Using Paleomagnetism, Geochronology and Numerical Methods to Create and Assess Spatiotemporal Geological Relationships Through Earth History

Total Page:16

File Type:pdf, Size:1020Kb

Using Paleomagnetism, Geochronology and Numerical Methods to Create and Assess Spatiotemporal Geological Relationships Through Earth History SPACE AND TIME: USING PALEOMAGNETISM, GEOCHRONOLOGY AND NUMERICAL METHODS TO CREATE AND ASSESS SPATIOTEMPORAL GEOLOGICAL RELATIONSHIPS THROUGH EARTH HISTORY By ANTHONY FRANCIS PIVARUNAS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2019 © 2019 Anthony Francis Pivarunas To my family, for supporting my unique co-obsession with magnets and rocks, Scott, for opening the door, and Joe, for guiding me through it ACKNOWLEDGMENTS I thank my parents, for supporting me the entire time. Your encouragement, advice, and love are amazing. My siblings, for talking, listening, and loving. My extended family, for asking me “What is the actual use of what you’re doing, Anthony?” enough times that I finally could answer it. I need to thank the SUNY Geneseo Geology department, in particular all the amazing teachers. Scott, Dori, Nick, Amy, Jeff, Ben, and Nancy, you helped guide me into geology. Particular thanks and blame for turning me onto paleomagnetism goes to Scott. It’s all your fault. To the Geowizards, there is no one I’d rather confound the Geneseo Physics department with. The long jaunt south was all started by Rob Van der Voo, my academic grandfather, who took the time to reply to my fumbling email and get me in touch with Florida. Thank you, Rob. I want to thank the entire University of Florida Geological Sciences department. Special thanks to the unsung heroes in the office and workshops: Pam, Carrie, Kristin, Diana and Dow and Ray. Thanks to all my committee members: Dave (for teaching me how to be a careful scientist), Alessandro (for teaching me how to be a creative scientist), Ray (for teaching me how to be a useful scientist), and Jim (for teaching me to be a communicative scientist). They all did all those things, but those are the particular parts. To all the graduate and undergraduate students at UF during my time here, thanks for being great friends and colleagues. All my paleomagical lab mates: Kara, Scott, Austin, Erin, Aubrey, Kelli, Claudia, Landon, and Rachel. Now I need to try to put into words my deep thanks to my advisor, Joe Meert. You have supported me, advised me, pushed me, and guided me unfailingly over the past years. You even saved me from being shot during field work! I would not be where I am without your constant example and teaching. Thanks for everything, Joe. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES ...........................................................................................................................8 LIST OF FIGURES .........................................................................................................................9 LIST OF ABBREVIATIONS ........................................................................................................12 ABSTRACT ...................................................................................................................................14 CHAPTER 1 INTRODUCTORY REMARKS .................................................................................................16 1.1 Paleogeography .................................................................................................................16 1.1.1 Paleomagnetism ......................................................................................................17 1.1.2 Geochronology .......................................................................................................18 1.2 Research Objectives .....................................................................................................18 1.3 Overview ...........................................................................................................................20 2 PALEOMAGNETISM AND GEOCHRONOLOGY OF MAFIC DYKES FROM THE SOUTHERN GRANULITE TERRANE, INDIA: EXPANDING THE DHARWAR CRATON SOUTHWARD .....................................................................................................22 2.1 Introduction .......................................................................................................................22 2.1.1 Rationale .................................................................................................................22 2.1.2 Regional Geologic Setting and Area of Study .......................................................23 2.1.3 Previous Paleomagnetic Work ...............................................................................25 2.2 Methods ............................................................................................................................27 2.2.1 Paleomagnetic Analysis ..........................................................................................27 2.2.2 U–Pb Geochronology .............................................................................................28 2.3 Results...............................................................................................................................29 2.3.1 Geochronology .......................................................................................................29 2.3.1.1 Site 10 geochronology ..................................................................................29 2.3.1.2 Site 35 geochronology ..................................................................................30 2.3.2 Paleomagnetism ......................................................................................................30 2.3.2.1 Low to moderate temperature/coercivity components .................................30 2.3.2.2 Steeply inclined directions ...........................................................................31 2.3.2.3 Shallowly inclined directions .......................................................................33 2.3.2.4 Dual polarity intermediate directions ...........................................................34 2.3.2.5 Other directions ............................................................................................35 2.4 Discussion .........................................................................................................................37 2.4.1 Paleomagnetism at Scale ........................................................................................37 2.4.2 The South Indian “bar code” ..................................................................................38 5 2.4.3 The Northern Block of the SGT and the Dharwar Craton: A Metamorphosed Chip off the Old Block .................................................................................................41 2.5 Conclusions.......................................................................................................................44 3 PALEOMAGNETIC RESULTS FROM SINGHBHUM CRATON: REMAGNETIZATION, DEMAGNETIZATION, AND COMPLICATION .......................68 3.1. Introduction ......................................................................................................................68 3.1.1 India: A Rich and Complex Precambrian Record ..................................................68 3.1.2 Geologic Setting .....................................................................................................70 3.1.3 Prior Paleomagnetic Work .....................................................................................72 3.2. Methods ...........................................................................................................................74 3.3. Results..............................................................................................................................75 3.3.1 Magnetic Overprints ...............................................................................................75 3.3.2 NW-Shallow Reverse Magnetization .....................................................................75 3.3.3 Steeply-Inclined Dual Polarity Magnetic Data .......................................................78 3.3.3.1 NNE-trending dykes with intermediate-steep dual polarity magnetizations ......................................................................................................79 3.3.3.2 WNW-trending dykes with intermediate-steep dual polarity magnetizations ......................................................................................................80 3.3.3.3 Steep magnetizations in host rocks and dyke margins .................................81 3.2.3.4 A unified model for Singhbhum intermediate-steep paleomagnetism .........82 3.3.4 Dual Polarity NE-SW Shallow Magnetization .......................................................82 3.3.5 Easterly, Intermediate Reverse Direction ...............................................................84 3.3.6 Northerly, Intermediate Normal Direction .............................................................86 3.4. Discussion ........................................................................................................................87 3.4.1 Magnetic Relationships within Singhbhum Craton ................................................87 3.4.2 Comparison with Other South Indian Block Cratons .............................................91 3.5. Conclusions......................................................................................................................93 4 ASSESSING THE INTERSECTION/REMAGNETIZATION PUZZLE
Recommended publications
  • Paleomagnetism and U-Pb Geochronology of the Late Cretaceous Chisulryoung Volcanic Formation, Korea
    Jeong et al. Earth, Planets and Space (2015) 67:66 DOI 10.1186/s40623-015-0242-y FULL PAPER Open Access Paleomagnetism and U-Pb geochronology of the late Cretaceous Chisulryoung Volcanic Formation, Korea: tectonic evolution of the Korean Peninsula Doohee Jeong1, Yongjae Yu1*, Seong-Jae Doh2, Dongwoo Suk3 and Jeongmin Kim4 Abstract Late Cretaceous Chisulryoung Volcanic Formation (CVF) in southeastern Korea contains four ash-flow ignimbrite units (A1, A2, A3, and A4) and three intervening volcano-sedimentary layers (S1, S2, and S3). Reliable U-Pb ages obtained for zircons from the base and top of the CVF were 72.8 ± 1.7 Ma and 67.7 ± 2.1 Ma, respectively. Paleomagnetic analysis on pyroclastic units yielded mean magnetic directions and virtual geomagnetic poles (VGPs) as D/I = 19.1°/49.2° (α95 =4.2°,k = 76.5) and VGP = 73.1°N/232.1°E (A95 =3.7°,N =3)forA1,D/I = 24.9°/52.9° (α95 =5.9°,k =61.7)and VGP = 69.4°N/217.3°E (A95 =5.6°,N=11) for A3, and D/I = 10.9°/50.1° (α95 =5.6°,k = 38.6) and VGP = 79.8°N/ 242.4°E (A95 =5.0°,N = 18) for A4. Our best estimates of the paleopoles for A1, A3, and A4 are in remarkable agreement with the reference apparent polar wander path of China in late Cretaceous to early Paleogene, confirming that Korea has been rigidly attached to China (by implication to Eurasia) at least since the Cretaceous. The compiled paleomagnetic data of the Korean Peninsula suggest that the mode of clockwise rotations weakened since the mid-Jurassic.
    [Show full text]
  • Bayesian Probabilistic Reconstruction of Metamorphic P–T Paths Using Inclusion Geothermobarometry
    Journal of Mineralogical and Petrological Sciences, Volume 113, page 82–95, 2018 Bayesian probabilistic reconstruction of metamorphic P–T paths using inclusion geothermobarometry † † Tatsu KUWATANI*, , Kenji NAGATA**, , Kenta YOSHIDA*, Masato OKADA*** and Mitsuhiro TORIUMI* *Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokosuka 237–0061, Japan **Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135–0064, Japan ***Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277–8561, Japan †PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332–0012, Japan Geothermometry and geobarometry are used to study the equilibration of mineral inclusions and their zoned host minerals, which provide information on the P–T conditions of inclusions at the time of their entrapment. However, reconstructing detailed P–T paths remains difficult, owing to the sparsity of inclusions suitable for geothermometry and geobarometry. We developed a stochastic inversion method for reconstructing precise P–T paths from chemically zoned structures and inclusions using the Markov random field (MRF) model, a type of Bayesian stochastic method often used in image restoration. As baseline information for P–T path inversion, we introduce the concepts of pressure and temperature continuity during mineral growth into the MRF model. To evaluate the proposed model, it was applied to a P–T inversion problem using the garnet–biotite geothermom- eter and the garnet–Al2SiO5–plagioclase–quartz geobarometer for mineral compositions from published datasets of host garnets and mineral inclusions in pelitic schist. Our method successfully reconstructed the P–T path, even after removing a large part of the inclusion dataset.
    [Show full text]
  • Valid Garnet–Biotite (GB) Geothermometry and Garnet–Aluminum Silicate–Plagioclase–Quartz (GASP) Geobarometry in Metapelitic Rocksb
    Lithos 89 (2006) 1–23 www.elsevier.com/locate/lithos Valid garnet–biotite (GB) geothermometry and garnet–aluminum silicate–plagioclase–quartz (GASP) geobarometry in metapelitic rocksB Chun-Ming Wu a,*, Ben-He Cheng b a Laboratory of Computational Geodynamics, The Graduate School, Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049, China b Sinopec International Petroleum Exploration and Production Corporation, Beijing 100083, China Received 5 September 2004; accepted 2 September 2005 Available online 28 November 2005 Abstract At present there are many calibrations of both the garnet–biotite (GB) thermometer and the garnet–aluminum silicate– plagioclase–quartz (GASP) barometer that may confuse geologists in choosing a reliable thermometer and/or barometer. To test the accuracy of the GB thermometers we have applied the various GB thermometers to reproduce the experimental data and data from natural metapelitic rocks of various prograde sequences, inverted metamorphic zones and thermal contact aureoles. We have concluded that the four GB thermometers (Perchuk, L.L., Lavrent’eva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite–garnet–biotite. In: Saxena, S.K. (ed.) Kinetics and equilibrium in mineral reactions. Springer- Verlag New York, Berlin, Heidelberg. pp. 199–239.; Kleemann, U., Reinhardt, J., 1994. Garnet–biotite thermometry revised: the effect of AlVI and Ti in biotite. European Journal of Mineralogy 6, 925–941.; Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet–biotite geothermometer. American Mineralogist 85, 881–892., Model 6AV; Kaneko, Y., Miyano, T., 2004. Recalibration of mutually consistent garnet–biotite and garnet–cordierite geothermometers. Lithos 73, 255–269.
    [Show full text]
  • 2. Geomagnetism and Paleomagnetism
    2-1 2. GEOMAGNETISM AND PALEOMAGNETISM 1 https://physicalgeology.pressbooks.com/chapter/4-3-geological-renaissance-of-the-mid-20th-century/ 2 2-2 ELECTRIC q Q FIELD q -Q 3 MAGNETIC DIPOLE Although magnetic fields have a similar form to electric fields, they differ because there are no single magnetic "charges," known as magnetic poles. Hence the fundamental entity is the magnetic dipole arising from an electric current I circulating in a conducting loop, such as a wire, with area A . The field is described as resulting from a magnetic dipole characterized by a dipole moment m Magnetic dipoles can arise from electric currents - which are moving electric charges - on scales ranging from wire loops to the hot fluid moving in the core that generates the earth’s magnetic field. They also arise at the atomic level, where they are intrinsic properties of charged particles like protons and electrons. As a result, rocks can be magnetized, much like familiar bar magnets. Although the magnetism of a bar magnet arises from the electrons within it, it can be viewed as a magnetic dipole, with north and south magnetic poles at opposite ends. 4 2-3 MAGNETIC FIELD 5 We visualize the magnetic field of a dipole in terms of magnetic field lines pointing outward from the north pole of a bar magnet and in toward the south. The lines point in the direction another bar magnet, such as a compass needle, would point. At any point, the north pole of the compass needle would point along the DIPOLE field line, toward the south pole MAGNETIC of the bar magnet.
    [Show full text]
  • Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania
    Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania Dissertation zur Erlangung des Doktorgrades an der Mathematisch-Naturwissenschftiliches Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Emmanuel Owden Kazimoto Kiel 2014 Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania Dissertation zur Erlangung des Doktorgrades an der Mathematisch-Naturwissenschftiliches Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Emmanuel Owden Kazimoto Kiel 2014 Gedruckt mit der Unterstützung des Deutschen Akademischen Austauschdienstes Referent: Prof. Dr. Volker Schenk Korrereferentin: Prof. Dr. Astrid Holzheid Tad der mündlichen Prüfung: 1-7-2014 Zum Druck genehmigt Der Dekan Vorwort Die vorliegende Arbeit wurde als monographische Dissertation verfasst, jedoch ist in den drei Kapiteln jeweils eine eigenständige Einleitung und Diskussion vorhanden. Für die einzelnen Kapitel wurde bewusst ein unabhängiger Aufbau gewählt, da diese losgelöst voneinander in internationalen Fachzeitschriften publiziert werden sollen. Daher finden sich in jedem Kapitel eine Einleitung, Diskussion und Literaturverzeichnis wieder, auch die Länge und etwaige Formatierungen sind in Hinblick auf die jeweiligen Vorgaben der Fachzeitschriften bewusst gewählt. Der Leser sei darauf hingewiesen, dass es durch den gewählten Aufbau zu Wiederholungen kommen kann und möge diesen Sachverhalt bei der Lektüre berücksichtigen. Kiel, June 2014 Emmanuel Owden Kazimoto Acknowledgements I would like to thank the German Academic Exchange Programme (DAAD) and The Ministry of Education and Vocational Training of Tanzania (MOEVT) through the Tanzania Commission for Universities (TCU) for providing funds that facilitated my stay in Germany and enabled me to attain my PhD degree. I am also grateful to the University of Dar es Salaam for the financial support of my fieldworks through the Sida Earth Science Project.
    [Show full text]
  • 2. Geomagnetism and Paleomagnetism
    2. GEOMAGNETISM AND PALEOMAGNETISM https://physicalgeology.pressbooks.com/chapter/4-3-geological-renaissance-of-the-mid-20th-century/ Click for audio Topic 2a 1 Topic 2a 2 q Q ELECTRIC FIELD q -Q Topic 2a 3 MAGNETIC DIPOLE Although magnetic fields have a similar form to electric fields, they differ because there are no single magnetic "charges," known as magnetic poles. Hence the fundamental entity is the magnetic dipole arising from an electric current I circulating in a conducting loop, such as a wire, with area A . The field is described as resulting from a magnetic dipole characterized by a dipole moment m Magnetic dipoles can arise from electric currents - which are moving electric charges - on scales ranging from wire loops to the hot fluid moving in the core that generates the earth’s magnetic field. They also arise at the atomic level, where they are intrinsic properties of charged particles like protons and electrons. As a result, rocks can be magnetized, much like familiar bar magnets. Although the magnetism of a bar magnet arises from the electrons within it, it can be viewed as a magnetic dipole, with north and south magnetic poles at opposite ends. Topic 2a 4 Magnetic field B Units of B Tesla (T) = kg/s 2 -A A = Ampere (unit of current) Gauss (G) = 10-4 Tesla Gamma (! )= 10-9 Tesla = 1 nanoTesla (nT) Earth’s field is about 50 "T = 50 x 10-6 Tesla Topic 2a 5 We visualize the magnetic field of a dipole in terms of magnetic field lines pointing outward from the north pole of a bar magnet and in toward the south.
    [Show full text]
  • Petrology and Geothermobarometry of Grt-Cpx and Mg-Al-Rich
    Petrology and Geothermobarometry of Grt-Cpx and Mg-Al- rich Rocks from the Gondwana Suture in Southern India: Implications for High-pressure and Ultrahigh-temperature Metamorphism Hisako Shimizu*, Toshiaki Tsunogae Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan, [email protected] and M. Santosh Faculty of Science, Kochi University, Akebono-cho 2-5-1, Kochi 780-8520, Japan Introduction The Palghat-Cauvery Shear/Suture Zone (PCSZ) in southern India represents a system of dominantly E-W trending shear zones that separate the Archean Dharwar Craton to the north and Neoproterozoic granulite blocks to the south. Available geochronological data on high- grade metamorphic rocks from this region have confirmed the widespread effect of a ca. 550- 530 Ma thermal event related to the collisional amalgamation of the Gondwana supercontinent (e.g., Collins et al., 2007a, Santosh et al., 2009). Recent petrological investigations of high- grade metamorphic rocks of the PCSZ around Namakkal district identified prograde high- pressure (HP, P >12 kbar) metamorphism and peak ultrahigh-temperature (UHT) metamorphic history of this region (e.g., Shimpo et al., 2006; Nishimiya et al., 2010), which has been correlated to deep subduction prior to the collision and exhumation of the orogen during Neoproterozoic to Cambrian (Santosh et al., 2009). The PCSZ is therefore regarded as the trace of the Gondwana suture zone that continues westwards to the Betsimisaraka suture in Madagascar (Collins and Windley, 2002), and eastwards into Sri Lanka and probably into Antarctica. However, P-T paths related to tectonic settings of this region are still under debate as both clockwise (e.g., Shimpo et al., 2006) and counterclockwise (e.g., Sajeev et al., 2009) P- T paths have been reported from this region.
    [Show full text]
  • Dating Techniques.Pdf
    Dating Techniques Dating techniques in the Quaternary time range fall into three broad categories: • Methods that provide age estimates. • Methods that establish age-equivalence. • Relative age methods. 1 Dating Techniques Age Estimates: Radiometric dating techniques Are methods based in the radioactive properties of certain unstable chemical elements, from which atomic particles are emitted in order to achieve a more stable atomic form. 2 Dating Techniques Age Estimates: Radiometric dating techniques Application of the principle of radioactivity to geological dating requires that certain fundamental conditions be met. If an event is associated with the incorporation of a radioactive nuclide, then providing: (a) that none of the daughter nuclides are present in the initial stages and, (b) that none of the daughter nuclides are added to or lost from the materials to be dated, then the estimates of the age of that event can be obtained if the ration between parent and daughter nuclides can be established, and if the decay rate is known. 3 Dating Techniques Age Estimates: Radiometric dating techniques - Uranium-series dating 238Uranium, 235Uranium and 232Thorium all decay to stable lead isotopes through complex decay series of intermediate nuclides with widely differing half- lives. 4 Dating Techniques Age Estimates: Radiometric dating techniques - Uranium-series dating • Bone • Speleothems • Lacustrine deposits • Peat • Coral 5 Dating Techniques Age Estimates: Radiometric dating techniques - Thermoluminescence (TL) Electrons can be freed by heating and emit a characteristic emission of light which is proportional to the number of electrons trapped within the crystal lattice. Termed thermoluminescence. 6 Dating Techniques Age Estimates: Radiometric dating techniques - Thermoluminescence (TL) Applications: • archeological sample, especially pottery.
    [Show full text]
  • Mineral Chemistry and Geothermobarometry of Gabbroic Rocks from the Gysel Area, Alborz Mountains, North Iran Química Mineral Y
    ISSN-E 1995-9516 Universidad Nacional de Ingeniería COPYRIGHT © (UNI). TODOS LOS DERECHOS RESERVADOS http://revistas.uni.edu.ni/index.php/Nexo https://doi.org/10.5377/nexo.v33i02.10779 Vol. 33, No. 02, pp. 392-408/Diciembre 2020 Mineral chemistry and geothermobarometry of gabbroic rocks from the Gysel area, Alborz mountains, north Iran Química mineral y geotermobarometría de rocas gabroicas del área de Gysel, montañas de Alborz, Irán del norte Farzaneh Farahi, Saeed Taki*, Mojgan Salavati Department of Geology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran. Corresponding autor email: [email protected] (recibido/received: 02-June-2020; aceptado/accepted: 04-August-2020) ABSTRACT The gabbroic rocks in the Gysel area of the Central Alborz Mountains in north Iran are intruded into the Eocene Volcano-sedimentary units. The main gabbroic rocks varieties include gabbro porphyry, olivine gabbro, olivine dolerite and olivine monzo-gabbro. The main minerals phases in the rocks are plagioclase and pyroxene and the chief textures are sub-hedral granular, trachytoidic, porphyritic, intergranular and poikilitic. Electron microprobe analyses on minerals in the rock samples shows that plagioclase composition ranges from labradorite to bytonite, with oscillatory and normal chemical zonings. Clinopyroxene is augite and orthopyroxene is hypersthene to ferro-hypersthene. Thermometry calculations indicate temperatures of 650˚C to 750˚C for plagioclase crystallization and 950˚C to 1130˚C for pyroxene crystallization. Clinopyroxene chemistry reveals sub-alkaline and calc-alkaline nature for the parental magma emplaced in a volcanic arc setting. Keywords: Gabbro, mineral chemistry, thermobarometry, plagioclase, pyroxene, Alborz, Iran RESUMEN Las rocas gabroicas en el área de Gysel de las montañas Alborz Central en el norte de Irán se introducen en las unidades sedimentarias del volcán Eoceno.
    [Show full text]
  • Geothermobarometry in Pelitic Schists
    American Mineralogist.Volume 78, pages68 I-693, 1993 Geothermobarometryin pelitic schists:A rapidly eyolyingfieldx M. J. Hor,o,q.wav, Brsw.l;rr MuxrroploHyAy Department of Geological Sciences,Southern Methodist University, Dallas, Texas 75275, U.S.A. Ansrnrcr The study of pelitic rocks for the purpose of deciphering pressure-temperature(P-Z) information is an important area for collaboration betweenmineralogists and petrologists. Accurate geothermobarometryis especiallyimportant for studiesof pressure-temperature- time paths of terranesduring tectonism and for studies of the movement of metamorphic fluids. During the past decade, new developments have included thermodynamic data bases,sophisticated crystal structure determinations and associatedsite assignments,and analysesfor Fe3+ and light elements (especially H and Li) for many minerals within a petrogeneticcontext. It is now necessaryto apply thesenew findings to geothermobarome- try in several important ways: (l) The stoichiometric basis for hydrous minerals should be revised in light of highly variable H and variable Fe3*, which can now be estimated with considerableaccuracy as a function of grade or mineral assemblage.(2) Mole fraction (activity) models should be based on the best crystal chemical considerations.For some minerals, H may be omitted from the model if all the substitutionsinvolving H are coupled substitutions. (3) Thermodynamic data should be basedon careful analysisof all available experiments and secondarycomparison with natural assemblages.(4) The possibility of nonideal solid solution should be considered,as ideality is merely a specialcase of nonide- ality. It is better to estimate binary interaction parameters than to assumethat they are zero. However, it is difficult to determine ternary interaction parameters.In such cases, little error is likely to result from assumingthat strictly ternary interaction parametersare zero, while evaluating all the binary terms.
    [Show full text]
  • The Flux Line News of the Geomagnetism, Paleomagnetism and Electromagnetism Section of AGU
    The Flux Line News of the Geomagnetism, Paleomagnetism and Electromagnetism Section of AGU November 2018 Fall 2018 AGU Meeting Events! The GPE Section will have primary responsibility for 10 oral, 11 poster sessions, 1 eLightning session and 1 Union session at the 2018 Fall AGU meeting, December 10-14, in addition to secondary sessions. GPE sessions cover all five conference days kicking off on Monday morning right through Friday morning (see synopsis on page 9). Many thanks go out to all our session conveners. A special thanks goes out to France Lagroix, GPE Secretary, who put together the GPE sessions for all of us. France points out that we need many OSPA judges for our student presentations. Please sign up to help us judge student presentations: (http://ospa.agu.org/ospa/judges/) Mark your calendars for these special events: • GPE Student Reception: Monday, Dec. 10, 6:00 – 7:30-8 pm, at Marriott-Marquis Hotel This is a GPE-sponsored event to help students and postdocs get to know each other and meet the GPE leadership. If you plan on attending please email Shelby Jones-Cervantes • AGU Icebreaker: Monday, Dec. 11, 6-8 pm, Convention Center, Exhibit Hall D-E • AGU Student Breakfast: Tuesday, Dec. 12 at 7 am, Marriot-Marquis Hotel First come, first served. Look for the GPE table. • Bullard Lecture: Tuesday, Dec 12 Hunting the Magnetic Field presented by Lisa Tauxe, Marquis 6. See story page 4 • GPE Business Meeting and Reception: Tuesday, Dec 11, 6:30 – 8:00 pm, Grand Hyatt Washington Hotel, Constitution Level, Room A • AGU Honors Ceremony: Wednesday, Dec.
    [Show full text]
  • Paleomagnetism and Counterclockwise Tectonic Rotation of the Upper Oligocene Sooke Formation, Southern Vancouver Island, British Columbia
    499 Paleomagnetism and counterclockwise tectonic rotation of the Upper Oligocene Sooke Formation, southern Vancouver Island, British Columbia Donald R. Prothero, Elizabeth Draus, Thomas C. Cockburn, and Elizabeth A. Nesbitt Abstract: The age of the Sooke Formation on the southern coast of Vancouver Island, British Columbia, Canada, has long been controversial. Prior paleomagnetic studies have produced a puzzling counterclockwise tectonic rotation on the underlying Eocene volcanic basement rocks, and no conclusive results on the Sooke Formation itself. We took 21 samples in four sites in the fossiliferous portion of the Sooke Formation west of Sooke Bay from the mouth of Muir Creek to the mouth of Sandcut Creek. After both alternating field (AF) and thermal demagnetization, the Sooke Formation produces a single-component remanence, held largely in magnetite, which is entirely reversed and rotated counterclockwise by 358 ± 128. This is consistent with earlier results and shows that the rotation is real and not due to tectonic tilting, since the Sooke Formation in this region has almost no dip. This rotational signature is also consistent with counterclockwise rota- tions obtained from the northeast tip of the Olympic Peninsula in the Port Townsend volcanics and the Eocene–Oligocene sediments of the Quimper Peninsula. The reversed magnetozone of the Sooke sections sampled is best correlated with Chron C6Cr (24.1–24.8 Ma) or latest Oligocene in age, based on the most recent work on the Liracassis apta Zone mol- luscan fauna, and also a number of unique marine mammals found in the same reversed magnetozone in Washington and Oregon. Re´sume´ : L’aˆge de la Formation de Sooke sur la coˆte sud de l’ıˆle de Vancouver, Colombie-Britannique, Canada, a long- temps e´te´ controverse´.
    [Show full text]