Molecular Interaction Between Fish Pathogens and Host Aquatic Animals

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Interaction Between Fish Pathogens and Host Aquatic Animals K. Tsukamoto, T. Kawamura, T. Takeuchi, T. D. Beard, Jr. and M. J. Kaiser, eds. Fisheries for Global Welfare and Environment, 5th World Fisheries Congress 2008, pp. 277–288. © by TERRAPUB 2008. Molecular Interaction between Fish Pathogens and Host Aquatic Animals Laura L. Brown* and Stewart C. Johnson National Research Council of Canada Institute for Marine Biosciences 1411 Oxford Street Halifax, NS, B3H 3Z1, Canada Present address: Fisheries and Oceans Canada Pacific Biological Station 3190 Hammond Bay Road Nanaimo, NS, V9T 6N7, Canada *E-mail: [email protected] We have studied the host-pathogen interactions between Atlantic salmon (Salmo salar L.) and Aeromonas salmonicida. Sequencing the genome of the bacterium allowed us to investigate virulence factors and other gene products with potential as vaccines. Using knock-out mutants of A. salmonicida, we identified key virulence factors. Proteomics studies of bacterial cells grown in a variety of media as well as in an in vivo implant system revealed differential protein production and have shed new light on bacterial proteins such as superoxide dismutase, pili and flagellar proteins, type three secretion systems, and their roles in A. salmonicida pathogenicity. We constructed a whole ge- nome DNA microarray to use in comparative genomic hybridizations (M-CGH) and bacterial gene expression studies. Carbohydrate analysis has shown the variation in LPS between strains and reveals the importance of LPS in viru- lence. Salmon were challenged with A. salmonicida and tissues were taken to construct suppressive subtractive hybridization libraries to investigate differ- ential host gene expression. We constructed an Atlantic salmon cDNA microarray to investigate the host response to A. salmonicida. Real-Time qPCR and NMR-based metabolomics have revealed important information about host responses to infection and to chronic stress. By linking genome sequencing, functional genomics, proteomics, carbohydrate analysis, metabolomics, and whole animal assays, we took integrated and innovative approach to pathogenesis research. KEYWORDS host-pathogen interactions; genomics; proteomics; furunculo- sis; DNA microarrays; knock-out mutants 278 L. L. BROWN AND S. C. JOHNSON it is notable that several problems are asso- 1. Introduction ciated with commercially available vaccines for fish. Oil-based and formalin-based The development of genomics, proteomics vaccines have been associated with adhe- and metabolomics, have enabled the transi- sions and other pathologies including weight tion from sequential studies of single genes, loss (Midtlyng and Lillehaug 1998), second- proteins or metabolites to the simultaneous ary infections (Bruno and Brown 1999), in- study of many components and their inter- jury and inflammation (Mutoloki et al. actions at a variety of biological levels (from 2004). Therefore, research into vaccines and pathways to cells, tissues and whole organ- vaccine delivery systems is ongoing. isms). The development of these fields has Similarly, effective husbandry tools and been supported by the concurrent develop- practices have been used since the inception ment of new technologies and methods such of aquaculture. Fallowing farm sites, sepa- as quantitative PCR or Real Time PCR, RNA ration of year classes, culling of infected interference (RNAi) assays, and in situ hy- broodstock, and reduction of anthropogenic bridization. These fields and their support- stressors are all examples of successful hus- ing technologies and methods are now bandry techniques. However, these are widely used in the study of disease of higher largely based on trial and error and on em- vertebrates as well as in the development of pirical observations. new therapeutants and vaccines. The field In order to devise effective aquatic ani- of aquatic animal health has only recently mal health management tools in a timely and begun to benefit from their application. cost-effective fashion, it is essential that we It is well known that farmed aquatic ani- identify meaningful biological targets, by mals are susceptible to a wide variety of in- knowing which antigens, host immune fac- fectious diseases. Direct and indirect costs tors, and stress response genes to target. In of preventing and controlling infectious dis- order to do that, it is necessary to increase eases in aquaculture are estimated to exceed our understanding of the interactions be- 10% of total production costs. This repre- tween host aquatic animals and pathogens. sents an appreciable loss of profits to the Genomics, proteomics, and other biotechno- aquaculture industry. Coupled with this is an logical approaches help us to do that. increasing global concern about the use of Aeromonas salmonicida is a non-motile, therapeutants (antibiotics and chemical treat- Gram-negative bacterium that is the ments) in the production of food animals and etiological agent of furunculosis. Furuncu- issues related to animal welfare. Develop- losis has been recognized as a widespread ment of more effective vaccines for aqua- important disease in wild and farmed fish culture is necessary to reduce losses due to since the 1890s (Emmerich and Weibel 1894). disease, to enable further reductions in the Due to its early recognition as an impor- use of therapeutants, and to improve animal tant pathogen it is arguably the best studied welfare. bacterial pathogen of fish. Several excellent Vaccines against infectious diseases in reviews of earlier research on A. salmonicida fish have been effective and available for and furunculosis are available (Bernoth years, For example, multi-valent vaccines 1997; Wiklund and Dalsgaard 1998; Hiney based on whole bacterins in formalin- or oil- and Olivier 1999). based preparations have provided protection In this chapter we will demonstrate how to salmon against Aeromonas salmonicida, a multi-disciplinary approach, combining Listonella anguillarum. Vaccines are also genomics, proteomics and metabolomics available against viral pathogens. However, with more traditional methods was used Molecular interaction between fish pathogens and host aquatic animals 279 within the National Research Council in infectious disease research. Genomic Genomics and Health Initiative Program sequencing has facilitated the development “Genomics Approaches to Aquatic Animal of new methods of pathogen detection, our Health Management,” to understand the bi- understanding of genetic relationships be- ology of the bacterial pathogen Aeromonas tween species and investigations into the salmonicida and its interactions with one of nature of host-pathogen interactions. its hosts, the Atlantic salmon (Salmo salar Through the use of bioinformatics methods, Linnaeus). We will also show how this ap- which allow for genomic comparisons be- proach was used to identify candidate pro- tween species, putative virulence factors, as tein and carbohydrate antigens for use in well as genes that encode proteins that may vaccines, in conjunction with whole animal be suitable for use in vaccines can be identi- assays. fied. Genomic sequencing also facilitates the use of other technologies such as the devel- 2. Development of an in-vivo Growth opment of knock-out mutants, and other System for Aeromonas salmonicida genomics (e.g., microarray), and proteomic studies, all of which serve to increase our It is well known that the conditions under understanding of host-pathogen interactions which the bacterium are grown influence and aid in the rational design of effective their gene expression and ultimately their vaccines phenotype (Dalsgaard et al. 1998). This was At the initiation of our research program originally demonstrated for A. salmonicida there was little genomic information avail- grown within chambers in the host by Garduño able for A. salmonicida or closely related et al. (1993). These authors demonstrated species. In order to understand the infection that cells grown under in vivo growth condi- process and possible interactions between tions had increased resistance to bacterioly- A. salmonicida and its hosts, as well as to sis, phagocytosis and oxidative killing. We aid in the rational design of new vaccines developed a method for the in vivo growth the whole genome of wild-type strain A449 of large volumes of A. salmonicida (Dacanay was sequenced and assembled (GenBank Ac- et al. 2003). Briefly this method involves the cession #s NC_009348-009350). The A449 use of growth chambers made of autoclaved genome consists of a circular chromosome 12 to 14-kDa molecular-mass-cutoff dialy- and five plasmids that encode more than sis tubes that are filled with A. salmonicida 4700 genes (Boyd et al. 2003; Reith et al. suspensions and surgically implanted into the unpublished). During this program a full abdominal cavity of Atlantic salmon for a genomic sequence became available for period of 24 hours, then harvested. Bacteria Aeromonas hydrophila (Seshadri et al. grown within these implants have been used 2006). Comparison of the Aeromonas in studies of gene expression, for proteomics, salmonicida genome with genomes of related carbohydrate analysis and for studying the organisms such as A. hydrophila enabled the host response to infection as described be- identification of large numbers of genes en- low. coding potential virulence factors (Boyd et al. 2003; Nash et al. 2006; Reith et al. un- 3. Development of Genomics Resources published). Virulence genes were targeted for and Tools for Aeromonas salmonicida future study and for use as vaccine candi- subsp. salmonicida
Recommended publications
  • Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011
    SGR 129 Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION OFFICE OF FOOD SAFETY Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – April 2011 Additional copies may be purchased from: Florida Sea Grant IFAS - Extension Bookstore University of Florida P.O. Box 110011 Gainesville, FL 32611-0011 (800) 226-1764 Or www.ifasbooks.com Or you may download a copy from: http://www.fda.gov/FoodGuidances You may submit electronic or written comments regarding this guidance at any time. Submit electronic comments to http://www.regulations. gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (240) 402-2300 April 2011 Table of Contents: Fish and Fishery Products Hazards and Controls Guidance • Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance ................................ 1 • CHAPTER 1: General Information .......................................................................................................19 • CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan
    [Show full text]
  • Chemical Pollution of the Oceans Toxic Chemical Pollutants in the Oceans Have Been Shown Capable of Causing a Wide Range of Human Diseases
    Supplementary Appendix to “Human Health and Ocean Pollution”, Annals of Global Health, 2020 This Supplementary Appendix contains additional references and documentation supporting the information presented in the report, Human Health and Ocean Pollution. Chemical Pollution of the Oceans Toxic chemical pollutants in the oceans have been shown capable of causing a wide range of human diseases. Toxicological and epidemiological studies document that pollutants such as toxic metals, POPs, dioxins, plastics chemicals, and pesticides can cause cardiovascular effects, developmental and neurobehavioral disorders, metabolic disease, endocrine disruption and cancer. Table 1 in this Supplementary Appendix summarizes the known links between chemical pollutants in the oceans and a range of human health outcomes. The strengths of the associations listed in Table 1 vary depending on the nature of the studies establishing these associations. Some associations have been assessed in systematic reviews and meta-analyses of animal and human data.1 2 Some are single cross-sectional or case-control studies. There are now a growing number of relevant epidemiological studies, including powerful prospective cohort studies, such as the Nurses’ Health Study II and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS)3 Findings from these investigations are strengthening the evidence base for associations between exposures to organic chemical pollutants and adverse health outcomes. Supplementary Appendix Table 1. Adverse Human Health Outcomes
    [Show full text]
  • Common Diseases of Wild and Cultured Fishes in Alaska
    COMMON DISEASES OF WILD AND CULTURED FISHES IN ALASKA Theodore Meyers, Tamara Burton, Collette Bentz and Norman Starkey July 2008 Alaska Department of Fish and Game Fish Pathology Laboratories The Alaska Department of Fish and Game printed this publication at a cost of $12.03 in Anchorage, Alaska, USA. 3 About This Booklet This booklet is a product of the Ichthyophonus Diagnostics, Educational and Outreach Program which was initiated and funded by the Yukon River Panel’s Restoration and Enhancement fund and facilitated by the Yukon River Drainage Fisheries Association in conjunction with the Alaska Department of Fish and Game. The original impetus driving the production of this booklet was from a concern that Yukon River fishers were discarding Canadian-origin Chinook salmon believed to be infected by Ichthyophonus. It was decided to develop an educational program that included the creation of a booklet containing photographs and descriptions of frequently encountered parasites within Yukon River fish. This booklet is to serve as a brief illustrated guide that lists many of the common parasitic, infectious, and noninfectious diseases of wild and cultured fish encountered in Alaska. The content is directed towards lay users, as well as fish culturists at aquaculture facilities and field biologists and is not a comprehensive treatise nor should it be considered a scientific document. Interested users of this guide are directed to the listed fish disease references for additional information. Information contained within this booklet is published from the laboratory records of the Alaska Department of Fish and Game, Fish Pathology Section that has regulatory oversight of finfish health in the State of Alaska.
    [Show full text]
  • NASCO Scientific Working Group
    N A S C O NORTH AMERICAN COMMISSION PROTOCOLS FOR THE INTRODUCTION AND TRANSFER OF SALMONIDS by NAC/NASCO Scientific Working Group on Salmonid Introductions and Transfers Edited by T. Rex Porter Canadian Co-chairman Department of Fisheries and Oceans P O Box 5667 St John's, NF A1C 5X1 NAC(92)24 i TABLE OF CONTENTS Page INTRODUCTION ............................................................................................................... 1 PART I SUMMARY OF PROTOCOLS BY ZONE .............................................. 3 1 ZONING OF RIVER SYSTEMS ......................................................................... 5 2 DESCRIPTION OF ZONES ................................................................................. 5 3 PROTOCOLS ......................................................................................................... 6 3.1 Protocols applicable to all three Zones ..................................................... 6 3.2 Protocols applicable to Zone I ................................................................... 7 3.2.1 General within Zone I ................................................................................... 7 3.2.2 Rehabilitation ................................................................................................ 7 3.2.3 Establishment or re-establishment of Atlantic salmon in a river or part of a watershed where there are no salmon ........................................ 7 3.2.4 Aquaculture ..................................................................................................
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Scholars Academic Journal of Biosciences
    Scholars Academic Journal of Biosciences Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Zoology Journal homepage: https://saspublishers.com A Comprehensive Review on the Prevalence and Dissemination of Some Bacterial Diseases in Ornamental Fishes and Their Preventive Measures Arnab Chatterjee1#, Sucharita Ghosh2#, Ritwick Bhattacharya1#, Soumendranath Chatterjee2, Nimai Chandra Saha1* 1Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor’s Research Group), Department of Zoology, the University of Burdwan, Burdwan 713104, West Bengal, India 2Parasitology & Microbiology Research Laboratory, Department of Zoology, the University of Burdwan, Burdwan, West Bengal, India #Authors contributed equally DOI: 10.36347/sajb.2020.v08i11.005 | Received: 06.11.2020 | Accepted: 17.11.2020 | Published: 20.11.2020 *Corresponding author: Nimai Chandra Saha Abstract Review Article As a consequential sector within the fisheries segment, ornamental fisheries have become a billion-dollar industry. At current, it is estimated that the aquarium industry is worth about 15 billion dollars. In ornamental aquaculture and aquarium keeping, the incidence of diseases is the main quandary that emerges during culture and deplorably affects the profitability of the ventures. Diseases are caused by viruses, protozoa, bacteria, fungi, and parasites under profound culture conditions, and the likelihood of stress elevates in an immensely colossal portion of the stock. Of these, the most paramount causes of sudden fish death are infectious and bacterial diseases. Nowadays, veterinary antibiotic treatment of contaminated fish is being applied in most of the States of India. Disease obviation is often less costly than treating disease outbreaks when it is subsisting. Adopting and implementing a health management strategy would not assure a disease-free facility that ultimately leads to considerably decremented chances of dissemination of diseases.
    [Show full text]
  • The Salmon Louse Lepeophtheirus Salmonis (Caligidae) As a Vector of Aeromonas Salmonicida
    THE SALMON LOUSE LEPEOPHTHEIRUS SALMONIS (CALIGIDAE) AS A VECTOR OF AEROMONAS SALMONICIDA by Colin William Novak B.Sc., Vancouver Island University, 2009 A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Animal Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2013 © Colin William Novak, 2013 Abstract The sea louse, Lepeophtheirus salmonis, has been hypothesized to be a vector of fish pathogens and previous studies have isolated viral and bacterial pathogens from L. salmonis parasitizing farmed salmon. To examine the potential transmission of A. salmonicida by preadult and adult L. salmonis via parasitism of Atlantic salmon (Salmo salar), an in vivo bacteria-parasite challenge model was tested. Two pathogen challenge trials were performed, in which sea lice from donor (Aeromonas salmonicida-injected) fish were allocated among recipient fish for 14 days. Three hypotheses were examined: (i.) L. salmonis can acquire A. salmonicida from donor fish via parasitism; (ii.) A. salmonicida-exposed sea lice can transmit the pathogen to recipient Atlantic salmon via parasitism and (iii.) L. salmonis and A. salmonicida infections can cause synergistic effects on host fish. Sea lice acquired A. salmonicida externally (Trial 1 and 2, 100%) and internally (Trial 1, 100%) from parasitizing donor fish. Trial 1 (~44g fish) demonstrated a successful transfer of bacteria from lice to salmon (mucus, 100%; kidney, 77.3%), with a decrease (t = 5.29, df = 6, p = 0.00186) in mean fish condition factor and 59.1% cumulative fish mortality. Conversely, there was no evidence of bacteria transfer, no fish mortality and no decrease in mean fish condition factor in Trial 2 (~155g fish).
    [Show full text]
  • Shellfish Diseases and Their Management in Commercial Recirculating Systems
    Shellfish Diseases and Their Management in Commercial Recirculating Systems Ralph Elston AquaTechnics & Pacific Shellfish Institute PO Box 687 Carlsborg, WA 98324 Introduction Intensive culture of early life stages of bivalve shellfish culture has been practiced since at least the late 1950’s on an experimental basis. Production scale culture emerged in the 1970’s and today, hathcheries and nurseries produce large numbers of a variety of species of oysters, clams and scallops. The early life stage systems may be entirely or partially recirculating or static. Management of infectious diseases in these systems has been a challenge since their inception and effective health management is a requisite to successful culture. The diseases which affect early life stage shellfish in intensive production systems and the principles and practice of health management are the subject of this presentation. Shellfish Diseases and Management Diseases of bivalve shellfish affecting those reared or harvested from extensive culture primarily consist of parasitic infections and generally comprise the reportable or certifiable diseases. Due to the extensive nature of such culture, intervention options or disease control are limited. In contrast, infectious diseases known from early life stages in intensive culture systems tend to be opportunistic in nature and offer substantial opportunity for management due to the control that can be exerted at key points in the systems. In marine shellfish hatcheries, infectious organisms can enter the system from three sources: brood stock, seawater source and algal food source. Once an organism is established in the system, it may persist without further introduction. Bacterial infections are the most common opportunistic infection in shellfish hatcheries.
    [Show full text]
  • Sea Urchin Disease: Case Study on Venezuelan Shores Sylvia Grune Loffler
    EDITORIAL Sea urchin disease: Case study on Venezuelan shores Sylvia Grune Loffler Loffler SG. Sea urchin disease: case study on Venezuelan shores. J Mar Microbiol. 2018;2(1): 1-2. he prevalence of clinical signs in echinoids and other marine invertebrates populations affecting 98% from Panama to the Bermudas. Lessios (2) studied Thas been reported since the 70`s in the Caribbean sea. However, the the recovery rate of the populations of D. antillarum and found only a slight presence of clinical signs in echinoids has not been reported in Venezuela recovery after the mass mortality event. Sand dollars (M. quinquiesperforata) until now. We carried out a visual census of the sand dollar population express signs of stress caused by environmental changes releasing coelomic (Mellita quinquiesperforata) on Margarita Island and described several clinical cells with violet coloration Figures 1 and 2. These cells have substances with signs observed. The clinical signs observed with higher prevalence are listed antibiotic and antimycotic properties and are released by stress-induced in decreasing order: Black Dots (BD), Violet Ulceration (VU), Brown Patches effects (14,15). Further studies of the observed clinical signs of sand dollar (BP), Green Erosion (GE), Red Dots (RD), Decolored Patches (DP), Pink populations have a great scientific interest since these animals are indicators Band (PB) and Black Ulceration (BU). The clinical signs with higher grade of environmental changes of biotic and abiotic factors of the coast, caused by affecting the aboral surface found were VU and BU. Gram coloration of the contamination and global warming with seem to promote development of affected test surface revealed elevated presence Gram+ cocci and bacilli.
    [Show full text]
  • An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity
    microorganisms Review An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity Ana Fernández-Bravo and Maria José Figueras * Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain; [email protected] * Correspondence: mariajose.fi[email protected]; Tel.: +34-97-775-9321; Fax: +34-97-775-9322 Received: 31 October 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%).
    [Show full text]
  • Assessing Disease Impacts of Hatcheries on Downstream Salmonids in the Willamette River Basin, Oregon
    AN ABSTRACT OF THE THESIS OF Michelle Jakaitis for the degree of Master of Science in Microbiology presented on November 4th, 2014. Title: Assessing Disease Impacts of Hatcheries on Downstream Salmonids in the Willamette River Basin, Oregon. Abstract approved: ____________________________________________________________ Jerri L. Bartholomew Hatcheries are often perceived as a source of pathogen amplification, potentially increasing disease risk to free-ranging populations; at the same time, free-ranging fishes may introduce pathogens into hatcheries through untreated water sources. Many pathogens exist naturally within the environment (with the exception of introduced pathogens) and the presence of a pathogen does not guarantee infection or disease (Naish, Taylor III, Levin, Quinn, Winton, Huppert & Hilborn 2007). Infections can be acute, chronic, or asymptomatic, fish may die, recover, or become carriers (Naish et al. 2007), and pathogens may be shed from any of these stages (Scottish Executive 2002). Most salmon and trout hatcheries along the Willamette River Basin, Oregon, USA, utilize an untreated river water supply for their rearing ponds and release this water, untreated, back into the river. This creates a potential for waterborne pathogens present in free-ranging hosts to be transmitted through the water supply to hatchery populations. Moreover, any hatchery epizootic can amplify pathogens and release these into the water, which could have a direct impact on free- ranging populations exposed to those pathogens in hatchery effluent. The goal of this thesis was to assess transmission of the pathogens Flavobacterium columnare, F. psychrophilum, Aeromonas salmonicida, Renibacterium salmonicida, and Infectious Hematopoietic Necrosis Virus (IHNV), at selected hatcheries in the Willamette River Basin. To accomplish this, I considered historical data and hatchery-specific and pathogen-specific factors involved in transmission and disease.
    [Show full text]
  • Proquest Dissertations
    THE INTEGRON AND ITS GENE CASSETTES: MOLECULAR ECOLOGY OF A MOBILE GENE POOL by Jeremy Edmund Koenig Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia June 2009 © Copyright by Jeremy Edmund Koenig, 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre refinance ISBN: 978-0-494-56421-9 Our file Notre reference ISBN: 978-0-494-56421-9 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent §tre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]