CHAPTER 1: General Introduction and Aims 1.1 the Genus Cronobacter: an Introduction

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 1: General Introduction and Aims 1.1 the Genus Cronobacter: an Introduction Diversity and virulence of the genus Cronobacter revealed by multilocus sequence typing (MLST) and comparative genomic analysis Susan Manju Joseph A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy July 2013 Experimental work contained in this thesis is original research carried out by the author, unless otherwise stated, in the School of Science and Technology at the Nottingham Trent University. No material contained herein has been submitted for any other degree, or at any other institution. This work is the intellectual property of the author. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the owner(s) of the Intellectual Property Rights. Susan Manju Joseph ACKNOWLEDGEMENTS I would like to express my immense gratitude to my supervisor Prof. Stephen Forsythe for having offered me the opportunity to work on this very exciting project and for having been a motivating and inspiring mentor as well as friend through every stage of this PhD. His constant encouragement and availability for frequent meetings have played a very key role in the progress of this research project. I would also like to thank my co-supervisors, Dr. Alan McNally and Prof. Graham Ball for all the useful advice, guidance and participation they provided during the course of this PhD study. Special thanks are due to Esin Cetinkaya (Ankara University, Turkey), Arturo Levican and Prof. M. J. Figueras (Rovirai Virgili University, Spain) for all their help and inputs in the speciation studies. I would like to thank the team at Life Technologies (Foster City, CA) for having sequenced the Cronobacter spp. genomes used in the latter half of this project, and Prof. Michael McClelland and Dr. Prerak Desai (Vaccine Research Institute, San Diego) for their technical expertise and valuable guidance in the bioinformatic analysis of these genomes. The journey through this PhD, away from family, would not have been possible for me without the love, laughter and support of some very fine friends I made over the past few years. Many thanks to the Microbiology Prep Room staff, especially Pam and Mike, for their invaluable help at every stage. A huge round of acknowledgement and gratitude goes to all the colleagues and friends (some of whom have now moved on) in the Microbiology Research group as well as Office 104 for their constant support and camaraderie. Last but definitely not the least; I would like to thank my wonderful family for always showering me with love, blessings and encouragement, even though we have been miles apart. Special thanks are due for my parents for all their sacrifices and hard work that has made me what I am today. Lots of love and gratitude are also due to my wonderful husband, Vishakh, for being my pillar of strength and for patiently enduring the long-distance relationship while I pursued this PhD. I owe all of them a lot. I would like to dedicate this thesis to my parents and Vishakh, for having always believed in me and supported me unconditionally. TABLE OF CONTENTS PUBLICATIONS..........................................................................................................................v ABSTRACT.................................................................................................................................vi LIST OF FIGURES……………………………………………………...................................vii LIST OF TABLES........................................................................................................................x LIST OF APPENDICES…………………………………………………………….……..….xii LIST OF ABBREVIATIONS………………………………………………………………...xiii CHAPTER 1: General introduction and aims 1.1 The genus Cronobacter: An introduction.............................................................................2 1.1.1 History of Cronobacter taxonomy to 2008...........................................................2 1.1.2 Physiology..............................................................................................................7 1.1.3 Reservoirs...............................................................................................................8 1.1.4 Epidemiology........................................................................................................10 1.1.5 Pathogenicity and virulence factors....................................................................13 1.1.6 Culture and phenotypic identification methods................................................16 1.1.7 Molecular typing and identification methods....................................................19 1.1.8 Genome studies.....................................................................................................23 1.1.9 Public health significance and future directions...............................................24 1.2 Aims of the study……..........................................................................................................26 CHAPTER 2: Materials and Methods 2.1 Safety considerations............................................................................................................28 2.2 Bacterial strains....................................................................................................................28 2.3 Preparation of media............................................................................................................38 2.4 MLST and analysis...............................................................................................................39 2.4.1 Choice of bacterial strains for MLST.................................................................39 2.4.2 Genomic DNA extraction.....................................................................................40 2.4.3 PCR amplification of the MLST loci..................................................................40 2.4.4 PCR amplification of the 16S rDNA loci............................................................40 2.4.5 Agarose gel electrophoresis.................................................................................41 2.4.6 PCR product purification....................................................................................41 2.4.7 DNA sequencing...................................................................................................41 2.4.8 Allele and sequence type designation..................................................................43 2.4.9 Analysis of DNA sequences..................................................................................43 i 2.4.10 Evolutionary timescale estimations..................................................................43 2.4.11 Recombination analysis.....................................................................................43 2.4.12 PCR screening for serotype identification.......................................................44 2.4.13 Inter-species nucleotide divergence analysis....................................................44 2.4.14 Linkage and clonality.........................................................................................44 2.5 Whole genome sequencing and comparative genomic analysis.......................................45 2.5.1 Choice of bacterial strains for genome sequencing...........................................45 2.5.2 Genomic DNA extraction.....................................................................................45 2.5.3 Genome sequencing..............................................................................................47 2.5.4 Genome assembly.................................................................................................47 2.5.5 Core and pan-genome identification...................................................................48 2.5.6 Whole genome alignments and phylogenetic analysis.......................................48 2.5.7 Prophage region identification............................................................................49 2.5.8 Plasmid region identification...............................................................................49 2.5.9 Plasmid profiling..................................................................................................49 2.5.10 CRISPR region identification............................................................................50 2.5.11 Genome comparisons and presence/absence of key genes..............................50 2.5.12 Characterisation of O-LPS genes......................................................................51 2.5.13 Phylogenetic analysis of sialic acid gene cluster..............................................51 CHAPTER 3: MLST reveals recombination and evolutionary relationships of the Cronobacter genus 3.1 Introduction..........................................................................................................................53 3.1.1 Aims of this chapter.............................................................................................53 3.1.2 Multilocus sequence typing..................................................................................53 3.1.3 Recombination studies using MLSA...................................................................55 3.1.4
Recommended publications
  • Tesis Doctoral 2014 Filogenia Y Evolución De Las Poblaciones Ambientales Y Clínicas De Pseudomonas Stutzeri Y Otras Especies
    TESIS DOCTORAL 2014 FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta TESIS DOCTORAL 2014 Programa de Doctorado de Microbiología Ambiental y Biotecnología FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta Director/a: Jorge Lalucat Jo Director/a: Margarita Gomila Ribas Director/a: Antonio Bennasar Figueras Doctor/a por la Universitat de les Illes Balears Index Index ……………………………………………………………………………..... 5 Acknowledgments ………………………………………………………………... 7 Abstract/Resumen/Resum ……………………………………………………….. 9 Introduction ………………………………………………………………………. 15 I.1. The genus Pseudomonas ………………………………………………….. 17 I.2. The species P. stutzeri ………………………………………………......... 23 I.2.1. Definition of the species …………………………………………… 23 I.2.2. Phenotypic properties ………………………………………………. 23 I.2.3. Genomic characterization and phylogeny ………………………….. 24 I.2.4. Polyphasic identification …………………………………………… 25 I.2.5. Natural transformation ……………………………………………... 26 I.2.6. Pathogenicity and antibiotic resistance …………………………….. 26 I.3. Habitats and ecological relevance ………………………………………… 28 I.3.1. Role of mobile genetic elements …………………………………… 28 I.4. Methods for studying Pseudomonas taxonomy …………………………... 29 I.4.1. Biochemical test-based identification ……………………………… 30 I.4.2. Gas Chromatography of Cellular Fatty Acids ................................ 32 I.4.3. Matrix Assisted Laser-Desorption Ionization Time-Of-Flight
    [Show full text]
  • Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Diposit Digital de la Universitat de Barcelona International Journal of Molecular Sciences Article Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions Gabriel Forn-Cuní, Susana Merino and Juan M. Tomás * Department of Genética, Microbiología y Estadística, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain; [email protected] (G.-F.C.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +34-93-4021486 Academic Editor: William Chi-shing Cho Received: 7 February 2017; Accepted: 26 February 2017; Published: 28 February 2017 Abstract: Lipopolysaccharides (LPSs) are an integral part of the Gram-negative outer membrane, playing important organizational and structural roles and taking part in the bacterial infection process. In Aeromonas hydrophila, piscicola, and salmonicida, three different genomic regions taking part in the LPS core oligosaccharide (Core-OS) assembly have been identified, although the characterization of these clusters in most aeromonad species is still lacking. Here, we analyse the conservation of these LPS biosynthesis gene clusters in the all the 170 currently public Aeromonas genomes, including 30 different species, and characterise the structure of a putative common inner Core-OS in the Aeromonadaceae family. We describe three new genomic organizations for the inner Core-OS genomic regions, which were more evolutionary conserved than the outer Core-OS regions, which presented remarkable variability. We report how the degree of conservation of the genes from the inner and outer Core-OS may be indicative of the taxonomic relationship between Aeromonas species. Keywords: Aeromonas; genomics; inner core oligosaccharide; outer core oligosaccharide; lipopolysaccharide 1.
    [Show full text]
  • Identification and Virulence of Enterobacter Sakazakii
    Industr & ial od M o i F c r Rajani et al., J Food Ind Microbiol 2016, 2:1 f o o b l i Journal of o a l n DOI: 10.4172/2572-4134.1000108 o r g u y o J ISSN: 2572-4134 Food & Industrial Microbiology Research Article Open Access Identification and Virulence of Enterobacter sakazakii Rajani CSR, Chaudhary A, Swarna A and Puniya AK* Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India Abstract Enterobacter sakazakii (formerly known as Cronobacter sakazakii) is an opportunistic pathogen that causes necrotizing enterocolitis, bacteremia and meningitis, especially in neonates. This study was an attempt to isolate E. sakazakii from different food and environmental sources so as to establish its presence and possible source of transmission. For this, 93 samples (i.e., 37 from dairy and 56 from non-dairy) were collected using standard procedures of sampling. Out of these samples, 45 isolates (i.e., 14 from dairy and 31 from other samples) were taken further on the basis of growth on tryptic soy agar. On further screening on the basis of Gram staining, catalase and oxidase test, only 27 isolates were observed to be positive. The positive isolates were also subjected to PCR based identification using species specific primers. Overall, 11 isolates confirmed E.as sakazakii were also tested for virulent characteristics (i.e., hemolytic activity, haemagglutination test and DNase production) and all the isolates were found to be positive showing a potential threat of infection through food commodities. Keywords: Enterobacter sakazakii; Cronobacter; Virulence lactoferrin showed some effect by reducing the viability of C.
    [Show full text]
  • Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile
    microorganisms Article Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile Constanza Herrera 1, Ruben Moraga 2,*, Brian Bustamante 1, Claudia Vilo 1, Paulina Aguayo 1,3,4, Cristian Valenzuela 1, Carlos T. Smith 1 , Jorge Yáñez 5, Victor Guzmán-Fierro 6, Marlene Roeckel 6 and Víctor L. Campos 1,* 1 Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; [email protected] (C.H.); [email protected] (B.B.); [email protected] (C.V.); [email protected] (P.A.); [email protected] (C.V.); [email protected] (C.T.S.) 2 Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile 3 Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile 4 Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Campus El Boldal, Av. Alessandri N◦1160, Concepcion 4090940, Chile 5 Faculty of Chemical Sciences, Department of Analytical and Inorganic Chemistry, University of Concepción, Concepción 4070386, Chile; [email protected] 6 Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; victorguzmanfi[email protected] (V.G.-F.); [email protected] (M.R.) * Correspondence: [email protected] (R.M.); [email protected] (V.L.C.) Abstract: Arsenic (As), a semimetal toxic for humans, is commonly associated
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Fictibacillus Phosphorivorans Gen. Nov., Sp. Nov. and Proposal to Reclassify
    International Journal of Systematic and Evolutionary Microbiology (2013), 63, 2934–2944 DOI 10.1099/ijs.0.049171-0 Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus Stefanie P. Glaeser,1 Wolfgang Dott,2 Hans-Ju¨rgen Busse3 and Peter Ka¨mpfer1 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Germany Peter Ka¨mpfer 2Institut fu¨r Hygiene und Umweltmedizin, RWTH Aachen, Germany peter.kaempfer 3Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, @umwelt.uni-giessen.de Austria A Gram-positive-staining, aerobic, endospore-forming bacterium (Ca7T) was isolated from a bioreactor showing extensive phosphorus removal. Based on 16S rRNA gene sequence similarity comparisons, strain Ca7T was grouped in the genus Bacillus, most closely related to Bacillus nanhaiensis JSM 082006T (100 %), Bacillus barbaricus V2-BIII-A2T (99.2 %) and Bacillus arsenicus Con a/3T (97.7 %). Moderate 16S rRNA gene sequence similarities were found to the type strains of the species Bacillus gelatini and Bacillus rigui (96.4 %), Bacillus macauensis (95.1 %) and Bacillus solisalsi (96.1 %). All these species were grouped into a monophyletic cluster and showed very low sequence similarities (,94 %) to the type species of the genus Bacillus, Bacillus subtilis.Thequinonesystemof strain Ca7T consists predominantly of menaquinone MK-7. The polar lipid profile exhibited the major compounds diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. In addition, minor compounds of an unidentified phospholipid and an aminophospholipid were detected. No glycolipids were found in strain Ca7T, which was consistent with the lipid profiles of B.
    [Show full text]
  • Redalyc.Prevalence and Identification by Multiplex Polymerase Chain Reaction Patterns of Cronobacter Spp. Isolated from Plant
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil AKSU, Filiz; SANDIKÇI ALTUNATMAZ, Sema; ISSA, Ghassan; ÖZMEN TOGAY, Sine; AKSU, Harun Prevalence and identification by multiplex polymerase chain reaction patterns of Cronobacter spp. isolated from plant-based foods Ciência e Tecnologia de Alimentos, vol. 36, núm. 4, octubre-diciembre, 2016, pp. 730-736 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395949545024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative a ISSN 0101-2061 Identification of Cronobacter isolated from foodstuff Food Science and Technology DDOI http://dx.doi.org/10.1590/1678-457X.16916 Prevalence and identification by multiplex polymerase chain reaction patterns of Cronobacter spp. isolated from plant-based foods Filiz AKSU1*, Sema SANDIKÇI ALTUNATMAZ1, Ghassan ISSA2, Sine ÖZMEN TOGAY3, Harun AKSU4 Abstract Cronobacter spp. involves a group of opportunistic pathogens that cause meningitis in newborns, immunosuppressed individuals with a mortality rate of 50-80%. Seven species like C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, C. universalis, C. condimenti are included in this genus which has been a subject of research especially in the bacteriologic analysis of baby foods. However, since these species were detected also in prepared foodstuffs. The objective of this study was to assert the presence of Cronobacter spp.
    [Show full text]
  • An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity
    microorganisms Review An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity Ana Fernández-Bravo and Maria José Figueras * Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain; [email protected] * Correspondence: mariajose.fi[email protected]; Tel.: +34-97-775-9321; Fax: +34-97-775-9322 Received: 31 October 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%).
    [Show full text]
  • Sphingopyxis Italica, Sp. Nov., Isolated from Roman Catacombs 1 2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE IJSEM Papers in Press. Published December 21, 2012 as doi:10.1099/ijs.0.046573-0 provided by Digital.CSIC 1 Sphingopyxis italica, sp. nov., isolated from Roman catacombs 2 3 Cynthia Alias-Villegasª, Valme Jurado*ª, Leonila Laiz, Cesareo Saiz-Jimenez 4 5 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 6 Apartado 1052, 41080 Sevilla, Spain 7 8 * Corresponding author: 9 Valme Jurado 10 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC 11 Apartado 1052, 41080 Sevilla, Spain 12 Tel. +34 95 462 4711, Fax +34 95 462 4002 13 E-mail: [email protected] 14 15 ª These authors contributed equally to this work. 16 17 Keywords: Sphingopyxis italica, Roman catacombs, rRNA, sequence 18 19 The sequence of the 16S rRNA gene from strain SC13E-S71T can be accessed 20 at Genbank, accession number HE648058. 21 22 A Gram-negative, aerobic, motile, rod-shaped bacterium, strain SC13E- 23 S71T, was isolated from tuff, the volcanic rock where was excavated the 24 Roman Catacombs of Saint Callixtus in Rome, Italy. Analysis of 16S 25 rRNA gene sequences revealed that strain SC13E-S71T belongs to the 26 genus Sphingopyxis, and that it shows the greatest sequence similarity 27 with Sphingopyxis chilensis DSMZ 14889T (98.72%), Sphingopyxis 28 taejonensis DSMZ 15583T (98.65%), Sphingopyxis ginsengisoli LMG 29 23390T (98.16%), Sphingopyxis panaciterrae KCTC12580T (98.09%), 30 Sphingopyxis alaskensis DSM 13593T (98.09%), Sphingopyxis 31 witflariensis DSM 14551T (98.09%), Sphingopyxis bauzanensis DSM 32 22271T (98.02%), Sphingopyxis granuli KCTC12209T (97.73%), 33 Sphingopyxis macrogoltabida KACC 10927T (97.49%), Sphingopyxis 34 ummariensis DSM 24316T (97.37%) and Sphingopyxis panaciterrulae T 35 KCTC 22112 (97.09%).
    [Show full text]
  • Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species Where C. Sakazakii Homologs Follow Sequence Type Lineages
    microorganisms Article Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species where C. sakazakii Homologs Follow Sequence Type Lineages Samantha Finkelstein, Flavia Negrete, Hyein Jang, Jayanthi Gangiredla, Mark Mammel, Isha R. Patel, Hannah R. Chase, JungHa Woo, YouYoung Lee, Caroline Z. Wang, Leah Weinstein, Ben D. Tall * and Gopal R. Gopinath Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 MuirKirk Rd, Laurel, MD 20708, USA; sfi[email protected] (S.F.); [email protected] (F.N.); [email protected] (H.J.); [email protected] (J.G.); [email protected] (M.M.); [email protected] (I.R.P.); [email protected] (H.R.C.); [email protected] (J.W.); [email protected] (Y.L.); [email protected] (C.Z.W.); [email protected] (L.W.); [email protected] (G.R.G.) * Correspondence: [email protected] Received: 4 October 2019; Accepted: 9 November 2019; Published: 12 November 2019 Abstract: Cronobacter species are a group of foodborne pathogenic bacteria that cause both intestinal and systemic human disease in individuals of all age groups. Little is known about the mechanisms that Cronobacter employ to survive and persist in foods and other environments. Toxin–antitoxin (TA) genes are thought to play a role in bacterial stress physiology, as well as in the stabilization of horizontally-acquired re-combinatorial elements such as plasmids, phage, and transposons. TA systems have been implicated in the formation of a persistence phenotype in some bacterial species including Escherichia coli and Salmonella.
    [Show full text]
  • Biodiversité Microbienne Dans Les Milieux Extrêmes Salés Du Nord-Est Algérien
    اﻟﺟﻣﮭورﯾﺔ اﻟﺟزاﺋرﯾﺔ اﻟدﯾﻣﻘراطﯾﺔ اﻟﺷﻌﺑﯾﺔ République Algérienne Démocratique et Populaire وزارة اﻟتــﻋﻠﯾم اﻟﻊــــاﻟﻲ و اﻟبـــﺣث اﻟﻊـــﻟﻣﻲ Ministère de l’Enseignement Supérieur et de la Recherche Scientifique جـــاﻣﻌﺔ ﺑـﺎﺗـﻧـــــــــــــــﺔ Université Mustapha Ben Boulaid- Batna 2 2 كــــﻟﯾــــــﺔ عـــــﻟوم اﻟطــﺑﯾﻌـــــــﺔ ـوالحــــﯾﺎة Faculté des Sciences de la Nature et de la Vie ﻗـــﺳم اﻟﻣﯾﻛروﺑﯾوﻟوﺟﯾـــــــﺎ و اﻟﺑﯾوﻛﯾﻣﯾـــــــﺎء Département de Microbiologie et Biochimie Réf : …………………………… اﻟﻣـرﺟﻊ :………………….…… Thèse présentée par Taha MENASRIA En vue de l’obtention du diplôme de Doctorat en ScienceS Filière : Sciences Biologiques Spécialité : Microbiologie Appliquée Thème Biodiversité microbienne dans les milieux extrêmes salés du Nord-Est Algérien Devant le jury composé de : Président : Dr. Kamel AISSAT (Professeur) Univ. de Batna 2 Directeur de thèse : Dr. Hocine HACÈNE (Professeur) Univ. d’Alger (USTHB) Co-directeur de thèse : Dr. Abdelkrim SI BACHIR (Professeur) Univ. de Batna 2 Examinateur : Dr. Yacine BENHIZIA (Professeur) Univ. de Constantine 1 Examinateur : Dr. Mahmoud KITOUNI (Professeur) Univ. de Constantine 1 Examinateur : Dr. Lotfi LOUCIF (Maître de conférences ‘A’) Univ. de Batna 2 Membre invité : Dr. Ammar AYACHI (Professeur) Univ. de Batna 1 Année universitaire : 2019-2020 Remerciements C’est un devoir d’exprimer mes remerciements et reconnaissances à travers cette thèse à tous ceux qui par leurs aides, encouragements et leurs conseils ont facilité, de près ou de loin, à l’élaboration et à la réalisation de ce modeste travail. Mes remerciements vont en premier ordre et particulièrement à : Dr. Hocine HACÈNE (Professeur à l’Université d’USTHB, Alger) pour le grand honneur qu’il m’a fait en acceptant de diriger ce travail, pour ses conseils et ses encouragements durant la réalisation de cette thèse.
    [Show full text]
  • Biocontrol of Cronobacter Spp. Using Bacteriophage in Infant Formula
    i Biocontrol of Cronobacter spp. using Bacteriophage in Infant Formula by Reza Abbasifar A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Food Science Guelph, Ontario, Canada © Reza Abbasifar, May, 2013 ii ABSTRACT Biocontrol of Cronobacter spp. using Bacteriophage in Infant Formula Reza Abbasifar Advisor: Dr. Mansel W. Griffiths University of Guelph, 2013 Co-Advisor: Dr. Parviz M. Sabour The purpose of this research was to explore the potential application of lytic phages to control Cronobacter spp. in infant formula. More than two hundred and fifty phages were isolated from various environmental samples against different strains of Cronobacter spp. Selected phages were characterized by morphology, host range, and cross infectivity. The genomes of five novel Cronobacter phages [vB_CsaM_GAP31 (GAP31), vB_CsaM_GAP32 (GAP32), vB_CsaP_GAP52 (GAP52), vB_CsaM_GAP161 (GAP161), vB_CsaP_GAP227 (GAP227)] were sequenced. Phage GAP32 possess the second largest phage genome sequenced to date, and it is proposed that GAP32 belongs to a new genus of “Gap32likeviruses”. Phages GAP52 and GAP227 are the first C. sakazakii podoviruses whose genomes have been sequenced. None of the sequenced genomes showed homology to virulent or lysogenic genes. In addition, in vivo administration of phage GAP161 in the hemolymph of Galleria mellonella larvae showed no negative effects on the wellbeing of the larvae and could effectively prevent Cronobacter infection in the larvae. A cocktail of five phages was highly effective for biocontrol of three Cronobacter sakazakii strains present as a mixed culture in both broth media and contaminated reconstituted infant formula. This phage cocktail could be iii potentially used to control C.
    [Show full text]