Geothermobarometry in Pelitic Schists

Total Page:16

File Type:pdf, Size:1020Kb

Geothermobarometry in Pelitic Schists American Mineralogist.Volume 78, pages68 I-693, 1993 Geothermobarometryin pelitic schists:A rapidly eyolyingfieldx M. J. Hor,o,q.wav, Brsw.l;rr MuxrroploHyAy Department of Geological Sciences,Southern Methodist University, Dallas, Texas 75275, U.S.A. Ansrnrcr The study of pelitic rocks for the purpose of deciphering pressure-temperature(P-Z) information is an important area for collaboration betweenmineralogists and petrologists. Accurate geothermobarometryis especiallyimportant for studiesof pressure-temperature- time paths of terranesduring tectonism and for studies of the movement of metamorphic fluids. During the past decade, new developments have included thermodynamic data bases,sophisticated crystal structure determinations and associatedsite assignments,and analysesfor Fe3+ and light elements (especially H and Li) for many minerals within a petrogeneticcontext. It is now necessaryto apply thesenew findings to geothermobarome- try in several important ways: (l) The stoichiometric basis for hydrous minerals should be revised in light of highly variable H and variable Fe3*, which can now be estimated with considerableaccuracy as a function of grade or mineral assemblage.(2) Mole fraction (activity) models should be based on the best crystal chemical considerations.For some minerals, H may be omitted from the model if all the substitutionsinvolving H are coupled substitutions. (3) Thermodynamic data should be basedon careful analysisof all available experiments and secondarycomparison with natural assemblages.(4) The possibility of nonideal solid solution should be considered,as ideality is merely a specialcase of nonide- ality. It is better to estimate binary interaction parameters than to assumethat they are zero. However, it is difficult to determine ternary interaction parameters.In such cases, little error is likely to result from assumingthat strictly ternary interaction parametersare zero, while evaluating all the binary terms. Our understanding of garnet and biotite solu- tions has improved, and the garnet-biotite geothermometerhas undergonenumerous re- finements,but additional information on theseminerals and improvements in the garnet- biotite thermometer are still necessary. As the P and ?"determinations become more precise,we can better evaluate Xnro, X"o, and X.ro in the fluid phase. In all probability, patterns will be discovered in the compo- sitions of pelitic metamorphic fluids, especially when graphite is present. The hematite- ilmenite solid solution system is potentially useful for determining .fo2,oree the solvus is better understood. In graphitic rocks at known P and T, knowledge of /o, from coexisting hemoilmenite and rutile or hemoilmenite and magnetite enables one to determine the mole fraction of all fluid species. Careful application of the present state of knowledge,combined with modest improve- ments, should allow accuracyapproaching +250 bars and +25 "C in rocks formed at low to moderate pressures.It is very important to continue to revise thermochemical data, activity models, Margules parameters,and stoichiometric information, and it is equally important for petrologistsand tectonicists to make use of these revisions as they become available. INrnooucrroN if we are not continually watching for them and correcting possible, get preci- In recent years, we have become concernedabout the them wherever we will not the best simplified view taken by some petrologists and tectoni- sion, especiallyin the P-T ratge outside of the range of cists regardingquantitative estimation of the pressureand calibration. This is an ideal area for collaboration be- temperature of formation of metamorphic rocks. There tween mineralogists and petrologists. Mineralogists pro- are many possiblesources of error in this procedure,and, vide valuable information on mineral structure and site assignments,and petrologistsapply the results to activity models. Both mineralogists and petrologists are making t This report is a revised, expanded version of the Mineral- ogical Society of America Presidential Address given by M.J. important contributions to careful, complete chemical Holdaway at the Geological Societyof America Meeting in Cin- analysis of common metamorphic minerals. cinnati, Ohio, on October 27, 1992. Interesting work is being done on pressure-tempera- 0003-004x/93l0708-o68I $02.00 681 682 HOLDAWAY AND MUKHOPADHYAY: GEOTHERMOBAROMETRY IN PELITES P difference between these two estimates is 450/oof the lower value. Here we review the processof P, T, and X"ro estima- tion, focusing on five important areas:(l) determination of mineral stoichiometry, (2) mineral mole fraction (ac- o tivity) models, using the mixing-on-sites model, (3) non- E (4) and use o ideality in mineral solid solutions, derivation U) -6 of thermodynamic data, and (5) fluid composition and o petrologists carefully consider c its use to test results. If E l what is known in eachofthese areasand continue to heed z developmentsas they becameavailable, we will converge on a consistent P-T-Xtro grid for all metamorphic ter- ranes and grades.In our analysis, we will focus on me- dium-grade pelitic metamorphism, but some of what we have to say is equally applicable to other gradesor bulk compositions. The major silicate minerals we will be dis- Wt.%Water cussing are muscovite, biotite, garnet, staurolite, cordi- Fig. 1. Histogramof H.O contentof all muscoviteand bio- erite, aluminum silicates, and chlorite; the Fe-Ti oxides tite samplesanalyzed by M.D. Dyar.After Dyaret al. (1993), and rutile, as well as reprintedwith the kind permissionof PergamonPress. ilmenite, hematite, magnetite, graphite, will also come up for discussion.We will con- sider mainly the dominant mineral end-membersand will ture-time paths (e.9.,Spear and Selverstone,1983) and not be consideringsulfide equilibria. The effectsofsulflde on fluid composition and movement in metamorphic ter- on Xrro in medium-grade reduced pelites can be ignored ranes(e.9., Ferry and Dipple, l99l). There are also sig- ifthe sulfideis pyrrohotite and not pyrite (Shi, 1992). nificant controversies over how much P-Z information MrNsnAl, SToICHIoMETRY one can learn from zoned minerals (e.g.,Frost and Tracy, 1991) and how much fluid actually passedthrough the Extensiveand, commonly, exclusiveuse of the electron rocks (e.g.,Gray et al., l99l). The quality of the results microprobe for mineral analysis has left us short on im- of many of these studies may well be only as good as the portant data for many minerals, especiallyhydrous ones. quality of the geothermobarometryused. Only when sig- In many studies, mineral chemistry is based on micro- nificant improvementsare made to the accuracyof P-T probe data alone. The resultant shortcomings include a determination will we possibly be able to answer these lack of data for Fe3+/(Fe2++ Fe'*) and a lack of light- questions. That alone is an important justification for elementanalyses, such as H, Li, B, and Be, on minerals continuing our efforts to improve geothermobarometry. as diverse as micas, chlorite, staurolite, garnet, and tour- To illustrate the seriousnessof the problem, we com- maline. In this list all may contain significant amounts of pare two recent studiesinvolving geothermobarometryin Fe3+,all but garnethave variable H, biotite and staurolite pelitic rocks. In Acadian M3 in Maine and in the Dela- may have significant Li, and tourmaline has variable B merian of South Australia. near Adelaide. isobaric ther- (Dyar et a1.,1992,1993; Holdaway et al., 1986a,1986b; mal metamorphism produces assemblagescontaining Dutrow et al., 1986). The assumptionof ideal or zero staurolite * andalusite followed by sillimanite at higher content of light elementsand zero Fe3* may have pro- grade. In both areasthe appearanceof sillimanite corre- ducedinaccurate stoichiometry, and it has precludedthe sponds approximately to the disappearanceof both an- possibility of several important substitutions that are dalusite and staurolite. In both areas,cordierite is locally coupledwith thoseof major elements.Depending on the present,probably becauseofan earlier, lower-P subevent, mineral, the H content of hydrous minerals may be a a local decreasein P, or a differencein bulk composition. function of metamorphic grade,of mineral assemblage, All petrologic evidenceindicates that thesetwo localities or both. With light-elementand Fe3* analyticaldata for have enjoyed about the same P-T conditions. Average representativeminerals, we can make appropriatecorrec- metamorphic conditions for the staurolite-bearingrocks tions to the stoichiometricbasis. Here we summarizewhat p":+1 deducedby Holdaway et al. (1988) for Maine M3 are P we know about Fe3*/(Fe2+* and light elements, : 3.1 kbar, T : 531 'C; conditionsdeduced by Dymoke how they affect stoichiometry,and possiblesite assign- and Sandiford (1992\ for the Delameriannear Adelaide mentsfor Fe3*. are P : 4.5 kbar, T : 594 oC, corresponding to an ap- parent P difference of 1.4 kbar or a depth difference of Muscovite nearly 5 km. Whereaspetrologists who work in rocks at Muscovite suffers from two compositional problems. higher P and I might not consider these to be serious (l) Preliminary Mdssbauerstudy (M. D. Dyar, unpub- differences, we believe it should be possible to obtain lished data) shows that half to two-thirds of the Fe in much greater accuracyin low- to moderate-P rocks than muscovite is Fe3+.Except for highly oxidized, Iow-grade, is implied by this comparison. It is worth noting that the or high-P rocks, this efect can be ignored becauseit has HOLDAWAY AND MUKHOPADHYAY: GEOTHERMOBAROMETRY IN PELITES 683 TABLE1. HrO content of Maine peliticmicas as a functionof Trale 2. Stoichiometryof micas,specimen 143' grade- Muscovite.* Biotitel Muscovite No H, Fe3* No H, Fe3* Average Average correction corrected correction corrected (%) ('/") No. No. rrlSi 3 034 3 076 2.666 2.696 Garnet 8 3.54 0 86 16 4.52 0.30 rrlAl 0.966 0.924 1.334 1.201 Staurolite 10 3.78 0.39 10 4.16 0.47 rrlFe3r 0.000 0.000 0.000 0 103 Sillimanite 26 4.06 0.35 29 3.83 0 35 rMrAl 1.866 1.947 0 390 0.542 Ksp-Sil-Mus 4 3.84 020 5 3.21 0.30 rMtTi 0.038 0.039 0 173 0.175 Atl 48 3.90 0.49 60 4.02 0.51 rMtFe2+ 0.060 0.031 1.277 1.136 rMtFes+ 0.000 0.030 0.000 0.052 .
Recommended publications
  • Bayesian Probabilistic Reconstruction of Metamorphic P–T Paths Using Inclusion Geothermobarometry
    Journal of Mineralogical and Petrological Sciences, Volume 113, page 82–95, 2018 Bayesian probabilistic reconstruction of metamorphic P–T paths using inclusion geothermobarometry † † Tatsu KUWATANI*, , Kenji NAGATA**, , Kenta YOSHIDA*, Masato OKADA*** and Mitsuhiro TORIUMI* *Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokosuka 237–0061, Japan **Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135–0064, Japan ***Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277–8561, Japan †PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332–0012, Japan Geothermometry and geobarometry are used to study the equilibration of mineral inclusions and their zoned host minerals, which provide information on the P–T conditions of inclusions at the time of their entrapment. However, reconstructing detailed P–T paths remains difficult, owing to the sparsity of inclusions suitable for geothermometry and geobarometry. We developed a stochastic inversion method for reconstructing precise P–T paths from chemically zoned structures and inclusions using the Markov random field (MRF) model, a type of Bayesian stochastic method often used in image restoration. As baseline information for P–T path inversion, we introduce the concepts of pressure and temperature continuity during mineral growth into the MRF model. To evaluate the proposed model, it was applied to a P–T inversion problem using the garnet–biotite geothermom- eter and the garnet–Al2SiO5–plagioclase–quartz geobarometer for mineral compositions from published datasets of host garnets and mineral inclusions in pelitic schist. Our method successfully reconstructed the P–T path, even after removing a large part of the inclusion dataset.
    [Show full text]
  • Valid Garnet–Biotite (GB) Geothermometry and Garnet–Aluminum Silicate–Plagioclase–Quartz (GASP) Geobarometry in Metapelitic Rocksb
    Lithos 89 (2006) 1–23 www.elsevier.com/locate/lithos Valid garnet–biotite (GB) geothermometry and garnet–aluminum silicate–plagioclase–quartz (GASP) geobarometry in metapelitic rocksB Chun-Ming Wu a,*, Ben-He Cheng b a Laboratory of Computational Geodynamics, The Graduate School, Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049, China b Sinopec International Petroleum Exploration and Production Corporation, Beijing 100083, China Received 5 September 2004; accepted 2 September 2005 Available online 28 November 2005 Abstract At present there are many calibrations of both the garnet–biotite (GB) thermometer and the garnet–aluminum silicate– plagioclase–quartz (GASP) barometer that may confuse geologists in choosing a reliable thermometer and/or barometer. To test the accuracy of the GB thermometers we have applied the various GB thermometers to reproduce the experimental data and data from natural metapelitic rocks of various prograde sequences, inverted metamorphic zones and thermal contact aureoles. We have concluded that the four GB thermometers (Perchuk, L.L., Lavrent’eva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite–garnet–biotite. In: Saxena, S.K. (ed.) Kinetics and equilibrium in mineral reactions. Springer- Verlag New York, Berlin, Heidelberg. pp. 199–239.; Kleemann, U., Reinhardt, J., 1994. Garnet–biotite thermometry revised: the effect of AlVI and Ti in biotite. European Journal of Mineralogy 6, 925–941.; Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet–biotite geothermometer. American Mineralogist 85, 881–892., Model 6AV; Kaneko, Y., Miyano, T., 2004. Recalibration of mutually consistent garnet–biotite and garnet–cordierite geothermometers. Lithos 73, 255–269.
    [Show full text]
  • Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania
    Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania Dissertation zur Erlangung des Doktorgrades an der Mathematisch-Naturwissenschftiliches Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Emmanuel Owden Kazimoto Kiel 2014 Crustal Evolution and Hydrothermal Gold Mineralization in the Katuma Block of the Paleoproterozoic Ubendian Belt, Tanzania Dissertation zur Erlangung des Doktorgrades an der Mathematisch-Naturwissenschftiliches Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Emmanuel Owden Kazimoto Kiel 2014 Gedruckt mit der Unterstützung des Deutschen Akademischen Austauschdienstes Referent: Prof. Dr. Volker Schenk Korrereferentin: Prof. Dr. Astrid Holzheid Tad der mündlichen Prüfung: 1-7-2014 Zum Druck genehmigt Der Dekan Vorwort Die vorliegende Arbeit wurde als monographische Dissertation verfasst, jedoch ist in den drei Kapiteln jeweils eine eigenständige Einleitung und Diskussion vorhanden. Für die einzelnen Kapitel wurde bewusst ein unabhängiger Aufbau gewählt, da diese losgelöst voneinander in internationalen Fachzeitschriften publiziert werden sollen. Daher finden sich in jedem Kapitel eine Einleitung, Diskussion und Literaturverzeichnis wieder, auch die Länge und etwaige Formatierungen sind in Hinblick auf die jeweiligen Vorgaben der Fachzeitschriften bewusst gewählt. Der Leser sei darauf hingewiesen, dass es durch den gewählten Aufbau zu Wiederholungen kommen kann und möge diesen Sachverhalt bei der Lektüre berücksichtigen. Kiel, June 2014 Emmanuel Owden Kazimoto Acknowledgements I would like to thank the German Academic Exchange Programme (DAAD) and The Ministry of Education and Vocational Training of Tanzania (MOEVT) through the Tanzania Commission for Universities (TCU) for providing funds that facilitated my stay in Germany and enabled me to attain my PhD degree. I am also grateful to the University of Dar es Salaam for the financial support of my fieldworks through the Sida Earth Science Project.
    [Show full text]
  • Petrology and Geothermobarometry of Grt-Cpx and Mg-Al-Rich
    Petrology and Geothermobarometry of Grt-Cpx and Mg-Al- rich Rocks from the Gondwana Suture in Southern India: Implications for High-pressure and Ultrahigh-temperature Metamorphism Hisako Shimizu*, Toshiaki Tsunogae Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan, [email protected] and M. Santosh Faculty of Science, Kochi University, Akebono-cho 2-5-1, Kochi 780-8520, Japan Introduction The Palghat-Cauvery Shear/Suture Zone (PCSZ) in southern India represents a system of dominantly E-W trending shear zones that separate the Archean Dharwar Craton to the north and Neoproterozoic granulite blocks to the south. Available geochronological data on high- grade metamorphic rocks from this region have confirmed the widespread effect of a ca. 550- 530 Ma thermal event related to the collisional amalgamation of the Gondwana supercontinent (e.g., Collins et al., 2007a, Santosh et al., 2009). Recent petrological investigations of high- grade metamorphic rocks of the PCSZ around Namakkal district identified prograde high- pressure (HP, P >12 kbar) metamorphism and peak ultrahigh-temperature (UHT) metamorphic history of this region (e.g., Shimpo et al., 2006; Nishimiya et al., 2010), which has been correlated to deep subduction prior to the collision and exhumation of the orogen during Neoproterozoic to Cambrian (Santosh et al., 2009). The PCSZ is therefore regarded as the trace of the Gondwana suture zone that continues westwards to the Betsimisaraka suture in Madagascar (Collins and Windley, 2002), and eastwards into Sri Lanka and probably into Antarctica. However, P-T paths related to tectonic settings of this region are still under debate as both clockwise (e.g., Shimpo et al., 2006) and counterclockwise (e.g., Sajeev et al., 2009) P- T paths have been reported from this region.
    [Show full text]
  • Mineral Chemistry and Geothermobarometry of Gabbroic Rocks from the Gysel Area, Alborz Mountains, North Iran Química Mineral Y
    ISSN-E 1995-9516 Universidad Nacional de Ingeniería COPYRIGHT © (UNI). TODOS LOS DERECHOS RESERVADOS http://revistas.uni.edu.ni/index.php/Nexo https://doi.org/10.5377/nexo.v33i02.10779 Vol. 33, No. 02, pp. 392-408/Diciembre 2020 Mineral chemistry and geothermobarometry of gabbroic rocks from the Gysel area, Alborz mountains, north Iran Química mineral y geotermobarometría de rocas gabroicas del área de Gysel, montañas de Alborz, Irán del norte Farzaneh Farahi, Saeed Taki*, Mojgan Salavati Department of Geology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran. Corresponding autor email: [email protected] (recibido/received: 02-June-2020; aceptado/accepted: 04-August-2020) ABSTRACT The gabbroic rocks in the Gysel area of the Central Alborz Mountains in north Iran are intruded into the Eocene Volcano-sedimentary units. The main gabbroic rocks varieties include gabbro porphyry, olivine gabbro, olivine dolerite and olivine monzo-gabbro. The main minerals phases in the rocks are plagioclase and pyroxene and the chief textures are sub-hedral granular, trachytoidic, porphyritic, intergranular and poikilitic. Electron microprobe analyses on minerals in the rock samples shows that plagioclase composition ranges from labradorite to bytonite, with oscillatory and normal chemical zonings. Clinopyroxene is augite and orthopyroxene is hypersthene to ferro-hypersthene. Thermometry calculations indicate temperatures of 650˚C to 750˚C for plagioclase crystallization and 950˚C to 1130˚C for pyroxene crystallization. Clinopyroxene chemistry reveals sub-alkaline and calc-alkaline nature for the parental magma emplaced in a volcanic arc setting. Keywords: Gabbro, mineral chemistry, thermobarometry, plagioclase, pyroxene, Alborz, Iran RESUMEN Las rocas gabroicas en el área de Gysel de las montañas Alborz Central en el norte de Irán se introducen en las unidades sedimentarias del volcán Eoceno.
    [Show full text]
  • Using Paleomagnetism, Geochronology and Numerical Methods to Create and Assess Spatiotemporal Geological Relationships Through Earth History
    SPACE AND TIME: USING PALEOMAGNETISM, GEOCHRONOLOGY AND NUMERICAL METHODS TO CREATE AND ASSESS SPATIOTEMPORAL GEOLOGICAL RELATIONSHIPS THROUGH EARTH HISTORY By ANTHONY FRANCIS PIVARUNAS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2019 © 2019 Anthony Francis Pivarunas To my family, for supporting my unique co-obsession with magnets and rocks, Scott, for opening the door, and Joe, for guiding me through it ACKNOWLEDGMENTS I thank my parents, for supporting me the entire time. Your encouragement, advice, and love are amazing. My siblings, for talking, listening, and loving. My extended family, for asking me “What is the actual use of what you’re doing, Anthony?” enough times that I finally could answer it. I need to thank the SUNY Geneseo Geology department, in particular all the amazing teachers. Scott, Dori, Nick, Amy, Jeff, Ben, and Nancy, you helped guide me into geology. Particular thanks and blame for turning me onto paleomagnetism goes to Scott. It’s all your fault. To the Geowizards, there is no one I’d rather confound the Geneseo Physics department with. The long jaunt south was all started by Rob Van der Voo, my academic grandfather, who took the time to reply to my fumbling email and get me in touch with Florida. Thank you, Rob. I want to thank the entire University of Florida Geological Sciences department. Special thanks to the unsung heroes in the office and workshops: Pam, Carrie, Kristin, Diana and Dow and Ray. Thanks to all my committee members: Dave (for teaching me how to be a careful scientist), Alessandro (for teaching me how to be a creative scientist), Ray (for teaching me how to be a useful scientist), and Jim (for teaching me to be a communicative scientist).
    [Show full text]
  • OVERVIEW Tectonics of the Himalaya and Southern Tibet from Two Perspectives
    OVERVIEW Tectonics of the Himalaya and southern Tibet from two perspectives K. V. Hodges Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ABSTRACT café or on the banks of a quiet pond, Impressionist art preserves an instan- taneous sensation. Claude Monet, perhaps the greatest of the Impressionists, The Himalaya and Tibet provide an unparalleled opportunity to ex- tried to go further by expressing the passage of time in his series paintings, amine the complex ways in which continents respond to collisional like those of the façade of the Rouen Cathedral. If Impressionism is a form orogenesis. This paper is an attempt to synthesize the known geology of of historical documentation, we might think of one of the great traditions of this orogenic system, with special attention paid to the tectonic evolu- tectonics research—the description of orogeny as a temporal progression of tion of the Himalaya and southernmost Tibet since India-Eurasia colli- deformational episodes—as an essentially Impressionist enterprise. Our sion at ca. 50 Ma. Two alternative perspectives are developed. The first ability to use the developmental sequence of major structures in one setting is largely historical. It includes brief (and necessarily subjective) re- to predict the sequence in others, as is the case for foreland fold-and-thrust views of the tectonic stratigraphy, the structural geology, and meta- belts worldwide (Dahlstrom, 1970), is ample testimony to the value of the morphic geology of the Himalaya. The second focuses on the processes Impressionist perspective. that dictate the behavior of the orogenic system today.
    [Show full text]
  • Squeezing Blood from a Stone: Inferences Into the Life and Depositional Environments of the Early Archaean
    Squeezing Blood From A Stone: Inferences Into The Life and Depositional Environments Of The Early Archaean Jelte Harnmeijer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington MMX Programs Authorized to Offer Degree: Center for Astrobiology & Early Earth Evolution and Department of Earth & Space Sciences Abstract A limited, fragmentary and altered sedimentary rock record has allowed few constraints to be placed on a possible Early Archaean biosphere, likewise on attendant environmental conditions. This study reports discoveries from three Early Archaean terrains that, taken together, suggest that a diverse biosphere was already well- established by at least ~3.5 Ga, with autotrophic carbon fixation posing the most likely explanation for slightly older 3.7 - 3.8 Ga graphite. Chapter 2 aims to give a brief overview of Early Archaean geology, with special reference to the Pilbara’s Pilgangoora Belt, and biogeochemical cycling, with special reference to banded-iron formation. Chapter 3 reports on the modelled behaviour of abiotic carbon in geological systems, where it is concluded that fractionations incurred through autotrophic biosynthesis are generally out of the reach of equilibrium processes in the crust. In Chapter 4, geological and geochemical arguments are used to identify a mixed provenance for a recently discovered 3.7 - 3.8 Ga graphite-bearing meta-turbidite succession from the Isua Supracrustal Belt in southwest Greenland. In Chapter 5 and 6, similar tools are used to examine a newly discovered 3.52 Ga kerogenous and variably dolomitized magnetite-calcite meta- sediment from the Coonterunah Subgroup at the base of the Pilbara Supergroup in northwest Australia.
    [Show full text]
  • Garnet-Biotite Geothermometry Revised: New Margules Parameters and a Natural Specimen Data Set from Maine
    American Mineralogist, Volume 82, pages 582±595, 1997 Garnet-biotite geothermometry revised: New Margules parameters and a natural specimen data set from Maine M.J. HOLDAWAY,1 BISWAJIT MUKHOPADHYAY,1 M.D. DYAR,2 C.V. GUIDOTTI,3 AND B.L. DUTROW4 1Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, U.S.A. 2Department of Geology and Astronomy, West Chester University, West Chester, Pennsylvania 19383, U.S.A. 3Department of Geological Sciences, University of Maine, Orono, Maine 04469, U.S.A. 4Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A. ABSTRACT The garnet-biotite geothermometer has been recalibrated using recently obtained Mar- gules parameters for iron-magnesium-calcium garnet, Mn interactions in garnet, and Al interactions in biotite, as well as the Fe oxidation state of both minerals. Fe-Mg and DWAl Margules parameters for biotite have been retrieved by combining experimental results on [6]Al-free and [6]Al-bearing biotite using statistical methods. Margules parameters, per mole of biotite are Bt W MgFe 5 40 719 2 30T J/mole, Bt Bt Bt DW Al5 W FeAl2 W MgAl 5 210 190 2 245.40T J/mole, Bt Bt Bt DW Ti5 W FeTi2 W MgTi 5 310 990 2 370.39T J/mole. Based on this model, the exchange reaction DH is 41952 J/mol and DS is 10.35 J/(K mol). Estimated uncertainty for this geothermometer is 25 8C. This geothermometer was tested on two data sets. The ®rst consisted of 98 specimens containing garnet and biotite from west-central Maine, which formed under reducing fO2 with graphite, a limited range of P (;3 to 4.5 kbar), and a moderate range in T (;550± 650 8C), and which were all analyzed on a single microprobe using the same standards.
    [Show full text]
  • Elastic Geothermobarometry: Corrections for the Geometry of the Host-Inclusion System
    Elastic geothermobarometry: Corrections for the geometry of the host-inclusion system M.L. Mazzucchelli1*, P. Burnley2, R.J. Angel1, S. Morganti3, M.C. Domeneghetti1, F. Nestola4, and M. Alvaro1 1Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy 2Department of Geosciences and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, USA 3Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy 4Department of Geosciences, University of Padua, 35131 Padua, Italy ABSTRACT currently assumes that the minerals are elastically isotropic with ideal Elastic geothermobarometry on inclusions is a method to deter- geometry where the inclusion is spherical and isolated at the center of the mine pressure-temperature conditions of mineral growth independent host (Goodier, 1933; Eshelby, 1957; Van der Molen and Van Roermund, of chemical equilibrium. Because of the difference in their elastic 1986). None of these conditions apply in natural systems; neither quartz properties, an inclusion completely entrapped inside a host mineral nor garnet are elastically isotropic, inclusions are often close to grain will develop a residual stress upon exhumation, from which one can boundaries or other inclusions, and they are often not spherical. The result- back-calculate the entrapment pressure. Current elastic geobaromet- ing changes in Pinc can only be quantified using numerical approaches. ric models assume that both host and inclusion are elastically isotropic In this paper, we use finite element (FE) models of elastically isotropic and have an ideal geometry (the inclusion is spherical and isolated host-inclusion systems with non-ideal geometries to determine the mag- at the center of an infinite host).
    [Show full text]
  • Zircon and Melt Extraction from a Long‐Lived And
    RESEARCH ARTICLE Zircon and Melt Extraction From a Long-Lived and 10.1029/2020GC009507 Vertically Extensive Magma System Underneath Ilopango Key Points: Caldera (El Salvador) • U-Th zircon ages for the last four explosive eruptions of Ilopango A. Cisneros de León1 , A. K. Schmitt1 , S. Kutterolf2 , J. C. Schindlbeck-Belo1,2 , caldera reveal a long-lived magma W. Hernández3, K. W. W. Sims4, J. Garrison5 , L. B. Kant4 , B. Weber6 , K.-L. Wang7,8 , reservoir (>80 kyr) 7 9 • Contrasting residence times for H.-Y. Lee , and R. B. Trumbull major minerals and zircon suggest 1 2 extraction of zircon along with Institut für Geowissenschaften, Universität Heidelberg, Heidelberg, Germany, GEOMAR Helmholtz Centre for Ocean 3 evolved melt from crystal residue Research Kiel SFB574, Kiel, Germany, Observatorio Ambiental, Ministerio de Medio Ambiente y Recursos Naturales, • Melt extraction from vertically San Salvador, El Salvador, 4Department of Geology and Geophysics, University of Wyoming, Laramie, WY, USA, extensive, thermally zoned magma 5Department of Geosciences and Environment, California State University, Los Angeles, CA, USA, 6Departamento de reservoir Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC, Mexico, 7Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, 8Department of Geosciences, National Taiwan University, Taipei, Supporting Information: Taiwan, 9GFZ German Research Centre for Geosciences, Potsdam, Germany Supporting Information may be found in the online version of this article. Abstract The Tierra Blanca (TB) eruptive suite comprises the last four major eruptions of Ilopango 3 Correspondence to: caldera in El Salvador (≤45 ka), including the youngest Tierra Blanca Joven eruption (TBJ; 106 km ): the A.
    [Show full text]
  • U.S. DEPARTMENT of the INTERIOR U.S.GEOLOGICAL SURVEY ALK.BIB a Selected Bibliography of Alkaline Igneous Rocks and Related Mine
    U.S. DEPARTMENT OF THE INTERIOR U.S.GEOLOGICAL SURVEY ALK.BIB A selected bibliography of alkaline igneous rocks and related mineral deposits, with an emphasis on western North America compiled by Felix E. Mutschler, D. Chad Johnson, and Thomas C. Mooney Open-File Report 94-624 1994 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. INTRODUCTION This bibliography contains 3,406 references on alkaline igneous rocks and related mineral deposits compiled in conjunction with ongoing studies of alkaline igneous rocks, metallogeny, and tectonics in western North America. Much of the literature on these topics is not readily recovered by searches of current bibliographies and computerized reference systems. We hope that by making this bibliography available, it will help other workers to access this occasionally hard to find literature. The bibliography is available in two formats: (1) paper hardcopy and (2) Apple Macintosh computer-readable 3.5 inch double density diskette. The computer-readable version of the bibliography is a 725 KB WORD (version 5.0) document. Individual literature citations are arranged alphabetically by author(s) and the order of items in each citation follows the standard U.S. Geological Survey format. Version 3.4 1 February 1994 BIBLIOGRAPHY Abbott, J. G., Gordey, S. P., and Tempelman-Kluit, D. J., 1986, Setting of stratiform, sediment- hosted lead-zinc deposits in Yukon and northeastern British Columbia, in Morin, J.
    [Show full text]