2862 001 OCR DBL ZIP 0.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insight from the Sociology of Science
CHAPTER 7 INSIGHT FROM THE SOCIOLOGY OF SCIENCE Science is What Scientists Do It has been argued a number of times in previous chapters that empirical adequacy is insufficient, in itself, to establish the validity of a theory: consistency with the observable ‘facts’ does not mean that a theory is true,1 only that it might be true, along with other theories that may also correspond with the observational data. Moreover, empirical inadequacy (theories unable to account for all the ‘facts’ in their domain) is frequently ignored by individual scientists in their fight to establish a new theory or retain an existing one. It has also been argued that because experi- ments are conceived and conducted within a particular theoretical, procedural and instrumental framework, they cannot furnish the theory-free data needed to make empirically-based judgements about the superiority of one theory over another. What counts as relevant evidence is, in part, determined by the theoretical framework the evidence is intended to test. It follows that the rationality of science is rather different from the account we usually provide for students in school. Experiment and observation are not as decisive as we claim. Additional factors that may play a part in theory acceptance include the following: intuition, aesthetic considerations, similarity and consistency among theories, intellectual fashion, social and economic influences, status of the proposer(s), personal motives and opportunism. Although the evidence may be inconclusive, scientists’ intuitive feelings about the plausibility or aptness of particular ideas will make it appear convincing. The history of science includes many accounts of scientists ‘sticking to their guns’ concerning a well-loved theory in the teeth of evidence to the contrary, and some- times in the absence of any evidence at all. -
The Joys and Burdens of Our Heroes 12/05/2021
More Fun Than Fun: The Joys and Burdens of Our Heroes 12/05/2021 An iconic photo of Konrad Lorenz with his favourite geese. Photo: Willamette Biology, CC BY-SA 2.0 This article is part of the ‘More Fun Than Fun‘ column by Prof Raghavendra Gadagkar. He will explore interesting research papers or books and, while placing them in context, make them accessible to a wide readership. RAGHAVENDRA GADAGKAR Among the books I read as a teenager, two completely changed my life. One was The Double Helix by Nobel laureate James D. Watson. This book was inspiring at many levels and instantly got me addicted to molecular biology. The other was King Solomon’s Ring by Konrad Lorenz, soon to be a Nobel laureate. The study of animal behaviour so charmingly and unforgettably described by Lorenz kindled in me an eternal love for the subject. The circumstances in which I read these two books are etched in my mind and may have partly contributed to my enthusiasm for them and their subjects. The Double Helix was first published in London in 1968 when I was a pre-university student (equivalent to 11th grade) at St Joseph’s college in Bangalore and was planning to apply for the prestigious National Science Talent Search Scholarship. By then, I had heard of the discovery of the double-helical structure of DNA and its profound implications. I was also tickled that this momentous discovery was made in 1953, the year of my birth. I saw the announcement of Watson’s book on the notice board in the British Council Library, one of my frequent haunts. -
The Planeterrella Experiment: from Individual Initiative to Networking J
submitted to Journal of Space Weather and Space Climate c The author(s) under the Creative Commons Attribution-NonCommercial license The Planeterrella experiment: from individual initiative to networking J. Lilensten1, G. Provan2, S. Grimald3, A. Brekke4, E. Fluckiger¨ 5, P. Vanlommel6, C. Simon Wedlund6, M. Barthel´ emy´ 1, and P. Garnier3 1 Institut de Plantologie et d’Astrophysique de Grenoble, 38041 Grenoble, France e-mail: [email protected] 2 Institution University of Leicester, United Kingdom e-mail: [email protected] 3 IRAP, e-mail: [email protected] 4 History of Geoph. and Space Sciences journal, e-mail: [email protected] 5 Physikalisches Institut, University of Bern, Switzerland, e-mail: [email protected] 6 Royal Observatory of Belgium e-mail: [email protected] 7 e-mail: [email protected] ABSTRACT Space weather is a relatively new discipline which is generally unknown to the wider public, de- spite its increasing importance to all of our daily lives. Outreach activities can help in promoting the concept of space weather. In particular the visual beauty and excitement of the aurora make these lights a wonderful inspirational hook. A century ago Norwegian experimental physicist Kristian Birkeland, one of the founding fathers of modern space science, demonstrated with his Terrella experiment the formation of the aurora. Recently a modernised version of the Terrella has been designed. This Planeterrella experiment is very flexible, allowing the visualization of many phenomena occurring in our space environment. Although the Planeterrella was originally designed to be small to be demonstrated locally by a scientist, the Planeterrella has proved to be a very successful public outreach experiment. -
Introduction and Historical Perspective
Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful -
United States National Museum
Contributions from The Museum of History and Technology: Paper 8 The Natural Philosophy of William Gilbert and His Predecessors IV. James King 121 By W James King THE NATURAL PHILOSOPHY OF WILLIAM GILBERT AND HIS PREDECESSORS Until several decades ago, the physical sciences were considered to have had their origins in the 17th century— mechanics beginning with men Like Galileo Galilei and magnetism ivith men like the Elixjihcthan physician and scientist William Gilbert. Historians of science, however, have traced many of the 17th century's concepts of tncchanics hack into the Middle Ages. Here, Gilbert' s explanation of the loadstone and its powers is compared with explanations to he found in the Middle Ages and earlier. From this comparison it appears that Gilbert can best be understood by considering him not so much a herald of the new science as a modifier of the old. The Author : W. James King is curator of electricity. Museum of History and Technology, in the Smithsonian Institution' s United States National Musettm. THE \K.\R 1600 SAW the puhlkiition Ijy an English for such a tradition by determining what (iilbert's physician, William Gilbert, of a book on the original contributions to these sciences were, and loadstone. Entitled De magnele, ' it has traditionally to make explicit the sense in which he may be con- been credited with laying a foundation for the sidered as being dependent upon earlier work. In modern science of electricity and magnetism. The this manner a more accurate estimate of his position following essay is an attempt U) examine the basis in the history of science may be made. -
Biography (Modified, After Festetics 1983)
Konrad Lorenz’s Biography (modified, after Festetics 1983) 1903: Konrad Zacharias Lorenz (KL) was born in Altenberg /Austria on Nov. 7 as the last of three children of Emma Lorenz and Dr. Adolf Lorenz, professor for orthopedics at the Medical branch of the University of Vienna. In the same year the representative and spacious Altenberg family home was finished. 1907: KL starts keeping animals, such as spotted newts in aquaria, raises some ducklings and is not pleased by his first experiences with a dachshound. Niko Tinbergen, his lifelong colleague and friend, is born on April 15 in Den Haag, The Netherlands. 1909: KL enters elementary school and engages in systematic studies in crustaceans. 1910: Oskar Heinroth, biologist and founder of "Vergleichende Verhaltensforschung" (comparative ethology) from Berlin and fatherlike scientific mentor of the young KL publishes his classical paper on the ethology of ducks. 1915: KL enters highschool (Schottengymnasium Wien), keeps and breeds songbirds. 1918: Wallace Craig publishes the comparative ethology of Columbidae (pigeons), a classics of late US biologist Charles O. Whitman, who was like O. Heinroth, a founding father of comparative ethology. 1921: KL excels in his final exams. Together with friend Bernhard Hellmann, he observes and experiments with aggression in a cichlid (Herichthys cyanoguttatum). This was the base for KL's psychohydraulic model of motivation. 1922: Father Adolf sends KL to New York to take 2 semesters of medicine courses at the ColumbiaUniversity, but mainly to interrupt the relationship of KL with longterm girlfriend Gretl Gebhart, his later wife. This paternal attempt to influence the mate choice of KL failed. -
A Brief History of Magnetospheric Physics Before the Spaceflight Era
A BRIEF HISTORY OF MAGNETOSPHERIC PHYSICS BEFORE THE SPACEFLIGHT ERA David P. Stern Laboratoryfor ExtraterrestrialPhysics NASAGoddard Space Flight Center Greenbelt,Maryland Abstract.This review traces early resea/ch on the Earth's aurora, plasma cloud particles required some way of magneticenvironment, covering the period when only penetratingthe "Chapman-Ferrarocavity": Alfv•n (1939) ground:based0bservationswerepossible. Observations of invoked an eleCtric field, but his ideas met resistance. The magneticstorms (1724) and of perturbationsassociated picture grew more complicated with observationsof with the aurora (1741) suggestedthat those phenomena comets(1943, 1951) which suggesteda fast "solarwind" originatedoutside the Earth; correlationof the solarcycle emanatingfrom the Sun's coronaat all times. This flow (1851)with magnetic activity (1852) pointed to theSun's was explainedby Parker's theory (1958), and the perma- involvement.The discovei-yof •solarflares (1859) and nent cavity which it producedaround the Earth was later growingevidence for their associationwith large storms named the "magnetosphere"(1959). As early as 1905, led Birkeland (1900) to proposesolar electronstreams as Birkeland had proposedthat the large magneticperturba- thecause. Though laboratory experiments provided some tions of the polar aurora refleCteda "polar" type of support;the idea ran into theoreticaldifficulties and was magneticstorm whose electric currents descended into the replacedby Chapmanand Ferraro's notion of solarplasma upper atmosphere;that idea, however, was resisted for clouds (1930). Magnetic storms were first attributed more than 50 years. By the time of the International (1911)to a "ringcurrent" of high-energyparticles circling GeophysicalYear (1957-1958), when the first artificial the Earth, but later work (1957) reCOgnizedthat low- satelliteswere launched, most of the importantfeatures of energy particlesundergoing guiding center drifts could the magnetospherehad been glimpsed, but detailed have the same effect. -
Synapses, Sea Slugs, and Psychiatry
J Neurol Neurosurg Psychiatry 2001;70:1–3 1 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.70.1.1 on 1 January 2001. Downloaded from EDITORIAL Synapses, sea slugs, and psychiatry This year’s Nobel Prize in physiology or medicine, announced literature than medicine. However, his Austrian contempo- on 9 October 2000, has gone to Arvid Carlsson, Paul Green- rary, Wagner von Jauregg, became the first psychiatrist lau- gard, and Eric Kandel. The citation states that the prize is reate in 1927 for his observations on the beneficial eVects shared for pioneering discoveries in slow synaptic transmis- of induced fever (for example, malaria) on the symptoms of sion, which are “crucial for an understanding of how the nor- neurosyphillis—not, it has to be said, a treatment that has mal functioning of the brain and how disturbances in this sig- stood the test of time. But European psychiatry at the fin de nal can give rise to neurological and psychiatric diseases” siecle was resolutely biological. Egaz Moniz, the Portu- (www.nobel.se/announcement/2000/medicine.html). Carls- guese neurosurgeon who developed psychosurgery, shared son proved the importance of dopamine as a neurotransmitter the prize in 1949, although the invention of arterial angio- and subsequently its role in Parkinson’s disease and graphy was perhaps a more enduring legacy. Neuroscien- schizophrenia. The strongest pillar of the dopamine theory of tists have been so rewarded on many occasions—but as in schizophrenia is the linear relation between potency of anti- this year, the contributions tended to be at the “basic” psychotic drugs and their dopamine antagonist potential. -
Kristian Birkeland (1867 - 1917) the Almost Forgotten Scientist and Father of the Sun-Earth Connection
Kristian Birkeland (1867 - 1917) the Almost Forgotten Scientist and Father of the Sun-Earth Connection PÅL BREKKE Norwegian Space Centre ISWI Workshop, Boston College, 31 July - 4 August 2017 The Young Kristian Birkeland Olaf Kristian Birkeland was born 13 December 1967. Early on Birkeland was interested in magnetism and already as a schoolboy he had bought his own magnet with his own money. He used the magnet for many surprising experiments and practical jokes - often irritating his teachers Birkeland’s Early Career Birkeland became a certificate teacher at the University of Kristiania at only 23 years old and graduated with top grades. In 1896 Birkeland was elected into the Norwegian Academy of Sciences at only 28 years old. Two years later he became a professor in Physics - quite unusual at that young age at that time (was called «the boy professor»). Photograph of Kristian Birkeland on Karl Johans Gate, (Oslo) in 1895 taken by student Carl Størmer, using a concealed camera. (source: UiO) Birkeland - Electromagnetic Waves Birkeland did laboratory experiments on electromagnetic waves in 1890 and first publication came in 1892 with some ground breaking results. In 1893 he focused on the energy transported by these waves. In 1895 Birkeland published his most important theoretical paper. He provided the first general solution of Maxwell’s equations for homogeneous isotropic media. First page of Birkeland's 1895 paper where he derived a general solution to Maxwell’s equations Birkeland - Cathode Rays In 1895 he began pioneer studies of cathode rays, a stream of electrons in a vacuum tube that occurs through high voltage passing between negative and positive charged electrodes. -
Balcomk41251.Pdf (558.9Kb)
Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr. -
Konrad Lorenz, NL Nobel Laureate in Physiology Or Medicine-1973
Glossary on Kalinga Prize Laureates UNESCO – Kalinga Prize Winner – 1974 Konrad Lorenz, NL Nobel Laureate in Physiology or Medicine-1973 Great Zoologist and Ethologist [Birth : 7th November 1903 in Vienna, Austria Death : 27th February 1989, Vienna] Truth in Science can be defined as the working hypothesis best suited to open the way to the next better one. …Konrad Lonenz It is a good morning exercise for a research scientist to discard a Pet hypothesis every day before breakfast. It keeps him young. …Konrad Lonenz 1 Glossary on Kalinga Prize Laureates Konrad Lorenz Biography Ethology – Imprinting Konrad Lorenz (Konard Zacharisa Lorenz) was born on November 7, 1903 in Vienna, Austria. As a little boy, he loved animals and had a collection that include fish, dogs, monkeys, insects, ducks, and geese. His interest in animal behaviour was intense.When he was 10 years old, Lorenz became aware of the existence of the Theory of Evolution through reading a book by Wilhelm Bölsche in which he was fascinated by a picture of an Archaeopteryx. Evolution gave him insight-his father had explained that the word “insect” was derived from the notches, the “incisions” between the segments-if reptiles could become birds, annelid worms could develop into insects. As he grew towards adulthood he wanted to become a paleontologist, however he reluctantly followed his father’s wishes, and studied medicine at the University of Vienna and at Columbia University. He later regarded this compliance to have been in his own best interests as one of his teachers of anatomy, Ferdinand Hochstetter, proved to be a brilliant comparative anatomist and embryologist and a dedicated teacher of the comparative method. -
Kristian Birkeland's Pioneering Investigations of Geomagnetic
CMYK RGB Hist. Geo Space Sci., 1, 13–24, 2010 History of www.hist-geo-space-sci.net/1/13/2010/ Geo- and Space © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Access Open Sciences Advances in Science & Research Kristian Birkeland’s pioneering investigationsOpen Access Proceedings of geomagnetic disturbances Drinking Water Drinking Water A. Egeland1 and W. J. Burke2 Engineering and Science Engineering and Science 1University of Oslo, Norway Open Access Access Open Discussions 2Air Force Research Laboratory, USA Received: 11 February 2010 – Accepted: 15 March 2010 – Published: 12 April 2010 Discussions Earth System Earth System Abstract. More than 100 years ago Kristian Birkeland (1967–1917) addressed questions that had Science vexed sci- Science entists for centuries. Why do auroras appear overhead while the Earth’s magnetic field is disturbed? Are magnetic storms on Earth related to disturbances on the Sun? To answer these questions Birkeland devised Open Access Open terrella simulations, led coordinated campaigns in the Arctic wilderness, and then interpretedAccess Open hisData results in Data the light of Maxwell’s synthesis of laws governing electricity and magnetism. After analyzing thousands of magnetograms, he divided disturbances into 3 categories: Discussions 1. Polar elementary storms are auroral-latitude disturbances now called substorms. Social Social 2. Equatorial perturbations correspond to initial and main phases of magnetic storms. Open Access Open Geography Open Access Open Geography 3. Cyclo-median perturbations reflect enhanced solar-quiet currents on the dayside. He published the first two-cell pattern of electric currents in Earth’s upper atmosphere, nearly 30 years before the ionosphere was identified as a separate entity.