An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions
CORE Metadata, citation and similar papers at core.ac.uk Provided by Diposit Digital de la Universitat de Barcelona International Journal of Molecular Sciences Article Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions Gabriel Forn-Cuní, Susana Merino and Juan M. Tomás * Department of Genética, Microbiología y Estadística, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain; [email protected] (G.-F.C.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +34-93-4021486 Academic Editor: William Chi-shing Cho Received: 7 February 2017; Accepted: 26 February 2017; Published: 28 February 2017 Abstract: Lipopolysaccharides (LPSs) are an integral part of the Gram-negative outer membrane, playing important organizational and structural roles and taking part in the bacterial infection process. In Aeromonas hydrophila, piscicola, and salmonicida, three different genomic regions taking part in the LPS core oligosaccharide (Core-OS) assembly have been identified, although the characterization of these clusters in most aeromonad species is still lacking. Here, we analyse the conservation of these LPS biosynthesis gene clusters in the all the 170 currently public Aeromonas genomes, including 30 different species, and characterise the structure of a putative common inner Core-OS in the Aeromonadaceae family. We describe three new genomic organizations for the inner Core-OS genomic regions, which were more evolutionary conserved than the outer Core-OS regions, which presented remarkable variability. We report how the degree of conservation of the genes from the inner and outer Core-OS may be indicative of the taxonomic relationship between Aeromonas species. Keywords: Aeromonas; genomics; inner core oligosaccharide; outer core oligosaccharide; lipopolysaccharide 1. -
The Tonb System in Aeromonas Hydrophila NJ-35 Is Essential for Maca2b2 Efflux Pump-Mediated Macrolide Resistance
Dong et al. Vet Res (2021) 52:63 https://doi.org/10.1186/s13567-021-00934-w RESEARCH ARTICLE Open Access The TonB system in Aeromonas hydrophila NJ-35 is essential for MacA2B2 efux pump-mediated macrolide resistance Yuhao Dong1, Qing Li2, Jinzhu Geng1, Qing Cao1, Dan Zhao1, Mingguo Jiang3, Shougang Li1, Chengping Lu1 and Yongjie Liu1* Abstract The TonB system is generally considered as an energy transporting device for the absorption of nutrients. Our recent study showed that deletion of this system caused a signifcantly increased sensitivity of Aeromonas hydrophila to the macrolides erythromycin and roxithromycin, but had no efect on other classes of antibiotics. In this study, we found the sensitivity of ΔtonB123 to all macrolides tested revealed a 8- to 16-fold increase compared with the wild-type (WT) strain, but this increase was not related with iron deprivation caused by tonB123 deletion. Further study demonstrated that the deletion of tonB123 did not damage the integrity of the bacterial membrane but did hinder the function of macrolide efux. Compared with the WT strain, deletion of macA2B2, one of two ATP-binding cassette (ABC) types of the macrolide efux pump, enhanced the sensitivity to the same levels as those of ΔtonB123. Interestingly, the dele- tion of macA2B2 in the ΔtonB123 mutant did not cause further increase in sensitivity to macrolide resistance, indicat- ing that the macrolide resistance aforded by the MacA2B2 pump was completely abrogated by tonB123 deletion. In addition, macA2B2 expression was not altered in the ΔtonB123 mutant, indicating that any infuence of TonB on MacA2B2-mediated macrolide resistance was at the pump activity level. -
University of Cincinnati
UNIVERSITY OF CINCINNATI Date: February 22, 2007 I, _ Samuel Lee Hayes________________________________________, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Biological Sciences It is entitled: Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms This work and its defense approved by: Chair: _Brian K. Kinkle _Dennis W. Grogan _Richard D. Karp _Mario Medvedovic _Stephen J. Vesper Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms A dissertation submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Biological Sciences of the College of Arts and Sciences 2007 by Samuel Lee Hayes B.S. Ohio University, 1978 M.S. University of Cincinnati, 1986 Committee Chair: Dr. Brian K. Kinkle Abstract The genus Aeromonas contains virulent bacteria implicated in waterborne disease, as well as avirulent strains. One of my research objectives was to identify and characterize host- pathogen relationships specific to Aeromonas spp. Aeromonas virulence was assessed using changes in host mRNA expression after infecting cell cultures and live animals. Messenger RNA extracts were hybridized to murine genomic microarrays. Initially, these model systems were infected with two virulent A. hydrophila strains, causing up-regulation of over 200 and 50 genes in animal and cell culture tissues, respectively. Twenty-six genes were common between the two model systems. The live animal model was used to define virulence for many Aeromonas spp. -
CHAPTER 1: General Introduction and Aims 1.1 the Genus Cronobacter: an Introduction
Diversity and virulence of the genus Cronobacter revealed by multilocus sequence typing (MLST) and comparative genomic analysis Susan Manju Joseph A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy July 2013 Experimental work contained in this thesis is original research carried out by the author, unless otherwise stated, in the School of Science and Technology at the Nottingham Trent University. No material contained herein has been submitted for any other degree, or at any other institution. This work is the intellectual property of the author. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the owner(s) of the Intellectual Property Rights. Susan Manju Joseph ACKNOWLEDGEMENTS I would like to express my immense gratitude to my supervisor Prof. Stephen Forsythe for having offered me the opportunity to work on this very exciting project and for having been a motivating and inspiring mentor as well as friend through every stage of this PhD. His constant encouragement and availability for frequent meetings have played a very key role in the progress of this research project. I would also like to thank my co-supervisors, Dr. Alan McNally and Prof. Graham Ball for all the useful advice, guidance and participation they provided during the course of this PhD study. -
Delineation of Aeromonas Hydrophila Pathotypes by Dectection of Putative Virulence Factors Using Polymerase Chain Reaction and N
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Kennesaw State University Kennesaw State University DigitalCommons@Kennesaw State University Master of Science in Integrative Biology Theses Biology & Physics Summer 7-20-2015 Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Metz Kennesaw State University, [email protected] Follow this and additional works at: http://digitalcommons.kennesaw.edu/integrbiol_etd Part of the Integrative Biology Commons Recommended Citation Metz, John, "Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay" (2015). Master of Science in Integrative Biology Theses. Paper 7. This Thesis is brought to you for free and open access by the Biology & Physics at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Integrative Biology Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. Delineation of Aeromonas hydrophila Pathotypes by Detection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Michael Metz Submitted in partial fulfillment of the requirements for the Master of Science Degree in Integrative Biology Thesis Advisor: Donald J. McGarey, Ph.D Department of Molecular and Cellular Biology Kennesaw State University ABSTRACT Aeromonas hydrophila is a Gram-negative, bacterial pathogen of humans and other vertebrates. Human diseases caused by A. hydrophila range from mild gastroenteritis to soft tissue infections including cellulitis and acute necrotizing fasciitis. When seen in fish it causes dermal ulcers and fatal septicemia, which are detrimental to aquaculture stocks and has major economic impact to the industry. -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
A Study of Gastroenteritis Outbreak Caused by Aeromonas Verionii
Research Article Adv Biotech & Micro Volume 3 Issue 1 - April 2017 Copyright © All rights are reserved by Karan Ostwal DOI: 10.19080/AIBM.2017.03.555602 A Study of Gastroenteritis Outbreak Caused by Aeromonas Verionii Ostwal K1*, Dharne M2, Shah P3, Mehetre G2, Yashaswini D2 and Shaikh N3 1MIT Hospital, India 2National Collection of Industrial Microorganisms (NCIM), CSIR, India 3DrVM Government Medical College, India Submission: February 01, 2017; Published: April 04, 2017 *Corresponding author: Karan Ostwal, Consultant Microbiologist MIT Hospital Aurangabad Maharashtra, India, Email: Abstract Background: Aeromonas belongs to family Aeromonadaceae. Aeromonas verionii causes diarrhoea and gastroenteritis. Reports from Aeromonas Aeromonas sourceAustralia of haveinfection suggested was drinking that there water. may be a connection between cases of -associated diarrhoea and the numbers of Aeromonas in the drinking-water. As, Aeromonas species is associated with water source, we hereby report an outbreak due to veronii in which Aim: To determine the cause & identify the source of outbreak of gastroenteritis. Material and methods: A cross- sectional study was performed in which seven patients with gastroenteritis were admitted to paediatric ward at Dr. Vaishampayan memorial government medical college Solapur, Maharshtra during the month of october 2015. All theAeromonas Patients verioniigave history of fishing three days back to Sena river which lies at the border of Maharashtra & Karnataka. Patients suffered from severe acute gastroenteritis. Stool samples of all the seven patient were sent for microbiological examination. The organism was identified as was subjected to antibiotic susceptibility testing by Kirby-Bauer disc diffusion technique.(Invitrogen The). source of infection was traced water sampling was done from the Sena river and A. -
Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton, -
Aeromonas Veronii Biovar Sobria Gastoenteritis: a Case Report
iMedPub Journals 2011 ARCHIVES OF CLINICAL MICROBIOLOGY Vol. 2 No. 5:3 This article is available from: http://www.acmicrob.com doi: 10:3823/240 Aeromonas veronii biovar sobria gastoenteritis: a case report Afreenish Hassan*, Javaid Usman, Fatima Kaleem, National University of Sciences and Technology, Islamabad, Pakistan Maria Omair, Ali Khalid, Muhammad Iqbal * Corresponding author: Dr Afreenish Hassan Abstract E-mail: [email protected] Aeromonas veronii biovar sobria is associated with various infections in humans. Isola- tion of Aeromonas sobria in patients with gastroenteritis is not unusual. We describe a case of Aeromonas veronii biovar sobria gastroenteritis in a young patient. This is the first documented case reported from Pakistan. Introduction were collected for laboratory investigation. He was shifted to the medical ward and was started on Inj. Ciprofloxacin 200mg The genus Aeromonas include many species but the most twice daily, infusion Metronidazole 500mg three times a day, common ones associated with human infections are Aeromo- injection Maxolon 10 mg three times a day. He was rehydrated nas veronii, Aeromons hydrophila, Aeromonas jandaei, Aeromo- with infusion Normal saline 1000ml once daily. He was advised nas caviae and Aeromonas schubertii [1]. The diseases caused to take orally Oral Rehydration salt (ORS). His blood complete by Aeromonas include gastroenteritis, ear and wound infec- picture and urine routine examination was unremarkable ex- tions, cellulitis, urinary tract infections and septicemia [2]. We cept mildly raised neutrophil count in blood (73%) (Table 1,2,3). describe here a case of Aeromonas veronii biovar sobria gastro- On gross examination, his stool sample was of green in colour, enteritis in a young patient. -
Pdf 873.73 K
Zagazig J. Agric. Res., Vol. 47 No. (1) 2020 179 -179197 Biotechnology Research http:/www.journals.zu.edu.eg/journalDisplay.aspx?Journalld=1&queryType=Master ISOLATION OF Aeromonas BACTERIOPHAGE AvF07 FROM FISH AND ITS APPLICATION FOR BIOLOGICAL CONTROL OF MULTIDRUG RESISTANT LOCAL Aeromonas veronii AFs 2 Nahed A. El-Wafai *, Fatma I. El-Zamik, S.A.M. Mahgoub and Alaa M.S. Atia Agric. Microbiol. Dept., Fac. Agric., Zagazig Univ., Egypt Received: 25/09/2019 ; Accepted: 25/11/2019 ABSTRACT: Aeromonas isolates from Nile tilapia fish, fish ponds and River water were identified as well as their bacteriophage specific. Also evaluation of antibacterial effect of both nanoparticles and phage therapy against the pathogenic Aeromonas veronii AFs 2. Differentiation of Aeromonas spp. was done on the basis of 25 different biochemical tests and confirmed by sequencing of 16s rRNA gene as (A. caviae AFg, A. encheleia AWz, A. molluscorum AFm, A. salmonicida AWh, A. veronii AFs 2, A. veronii bv. veronii AFi). All of the six Aeromonas strains were resistant to β-actam (amoxicillin/ lavulanic acid) antibiotics. However, the resistance to other antibiotics was variable. All Aeromonas strains were found to be resistant to ampicillin, cephalexin, cephradine, amoxicillin/clavulanic acid, rifampin and cephalothin. Sensitivity of 6 Aeromonas strains raised against 7 concentrations of chitosan nanoparticles. Using well diffusion method spherically shaped silver nanoparticles AgNPs with an average size of ~ 20 nm, showed a great antimicrobial activity against A. veronii AFs 2 and five more strains of Aeromonas spp. At the concentration of 20, 24, 32 and 40 µg/ml. Thermal inactivation point was 84 oC for phage AvF07 which was sensitive to storage at 4 oC compared with the storage at - o 20 C. -
Original Article COMPARISON of MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, and BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR
European Journal of Microbiology and Immunology 7 (2017) 1, pp. 15–36 Original article DOI: 10.1556/1886.2016.00037 COMPARISON OF MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, AND BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR FOR THE SELECTIVE GROWTH OF BURKHOLDERIA SPP. Carola Edler1, Henri Derschum2, Mirko Köhler3, Heinrich Neubauer4, Hagen Frickmann5,6,*, Ralf Matthias Hagen7 1 Department of Dermatology, German Armed Forces Hospital of Hamburg, Hamburg, Germany 2 CBRN Defence, Safety and Environmental Protection School, Science Division 3 Bundeswehr Medical Academy, Munich, Germany 4 Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Jena, Germany 5 Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany 6 Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany 7 Department of Preventive Medicine, Bundeswehr Medical Academy, Munich, Germany Received: November 18, 2016; Accepted: December 5, 2016 Reliable identification of pathogenic Burkholderia spp. like Burkholderia mallei and Burkholderia pseudomallei in clinical samples is desirable. Three different selective media were assessed for reliability and selectivity with various Burkholderia spp. and non- target organisms. Mast Burkholderia cepacia agar, Ashdown + gentamicin agar, and B. pseudomallei selective agar were compared. A panel of 116 reference strains and well-characterized clinical isolates, comprising 30 B. pseudomallei, 20 B. mallei, 18 other Burkholderia spp., and 48 nontarget organisms, was used for this assessment. While all B. pseudomallei strains grew on all three tested selective agars, the other Burkholderia spp. showed a diverse growth pattern. Nontarget organisms, i.e., nonfermentative rod-shaped bacteria, other species, and yeasts, grew on all selective agars.