2. Geomagnetism and Paleomagnetism

Total Page:16

File Type:pdf, Size:1020Kb

2. Geomagnetism and Paleomagnetism 2. GEOMAGNETISM AND PALEOMAGNETISM https://physicalgeology.pressbooks.com/chapter/4-3-geological-renaissance-of-the-mid-20th-century/ Click for audio Topic 2a 1 Topic 2a 2 q Q ELECTRIC FIELD q -Q Topic 2a 3 MAGNETIC DIPOLE Although magnetic fields have a similar form to electric fields, they differ because there are no single magnetic "charges," known as magnetic poles. Hence the fundamental entity is the magnetic dipole arising from an electric current I circulating in a conducting loop, such as a wire, with area A . The field is described as resulting from a magnetic dipole characterized by a dipole moment m Magnetic dipoles can arise from electric currents - which are moving electric charges - on scales ranging from wire loops to the hot fluid moving in the core that generates the earth’s magnetic field. They also arise at the atomic level, where they are intrinsic properties of charged particles like protons and electrons. As a result, rocks can be magnetized, much like familiar bar magnets. Although the magnetism of a bar magnet arises from the electrons within it, it can be viewed as a magnetic dipole, with north and south magnetic poles at opposite ends. Topic 2a 4 Magnetic field B Units of B Tesla (T) = kg/s 2 -A A = Ampere (unit of current) Gauss (G) = 10-4 Tesla Gamma (! )= 10-9 Tesla = 1 nanoTesla (nT) Earth’s field is about 50 "T = 50 x 10-6 Tesla Topic 2a 5 We visualize the magnetic field of a dipole in terms of magnetic field lines pointing outward from the north pole of a bar magnet and in toward the south. The lines point in the direction another bar magnet, such as a compass needle, would point. At any point, the north pole of the compass needle would point along the DIPOLE field line, toward the south pole MAGNETIC of the bar magnet. The earth’s magnetic field, as discussed FIELD shortly, looks essentially like a dipole field. A tricky point is that the earth’s field is that of a dipole pointing south along the earth’s axis, so the magnetic pole near the geographic North pole is a south magnetic pole. We call this the North magnetic pole. because the north pole of a compass needle, which is a north magnetic pole, points toward it Topic 2a 6 DYNAMO GENERATES MAGNETIC FIELD Current produced by Lorentz force F on particles with charge q moving with velocity v in magnetic field B F = qv x B https://12ibenergy.weebly.com/ Davidson et al Topic 2a 7 The solid inner core is roughly GEODYNAMO the size of the moon but at the temperature of the surface of the sun. Convection in the fluid outer core is thought to be driven by both thermal and compositional buoyancy sources at the inner core boundary that are produced as the Earth slowly cools Iron in the iron-rich fluid alloy solidifies onto the inner core giving off latent heat and the light constituent of the alloy. These buoyancy forces cause fluid to rise and Coriolis forces, due to the Earth's rotation, cause the fluid flows http://www.abc.net.au/science/basics/img/earth_spins.jpg to be helical. Topic 2a 8 3D magnetic field structure simulated with the Glatzmaier-Roberts geodynamo model. Magnetic field lines are blue where the field is directed inward and yellow where directed outward. The rotation axis of the model Earth is vertical and through the center. A transition occurs at the core-mantle boundary from the intense, complicated field structure in the fluid core, where the field is generated, to the smooth, potential field structure outside the core. The field lines are drawn out to two Earth radii. https://websites.pmc.ucsc.edu/~glatz /geodynamo.html Topic 2a 9 About 36,000 years into the simulation the magnetic field underwent a reversal of its dipole moment, over a period of a little more than a thousand years. The intensity of the dipole moment decreased by about a factor of ten during the reversal and recovered immediately after, similar to what is seen in the Earth's paleomagnetic reversal record. The solution shows how convection in the fluid outer core is continually trying to reverse the field but that the solid inner core inhibits magnetic reversals because the field in the inner core can only change on the much longer time scale of diffusion. Only once in many attempts is a reversal successful, which is probably why the times between reversals of the https://websites.pmc.ucsc.edu/~glatz Earth's field are long and /geodynamo.html Topic 2a randomly distributed. 10 EARTH’S FIELD Topic 2a 11 EARTH’S FIELD GEOCENTRIC AXIAL DIPOLE (GAD) Topic 2a 12 INCLINATION AND LATITUDE Topic 2a 13 CLASS QUESTION #7 a) Derive the dipole equation from the expressions for Fv and Fh b) Use the dipole equation to find the values of the inclination at latitudes 45North and 45South c) Does your answer to b) make sense given the geometry of the dipole field? Topic 2a 14 The real field isn’t a pure dipole Topic 2a 15 ACTUAL FIELD GEOMETRY Although the inclined dipole is a better description of the field, neither it nor any other dipole fully describes the field. The remaining part of the field, the non-dipole field, is about 10% of the total field. Topic 2a 16 The magnetic field changes with time, presumably because of changing fluid motions in the core. Changes on time scales less than 100,000 years are called secular variation. Topic 2a 17 Rocks record earth’s magnetic field Topic 2a 18 Thermal Rocks record Remnant earth’s field Magnetization when they were (TRM) magnetized Thermal Remnent Magnetism (TRM), results when molten volcanic rock cools. Basalt and other volcanic rocks contain iron and titanium bearing minerals like magnetite (Fe3O4), hematite (Fe2O3), and ilmenite (FeTiO3). These are ferromagnetic materials, whose atomic structure causes regions of parallel dipoles called magnetic domains. Normally, the domains are randomly oriented, so the material has no net magnetization. However, applying an external magnetic field aligns the domains and reorganizes them, giving a net magnetization. This ordering persists after the external field is removed. However, the ordering is destroyed if the material is heated above its Curie temperature, because thermal oscillations overcome the domain alignments. The process occurs in reverse as molten igneous rocks cool, first becoming solid at about 800 – 1100 C, and eventually cooling through the Curie temperature of the magnetic minerals, about 600 C. Below the Curie temperature minerals retain a magnetization that records the earth's field when and where they cooled, even when the earth's field changes and the rock is transported on a moving plate. Topic 2a 19 Detrital Remnant Magnetization (DRM) This occurs when sediment is deposited in water still enough for magnetized grains to be aligned by the earth's field. The earth's field exerts a torque that rotates grains' magnetic moments toward the direction of the field. How this actually occurs during the complex process of sediment deposition - that involves a variety of grains with different sizes, only some of which are magnetic, subject to a number of processes including biological perturbations - remains an area of research. Paleomagnetic data from deep sea sediments provides important data about the evolution of the ocean basins. DRM is typically 1-2 orders of magnitude weaker than TRM. Topic 2a 20 Chemical Remnant Magnetization CRM Topic 2a 21 CLASS QUESTION #8 The stripe on the back of a credit card is a magnetic stripe called a magstripe. The magstripe is made up of tiny iron-based magnetic particles in a plastic-like film. Each particle is a tiny bar magnet about 20 millionths of an inch long. The data are stored by modifying the magnetic particles. Using what we’ve learned about rock magnetism, explain how exposing a credit card to a magnet can destroy the information stored on the magnetic strip. Wikipedia Topic 2a 22 Topic 2b 23 Magnetic timescale Showing anomaly numbers, also called chrons Uyeda Topic 2b 24 Seafloor tape recorder Cooling dikes at midocean ridges acquire earth's magnetic field Seafloor’s magnetic anomalies record spreading history Find ages and spreading rate from known magnetic reversal history Davidson 7.7 Topic 2b 25 SPREADING RATES FROM MARINE MAGNETIC ANOMALIES Identify anomalies, and then use magnetic timescale to convert distances from ridge to rate Topic 2b 26 CHRONS Spreading rate dependence Brunhes Matuyama Gauss Gilbert DeMets et al, 1994 Topic 2b 27 Class question #9 Magnetic anomaly Topography Topic 2b 28 Seafloor magnetic anomalies give ages Davidson 7.8 Topic 2b 29 Collecting paleomagnetic data Topic 2b 30 SPINNER MAGNETOMETER Topic 2b 31 SUPERCONDUCTING MAGNETOMETER Topic 2b 32 Paleomagnetic pole, or "apparent pole" Imagine a rock formed at the equator, which thus has a horizontal magnetic field. If it is moved to another place - for example 45N - its magnetization will not be parallel to the field there. The rock's magnetization shows that it is now 45 away from where it was magnetized. The paleomagnetic pole, or "apparent pole", inferred from the rock is 45 degrees from the current North pole. This apparent polar wander (APW) results primarily from the rock, not the pole, having moved. Apparent pole positions from rocks formed at different times, but on the same plate, can be used to construct an APW path through time. Topic 2b 33 Paleomgnetic pole from paleomagnetic data Topic 2b 34 Topic 2b 35 APW paths show opening of the Atlantic Topic 2b 36 APW paths show northward motion of India Topic 2b 37 Topic 2b Tettegouche State Park, MN 38 Midcontinent Rift (MCR) Prominent on gravity & magnetic anomaly maps Long arms of buried dense & highly magnetized 1.1 Ga igneous rocks ~ 3000 km long ~ 2 x 106 km3 magma Outcrops near Lake Superior Topic 2b 39 MCR likely formed as part of the rifting of Amazonia from Laurentia, recorded by APWP cusp & became inactive once seafloor spreading was established APWP for Laurentia poles Stein et al., 2014 Topic 2b 40 Laurentia’s apparent polar wander path (APWP) has abrupt cusp at ~1.15 Ga before maJor MCR igneous activity starts Cusps indicate change in direction associated with rifting Stein et al., 2014 Topic 2b Schettino and Scotese, 2005 41.
Recommended publications
  • Paleomagnetism and U-Pb Geochronology of the Late Cretaceous Chisulryoung Volcanic Formation, Korea
    Jeong et al. Earth, Planets and Space (2015) 67:66 DOI 10.1186/s40623-015-0242-y FULL PAPER Open Access Paleomagnetism and U-Pb geochronology of the late Cretaceous Chisulryoung Volcanic Formation, Korea: tectonic evolution of the Korean Peninsula Doohee Jeong1, Yongjae Yu1*, Seong-Jae Doh2, Dongwoo Suk3 and Jeongmin Kim4 Abstract Late Cretaceous Chisulryoung Volcanic Formation (CVF) in southeastern Korea contains four ash-flow ignimbrite units (A1, A2, A3, and A4) and three intervening volcano-sedimentary layers (S1, S2, and S3). Reliable U-Pb ages obtained for zircons from the base and top of the CVF were 72.8 ± 1.7 Ma and 67.7 ± 2.1 Ma, respectively. Paleomagnetic analysis on pyroclastic units yielded mean magnetic directions and virtual geomagnetic poles (VGPs) as D/I = 19.1°/49.2° (α95 =4.2°,k = 76.5) and VGP = 73.1°N/232.1°E (A95 =3.7°,N =3)forA1,D/I = 24.9°/52.9° (α95 =5.9°,k =61.7)and VGP = 69.4°N/217.3°E (A95 =5.6°,N=11) for A3, and D/I = 10.9°/50.1° (α95 =5.6°,k = 38.6) and VGP = 79.8°N/ 242.4°E (A95 =5.0°,N = 18) for A4. Our best estimates of the paleopoles for A1, A3, and A4 are in remarkable agreement with the reference apparent polar wander path of China in late Cretaceous to early Paleogene, confirming that Korea has been rigidly attached to China (by implication to Eurasia) at least since the Cretaceous. The compiled paleomagnetic data of the Korean Peninsula suggest that the mode of clockwise rotations weakened since the mid-Jurassic.
    [Show full text]
  • 2. Geomagnetism and Paleomagnetism
    2-1 2. GEOMAGNETISM AND PALEOMAGNETISM 1 https://physicalgeology.pressbooks.com/chapter/4-3-geological-renaissance-of-the-mid-20th-century/ 2 2-2 ELECTRIC q Q FIELD q -Q 3 MAGNETIC DIPOLE Although magnetic fields have a similar form to electric fields, they differ because there are no single magnetic "charges," known as magnetic poles. Hence the fundamental entity is the magnetic dipole arising from an electric current I circulating in a conducting loop, such as a wire, with area A . The field is described as resulting from a magnetic dipole characterized by a dipole moment m Magnetic dipoles can arise from electric currents - which are moving electric charges - on scales ranging from wire loops to the hot fluid moving in the core that generates the earth’s magnetic field. They also arise at the atomic level, where they are intrinsic properties of charged particles like protons and electrons. As a result, rocks can be magnetized, much like familiar bar magnets. Although the magnetism of a bar magnet arises from the electrons within it, it can be viewed as a magnetic dipole, with north and south magnetic poles at opposite ends. 4 2-3 MAGNETIC FIELD 5 We visualize the magnetic field of a dipole in terms of magnetic field lines pointing outward from the north pole of a bar magnet and in toward the south. The lines point in the direction another bar magnet, such as a compass needle, would point. At any point, the north pole of the compass needle would point along the DIPOLE field line, toward the south pole MAGNETIC of the bar magnet.
    [Show full text]
  • Dating Techniques.Pdf
    Dating Techniques Dating techniques in the Quaternary time range fall into three broad categories: • Methods that provide age estimates. • Methods that establish age-equivalence. • Relative age methods. 1 Dating Techniques Age Estimates: Radiometric dating techniques Are methods based in the radioactive properties of certain unstable chemical elements, from which atomic particles are emitted in order to achieve a more stable atomic form. 2 Dating Techniques Age Estimates: Radiometric dating techniques Application of the principle of radioactivity to geological dating requires that certain fundamental conditions be met. If an event is associated with the incorporation of a radioactive nuclide, then providing: (a) that none of the daughter nuclides are present in the initial stages and, (b) that none of the daughter nuclides are added to or lost from the materials to be dated, then the estimates of the age of that event can be obtained if the ration between parent and daughter nuclides can be established, and if the decay rate is known. 3 Dating Techniques Age Estimates: Radiometric dating techniques - Uranium-series dating 238Uranium, 235Uranium and 232Thorium all decay to stable lead isotopes through complex decay series of intermediate nuclides with widely differing half- lives. 4 Dating Techniques Age Estimates: Radiometric dating techniques - Uranium-series dating • Bone • Speleothems • Lacustrine deposits • Peat • Coral 5 Dating Techniques Age Estimates: Radiometric dating techniques - Thermoluminescence (TL) Electrons can be freed by heating and emit a characteristic emission of light which is proportional to the number of electrons trapped within the crystal lattice. Termed thermoluminescence. 6 Dating Techniques Age Estimates: Radiometric dating techniques - Thermoluminescence (TL) Applications: • archeological sample, especially pottery.
    [Show full text]
  • The Flux Line News of the Geomagnetism, Paleomagnetism and Electromagnetism Section of AGU
    The Flux Line News of the Geomagnetism, Paleomagnetism and Electromagnetism Section of AGU November 2018 Fall 2018 AGU Meeting Events! The GPE Section will have primary responsibility for 10 oral, 11 poster sessions, 1 eLightning session and 1 Union session at the 2018 Fall AGU meeting, December 10-14, in addition to secondary sessions. GPE sessions cover all five conference days kicking off on Monday morning right through Friday morning (see synopsis on page 9). Many thanks go out to all our session conveners. A special thanks goes out to France Lagroix, GPE Secretary, who put together the GPE sessions for all of us. France points out that we need many OSPA judges for our student presentations. Please sign up to help us judge student presentations: (http://ospa.agu.org/ospa/judges/) Mark your calendars for these special events: • GPE Student Reception: Monday, Dec. 10, 6:00 – 7:30-8 pm, at Marriott-Marquis Hotel This is a GPE-sponsored event to help students and postdocs get to know each other and meet the GPE leadership. If you plan on attending please email Shelby Jones-Cervantes • AGU Icebreaker: Monday, Dec. 11, 6-8 pm, Convention Center, Exhibit Hall D-E • AGU Student Breakfast: Tuesday, Dec. 12 at 7 am, Marriot-Marquis Hotel First come, first served. Look for the GPE table. • Bullard Lecture: Tuesday, Dec 12 Hunting the Magnetic Field presented by Lisa Tauxe, Marquis 6. See story page 4 • GPE Business Meeting and Reception: Tuesday, Dec 11, 6:30 – 8:00 pm, Grand Hyatt Washington Hotel, Constitution Level, Room A • AGU Honors Ceremony: Wednesday, Dec.
    [Show full text]
  • Paleomagnetism and Counterclockwise Tectonic Rotation of the Upper Oligocene Sooke Formation, Southern Vancouver Island, British Columbia
    499 Paleomagnetism and counterclockwise tectonic rotation of the Upper Oligocene Sooke Formation, southern Vancouver Island, British Columbia Donald R. Prothero, Elizabeth Draus, Thomas C. Cockburn, and Elizabeth A. Nesbitt Abstract: The age of the Sooke Formation on the southern coast of Vancouver Island, British Columbia, Canada, has long been controversial. Prior paleomagnetic studies have produced a puzzling counterclockwise tectonic rotation on the underlying Eocene volcanic basement rocks, and no conclusive results on the Sooke Formation itself. We took 21 samples in four sites in the fossiliferous portion of the Sooke Formation west of Sooke Bay from the mouth of Muir Creek to the mouth of Sandcut Creek. After both alternating field (AF) and thermal demagnetization, the Sooke Formation produces a single-component remanence, held largely in magnetite, which is entirely reversed and rotated counterclockwise by 358 ± 128. This is consistent with earlier results and shows that the rotation is real and not due to tectonic tilting, since the Sooke Formation in this region has almost no dip. This rotational signature is also consistent with counterclockwise rota- tions obtained from the northeast tip of the Olympic Peninsula in the Port Townsend volcanics and the Eocene–Oligocene sediments of the Quimper Peninsula. The reversed magnetozone of the Sooke sections sampled is best correlated with Chron C6Cr (24.1–24.8 Ma) or latest Oligocene in age, based on the most recent work on the Liracassis apta Zone mol- luscan fauna, and also a number of unique marine mammals found in the same reversed magnetozone in Washington and Oregon. Re´sume´ : L’aˆge de la Formation de Sooke sur la coˆte sud de l’ıˆle de Vancouver, Colombie-Britannique, Canada, a long- temps e´te´ controverse´.
    [Show full text]
  • 5 Geomagnetism and Paleomagnetism
    5 Geomagnetism and paleomagnetism It is not known when the directive power of the magnet 5.1 HISTORICAL INTRODUCTION - its ability to align consistently north-south - was first recognized. Early in the Han dynasty, between 300 and 5.1.1 The discovery of magnetism 200 BC, the Chinese fashioned a rudimentary compass Mankind's interest in magnetism began as a fascination out of lodestone. It consisted of a spoon-shaped object, with the curious attractive properties of the mineral lode­ whose bowl balanced and could rotate on a flat polished stone, a naturally occurring form of magnetite. Called surface. This compass may have been used in the search loadstone in early usage, the name derives from the old for gems and in the selection of sites for houses. Before English word load, meaning "way" or "course"; the load­ 1000 AD the Chinese had developed suspended and stone was literally a stone which showed a traveller the pivoted-needle compasses. Their directive power led to the way. use of compasses for navigation long before the origin of The earliest observations of magnetism were made the aligning forces was understood. As late as the twelfth before accurate records of discoveries were kept, so that century, it was supposed in Europe that the alignment of it is impossible to be sure of historical precedents. the compass arose from its attempt to follow the pole star. Nevertheless, Greek philosophers wrote about lodestone It was later shown that the compass alignment was pro­ around 800 BC and its properties were known to the duced by a property of the Earth itself.
    [Show full text]
  • Paleomagnetic Stability
    Paleomagnetism: Chapter 5 81 PALEOMAGNETIC STABILITY With the background information gained to this point, you appreciate the importance of isolating the charac- teristic NRM by selective removal of the secondary NRM. Theory and application of paleomagnetic stability tests are introduced here. Partial demagnetization experiments are performed in the laboratory to isolate the ChRM. Although sometimes mistaken as “magic,” these laboratory procedures are well grounded in rock magnetism theory. Field tests of paleomagnetic stability can sometimes provide crucial information about the age of a ChRM, and this question is often at the heart of paleomagnetic investigations. Lack of background in paleomagnetic stability tests often prevents interested earth scientists from understanding paleomagnetism. The material in this chapter should largely remove this obstacle. If not a “Big Enchilada,” this chapter certainly qualifies as a “Burro Grande.” PARTIAL DEMAGNETIZATION TECHNIQUES Theory and application of alternating-field and thermal demagnetization are introduced in this section. Al- though a central part of paleomagnetic investigations for some time, analysis of partial demagnetization data has become more sophisticated because of widespread availability of microcomputer systems for data analysis. Understanding modern paleomagnetism requires some familiarity with the analytical techniques that are used to decipher potentially complex, multicomponent NRM. To put the theory and techniques into practice, this section concludes with some practical examples. Theory of alternating-field demagnetization The fundamental AF demagnetization procedure is to expose a specimen to an alternating magnetic field. The waveform of the alternating magnetic field is a sinusoid with linear decrease in magnitude with time. Maximum value of this AF demagnetizing field can be labeled HAF and the waveform is schematically represented in Figure 5.1a.
    [Show full text]
  • Xuan Et Al QSR 2012
    Quaternary Science Reviews 32 (2012) 48e63 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Paleomagnetism of Quaternary sediments from Lomonosov Ridge and Yermak Plateau: implications for age models in the Arctic Ocean Chuang Xuan a,*, James E.T. Channell a, Leonid Polyak b, Dennis A. Darby c a Department of Geological Sciences, University of Florida, 241 Williamson Hall, P.O. Box 112120, Gainesville, FL 32611, USA b Byrd Polar Research Center, Ohio State University, Columbus, OH 43210, USA c Department of Ocean, Earth, and Atmospheric Sciences, Old Dominion University, Norfolk, VA 23529, USA article info abstract Article history: Inclination patterns of natural remanent magnetization (NRM) in Quaternary sediment cores from the Received 2 February 2011 Arctic Ocean have been widely used for stratigraphic correlation and the construction of age models, Received in revised form however, shallow and negative NRM inclinations in sediments deposited during the Brunhes Chron in 15 November 2011 the Arctic Ocean appear to have a partly diagenetic origin. Rock magnetic and mineralogical studies Accepted 17 November 2011 demonstrate the presence of titanomagnetite and titanomaghemite. Thermal demagnetization of the Available online 10 December 2011 NRM indicates that shallow and negative inclination components are largely “unblocked” below w300 C, consistent with a titanomaghemite remanence carrier. Following earlier studies on the Men- Keywords: e Lomonosov Ridge deleev Alpha Ridge, shallow and negative NRM inclination intervals in cores from the Lomonosov Ridge Yermak Plateau and Yermak Plateau are attributed to partial self-reversed chemical remanent magnetization (CRM) Magnetic excursions carried by titanomaghemite formed during seafloor oxidation of host (detrital) titanomagnetite grains.
    [Show full text]
  • Dennis V. Kent
    Dennis Kent cv December 2020 p. 1 DENNIS V. KENT Paleomagnetics Laboratory Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964-8000 USA [email protected] EDUCATION 1974 Ph.D. (Marine Geology & Geophysics) Columbia University, NY 1968 B.S. (Geology) City College of New York, NY APPOINTMENTS 2020– Board of Governor Professor Emeritus, Rutgers University 2007–2020 Board of Governor Professor, Rutgers University 2003 Gastprofessor, Institüt für Geophysik, ETH, Zürich (also in 1982 and 1987) 2003 Visiting Scholar, Scripps Institution of Oceanography, UCSD, La Jolla, CA 1998–2007 Distinguished Professor, Department of Earth & Planetary Sciences, Rutgers University 1998– Adjunct Senior Research Scientist, Lamont-Doherty Earth Observatory 1993 Director of Research, Lamont-Doherty Earth Observatory 1989–90 Interim Director, Lamont-Doherty Earth Observatory 1987–89 Associate Director for Oceans & Climate, Lamont-Doherty Earth Observatory 1987–98 Adjunct Professor, Dept. of Earth & Environmental Sciences, Columbia University 1984–99 Doherty Senior Scientist, Lamont-Doherty Earth Observatory 1981–87 Adjunct Associate Professor, Dept. of Geological Sciences, Columbia University 1979–84 Senior Research Scientist, Lamont-Doherty Earth Observatory 1974–79 Research Associate, Lamont-Doherty Earth Observatory, Columbia University PRINCIPAL RESEARCH INTERESTS Paleomagnetism, geomagnetism, rock magnetism and their application to geologic problems. Current interests include astrochronometric polarity time scales; paleogeography, paleoclimatology and the long-term carbon cycle; paleointensity; magnetic properties of sediments and polar ice. HONORS Fellow of the American Academy of Arts and Sciences (2012) Arduino Lecture, University of Padova (2010) William Gilbert Award, American Geophysical Union (2009) Petrus Peregrinus Medal, European Geosciences Union (2006) Docteur honoris causa, Sorbonne, Universities of Paris-IPGP (2005) Member of the U.S.
    [Show full text]
  • TCSS Earth Systems Unit 3 – Earth History Information
    TCSS Earth Systems Unit 3 – Earth History Information Georgia Performance Standards: SES4. Students will understand how rock relationships and fossils are used to reconstruct the Earth’s past. a. Describe and apply principles of relative age (superposition, original horizontality, cross-cutting relations, and original lateral continuity) and describe how unconformities form. b. Interpret the geologic history of a succession of rocks and unconformities. c. Apply the principle of uniformitarianism to relate sedimentary rock associations and their fossils to the environments in which the rocks were deposited. d. Explain how sedimentary rock units are correlated within and across regions by a variety of methods (e.g., geologic map relationships, the principle of fossil succession, radiometric dating, and paleomagnetism). e. Use geologic maps and stratigraphic relationships to interpret major events in Earth history (e.g., mass extinction, major climatic change, tectonic events). SES6. Students will explain how life on Earth responds to and shapes Earth systems. d. Describe how fossils provide a record of shared ancestry, evolution, and extinction that is best explained by the mechanism of natural selection. e. Identify the evolutionary innovations that most profoundly shaped Earth systems: photosynthetic prokaryotes and the atmosphere; multicellular animals and marine environments; land plants and terrestrial environments. Purpose/Goal(s): Students will understand how rock relationships and fossils are used to reconstruct the Earth’s past.
    [Show full text]
  • Using Paleomagnetism, Geochronology and Numerical Methods to Create and Assess Spatiotemporal Geological Relationships Through Earth History
    SPACE AND TIME: USING PALEOMAGNETISM, GEOCHRONOLOGY AND NUMERICAL METHODS TO CREATE AND ASSESS SPATIOTEMPORAL GEOLOGICAL RELATIONSHIPS THROUGH EARTH HISTORY By ANTHONY FRANCIS PIVARUNAS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2019 © 2019 Anthony Francis Pivarunas To my family, for supporting my unique co-obsession with magnets and rocks, Scott, for opening the door, and Joe, for guiding me through it ACKNOWLEDGMENTS I thank my parents, for supporting me the entire time. Your encouragement, advice, and love are amazing. My siblings, for talking, listening, and loving. My extended family, for asking me “What is the actual use of what you’re doing, Anthony?” enough times that I finally could answer it. I need to thank the SUNY Geneseo Geology department, in particular all the amazing teachers. Scott, Dori, Nick, Amy, Jeff, Ben, and Nancy, you helped guide me into geology. Particular thanks and blame for turning me onto paleomagnetism goes to Scott. It’s all your fault. To the Geowizards, there is no one I’d rather confound the Geneseo Physics department with. The long jaunt south was all started by Rob Van der Voo, my academic grandfather, who took the time to reply to my fumbling email and get me in touch with Florida. Thank you, Rob. I want to thank the entire University of Florida Geological Sciences department. Special thanks to the unsung heroes in the office and workshops: Pam, Carrie, Kristin, Diana and Dow and Ray. Thanks to all my committee members: Dave (for teaching me how to be a careful scientist), Alessandro (for teaching me how to be a creative scientist), Ray (for teaching me how to be a useful scientist), and Jim (for teaching me to be a communicative scientist).
    [Show full text]
  • Paleomagnetism, Magnetic Anisotropy and U-Pb Baddeleyite
    Precambrian Research 317 (2018) 14–32 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres Paleomagnetism, magnetic anisotropy and U-Pb baddeleyite geochronology of the early Neoproterozoic Blekinge-Dalarna dolerite dykes, Sweden T ⁎ Zheng Gonga, , David A.D. Evansa, Sten-Åke Elmingb, Ulf Söderlundc,d, Johanna M. Salminene a Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA b Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden c Department of Geology, Lund University, SE-223 62 Lund, Sweden d Swedish Museum of Natural History, Laboratory of Isotope Geology, SE-104 05 Stockholm, Sweden e Department of Geosciences and Geography, University of Helsinki, Helsinki 00014, Finland ARTICLE INFO ABSTRACT Keywords: Paleogeographic proximity of Baltica and Laurentia in the supercontinent Rodinia has been widely accepted. Blekinge-Dalarna dolerite (BDD) dykes However, robust paleomagnetic poles are still scarce, hampering quantitative tests of proposed relative positions Sveconorwegian loop of the two cratons. A recent paleomagnetic study of the early Neoproterozoic Blekinge-Dalarna dolerite (BDD) Baltica dykes in Sweden provided a 946–935 Ma key pole for Baltica, but earlier studies on other BDD dykes discerned Paleomagnetism large variances in paleomagnetic directions that appeared to indicate more complicated motion of Baltica, or Magnetic anisotropy alternatively, unusual geodynamo behavior in early Neoproterozoic time. We present combined paleomagnetic, U-Pb baddeleyite geochronology rock magnetic, magnetic fabric and geochronological studies on BDD dykes in the Dalarna region, southern Sweden. Positive baked-contact and paleosecular variation tests support the reliability of the 951–935 Ma key pole (Plat = −2.6°N, Plon = 239.6°E, A95 = 5.8°, N = 12 dykes); and the ancient magnetic field was likely a stable geocentric axial dipole at that time, based on a positive reversal test.
    [Show full text]