics For simplicity, we will assume the particles are non-relativistic. The normalized velocity is 2T = m c2 T is the kinetic energy of the particle, mc2 is the rest mass, 938 MeV for protons. -
Is Earth's Magnetic Field Reversing? ⁎ Catherine Constable A, , Monika Korte B
Earth and Planetary Science Letters 246 (2006) 1–16 www.elsevier.com/locate/epsl Frontiers Is Earth's magnetic field reversing? ⁎ Catherine Constable a, , Monika Korte b a Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0225, USA b GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany Received 7 October 2005; received in revised form 21 March 2006; accepted 23 March 2006 Editor: A.N. Halliday Abstract Earth's dipole field has been diminishing in strength since the first systematic observations of field intensity were made in the mid nineteenth century. This has led to speculation that the geomagnetic field might now be in the early stages of a reversal. In the longer term context of paleomagnetic observations it is found that for the current reversal rate and expected statistical variability in polarity interval length an interval as long as the ongoing 0.78 Myr Brunhes polarity interval is to be expected with a probability of less than 0.15, and the preferred probability estimates range from 0.06 to 0.08. These rather low odds might be used to infer that the next reversal is overdue, but the assessment is limited by the statistical treatment of reversals as point processes. Recent paleofield observations combined with insights derived from field modeling and numerical geodynamo simulations suggest that a reversal is not imminent. The current value of the dipole moment remains high compared with the average throughout the ongoing 0.78 Myr Brunhes polarity interval; the present rate of change in Earth's dipole strength is not anomalous compared with rates of change for the past 7 kyr; furthermore there is evidence that the field has been stronger on average during the Brunhes than for the past 160 Ma, and that high average field values are associated with longer polarity chrons. -
The Planeterrella Experiment: from Individual Initiative to Networking J
submitted to Journal of Space Weather and Space Climate c The author(s) under the Creative Commons Attribution-NonCommercial license The Planeterrella experiment: from individual initiative to networking J. Lilensten1, G. Provan2, S. Grimald3, A. Brekke4, E. Fluckiger¨ 5, P. Vanlommel6, C. Simon Wedlund6, M. Barthel´ emy´ 1, and P. Garnier3 1 Institut de Plantologie et d’Astrophysique de Grenoble, 38041 Grenoble, France e-mail: [email protected] 2 Institution University of Leicester, United Kingdom e-mail: [email protected] 3 IRAP, e-mail: [email protected] 4 History of Geoph. and Space Sciences journal, e-mail: [email protected] 5 Physikalisches Institut, University of Bern, Switzerland, e-mail: [email protected] 6 Royal Observatory of Belgium e-mail: [email protected] 7 e-mail: [email protected] ABSTRACT Space weather is a relatively new discipline which is generally unknown to the wider public, de- spite its increasing importance to all of our daily lives. Outreach activities can help in promoting the concept of space weather. In particular the visual beauty and excitement of the aurora make these lights a wonderful inspirational hook. A century ago Norwegian experimental physicist Kristian Birkeland, one of the founding fathers of modern space science, demonstrated with his Terrella experiment the formation of the aurora. Recently a modernised version of the Terrella has been designed. This Planeterrella experiment is very flexible, allowing the visualization of many phenomena occurring in our space environment. Although the Planeterrella was originally designed to be small to be demonstrated locally by a scientist, the Planeterrella has proved to be a very successful public outreach experiment. -
Magnetic Surveying for Buried Metallic Objects
Reprinted from the Summer 1990 Issue of Ground Water Monitoring Review Magnetic Surveying for Buried Metallic Objects by Larry Barrows and Judith E. Rocchio Abstract Field tests were conducted to determine representative total-intensity magnetic anomalies due to the presence of underground storage tanks and 55-gallon steel drums. Three different drums were suspended from a non-magnetic tripod and the underlying field surveyed with each drum in an upright and a flipped plus rotated orientation. At drum-to-sensor separations of 11 feet, the anomalies had peak values of around 50 gammas and half-widths about equal to the drum-to-sensor separation. Remanent and induced magnetizations were comparable; crushing one of the drums significantly reduced both. A profile over a single underground storage tank had a 1000-gamma anomaly, which was similar to the modeled anomaly due to an infinitely long cylinder horizontally magnetized perpendicular to its axis. A profile over two adjacent tanks had a. smooth 350-gamma single-peak anomaly even though models of two tanks produced dual-peaked anomalies. Demagnetization could explain why crushing a drum reduced its induced magnetization and why two adjacent tanks produced a single-peak anomaly. A 40-acre abandoned landfill was surveyed on a 50- by 100-foot rectangular grid and along several detailed profiles; The observed field had broad positive and negative anomalies that were similar to modeled anomalies due to thickness variations in a layer of uniformly magnetized material. It was not comparable to the anomalies due to induced magnetization in multiple, randomly located, randomly sized, independent spheres, suggesting that demagne- tization may have limited the effective susceptibility of the landfill material. -
Rock and Paleomagnetic Investigations Technical Detailed
NWM-USGS-GPP-06 RO Rock and Paleomagnetic Investigations Technical Detailed Procedure GPP-O NNWSI Project Quality Assurance Program U.S. Geological Survey Effective Date: pepared by: Joseph Rosenbaum Technical Reviewer: Richard Reynolds 'Branch Chief: Adel Zohdy NNWI Project Coordinator: W. Dudley Quality Assurance: P. L. Bussolini 8502210165 841130 PDR WASTE PDR Wm-II NWM-USGS-GPP- 06, RO NWM-USGS-GPP- o RO Page 2 of 13 Rock and Paleomagnetic Investigations 1.0 PURPOSE 1.1 This procedure provides a means of assuring the accuracy, validity, and applicability of the methods used to determine paleomagnetic and rock magnetic properties. 1.2 The procedure documents the USGS responsibilities for quality assurance training and enforcement, the processes and authority for procedure modification and revision, the requirements for procedure and personnel interfacing, and to whom the procedure applies. 1.3 The procedure describes the system components, the principles of the methods used, and the limits of their use. 1.4 The procedure describes the detailed methods to be used, where applicable, for system checkout and maintenance, calibration, operation and performance verification. 1.5 The procedure defines the requirements for data acceptance, documentation and control; and provides a means of data traceability. 1.6 The procedure provides a guide for USGS personnel and their contractors engaged to determining paleomagnetic and rock mag- netic properties and a means by which the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) can evaluate these activities in meeting requirements for the NNWSI repository. 2.0 SCOPE OF COMPLIANCE 2.1 This procedure applies to all USGS personnel, and persons assigned by the USGS, who perform work on the procedure as described by the work activity given in Section 1.1, or use data from such activities, if the activities or data are deemed by the USGS Project Coordinator to potentially affect public health and safety as related to a nuclear waste repository. -
Magnetic Signature of the Leucogranite in Örsviken
UNIVERSITY OF GOTHENBURG Department of Earth Sciences Geovetarcentrum/Earth Science Centre Magnetic signature of the leucogranite in Örsviken Hannah Berg Johanna Engelbrektsson ISSN 1400-3821 B774 Bachelor of Science thesis Göteborg 2014 Mailing address Address Telephone Telefax Geovetarcentrum Geovetarcentrum Geovetarcentrum 031-786 19 56 031-786 19 86 Göteborg University S 405 30 Göteborg Guldhedsgatan 5A S-405 30 Göteborg SWEDEN Abstract A proton magnetometer is a useful tool in detecting magnetic anomalies that originate from sources at varying depths within the Earth’s crust. This makes magnetic investigations a good way to gather 3D geological information. A field investigation of a part of a cape that consists of a leucogranite in Örsviken, 20 kilometres south of Gothenburg, was of interest after high susceptibility values had been discovered in the area. The investigation was carried out with a proton magnetometer and a hand-held susceptibility meter in order to obtain the magnetic anomalies and susceptibility values. High magnetic anomalies were observed on the southern part of the cape and further south and west below the water surface. The data collected were then processed in Surfer11® and in Encom ModelVision 11.00 in order to make 2D and 3D magnetometric models of the total magnetic field in the study area as well as visualizing the geometry and extent of the rock body of interest. The results from the investigation and modelling indicate that the leucogranite extends south and west of the cape below the water surface. Magnetite is interpreted to be the cause of the high susceptibility values. The leucogranite is a possible A-type alkali granite with an anorogenic or a post-orogenic petrogenesis. -
United States National Museum
Contributions from The Museum of History and Technology: Paper 8 The Natural Philosophy of William Gilbert and His Predecessors IV. James King 121 By W James King THE NATURAL PHILOSOPHY OF WILLIAM GILBERT AND HIS PREDECESSORS Until several decades ago, the physical sciences were considered to have had their origins in the 17th century— mechanics beginning with men Like Galileo Galilei and magnetism ivith men like the Elixjihcthan physician and scientist William Gilbert. Historians of science, however, have traced many of the 17th century's concepts of tncchanics hack into the Middle Ages. Here, Gilbert' s explanation of the loadstone and its powers is compared with explanations to he found in the Middle Ages and earlier. From this comparison it appears that Gilbert can best be understood by considering him not so much a herald of the new science as a modifier of the old. The Author : W. James King is curator of electricity. Museum of History and Technology, in the Smithsonian Institution' s United States National Musettm. THE \K.\R 1600 SAW the puhlkiition Ijy an English for such a tradition by determining what (iilbert's physician, William Gilbert, of a book on the original contributions to these sciences were, and loadstone. Entitled De magnele, ' it has traditionally to make explicit the sense in which he may be con- been credited with laying a foundation for the sidered as being dependent upon earlier work. In modern science of electricity and magnetism. The this manner a more accurate estimate of his position following essay is an attempt U) examine the basis in the history of science may be made. -
Paleomagnetism and U-Pb Geochronology of the Late Cretaceous Chisulryoung Volcanic Formation, Korea
Jeong et al. Earth, Planets and Space (2015) 67:66 DOI 10.1186/s40623-015-0242-y FULL PAPER Open Access Paleomagnetism and U-Pb geochronology of the late Cretaceous Chisulryoung Volcanic Formation, Korea: tectonic evolution of the Korean Peninsula Doohee Jeong1, Yongjae Yu1*, Seong-Jae Doh2, Dongwoo Suk3 and Jeongmin Kim4 Abstract Late Cretaceous Chisulryoung Volcanic Formation (CVF) in southeastern Korea contains four ash-flow ignimbrite units (A1, A2, A3, and A4) and three intervening volcano-sedimentary layers (S1, S2, and S3). Reliable U-Pb ages obtained for zircons from the base and top of the CVF were 72.8 ± 1.7 Ma and 67.7 ± 2.1 Ma, respectively. Paleomagnetic analysis on pyroclastic units yielded mean magnetic directions and virtual geomagnetic poles (VGPs) as D/I = 19.1°/49.2° (α95 =4.2°,k = 76.5) and VGP = 73.1°N/232.1°E (A95 =3.7°,N =3)forA1,D/I = 24.9°/52.9° (α95 =5.9°,k =61.7)and VGP = 69.4°N/217.3°E (A95 =5.6°,N=11) for A3, and D/I = 10.9°/50.1° (α95 =5.6°,k = 38.6) and VGP = 79.8°N/ 242.4°E (A95 =5.0°,N = 18) for A4. Our best estimates of the paleopoles for A1, A3, and A4 are in remarkable agreement with the reference apparent polar wander path of China in late Cretaceous to early Paleogene, confirming that Korea has been rigidly attached to China (by implication to Eurasia) at least since the Cretaceous. The compiled paleomagnetic data of the Korean Peninsula suggest that the mode of clockwise rotations weakened since the mid-Jurassic. -
Preliminary Aeromagnetic Anomaly Map of California
PRELIMINARY AEROMAGNETIC ANOMALY MAP OF CALIFORNIA By Carter W. Roberts and Robert C. Jachens Open-File Report 99-440 1999 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 INTRODUCTION The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties).